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Computational isomorphisms
in classical logic

�Extended Abstract�

Vincent Danos a�� Jean�Baptiste Joinet a�� Harold Schellinx b��

a �Equipe de Logique Math�ematique

Universit�e Paris VII

b Mathematisch Instituut

Universiteit Utrecht

Abstract

We prove that any pair of derivations� without structural rules� of F � G and G � F �
where F � G are �rst�order formulas �without any qualities�� in a constrained classical
sequent calculus LK�

p
� de�ne a computational isomorphism up to an equivalence on

derivations based upon reversibility properties of logical rules�

This result gives a rationale behind the success of Girard�s denotational semantics
for classical logic� in which all standard �linear� boolean equations are satis�ed�

� Introduction

��� A patch of paradise to be broadened

In recent work ��� devoted to the proof theory of classical logic� we embarked

on the project of overcoming the obstacles that prevent cut from being a decent

binary operation on the set of classical sequent derivations� To clarify what we

mean by decency� let us have a look at the world of simply typed ��calculus�

which� seen from a normalization�as�computation point of view� is something

close to a patch of paradise�

Among the ingredients of �computational decency� there� we not only en�

counter 	�
 a framework to represent proofs 	intuitionistic natural deduc�

tion� IND
 and 	�
 a noetherian and con�uent cut�elimination scheme 	��

reduction
� but also 	�
 a quotient of the space of proofs 	the ��quotient


where computational isomorphisms are realized�
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As an example of a computational isomorphism� which gives a good impression

of how members of this intuitionistic triple 	IND���
�

�
 cooperate� consider

f �s �twister� T �f � 
 �y�x		f
x
y� Clearly�

f � A� 	B � C
 � T �T �f �� � A� 	B � C


Note that the term T �T �f �� has the e�ect of switching the order of the ar�
guments of the function f � and then switching them back again� Does such
a double switching have an e�ect in terms of computations� Of course one

would like the answer to be a �rm �no��� Otherwise said � we�ll be more pre�
cise later � we want this kind of �commutativity� to be a computational iso�

morphism� By two ��reductions� T �T �f �� 
 �y�x		�y�x		f
x
y
x
y becomes

�y�x		f
y
x� So in order for this double switching to be an �action without
content or meaning�� we need to identify the terms �y�x		f
y
x and f � But
that gap between terms is exactly the one that is closed by ��equivalence�

��� The classical triple

In ��� we constructed a classical triple� 	LK�

p
�tq�

s

�
� It is an extension of the
intuitionistic triple� because the standard embedding of natural deduction into
sequent calculus actually sends ��equivalent derivations to tq�equivalent ones
and ��equivalent ones to strongly equivalent ones�

	IND� ��
�

�
 � 	LK�

p
� tq�

s

�
�

To build this classical triple� we start from a very general calculus for classical
logic� baptized LKtq 	which includes logical rules in �all styles�� multiplicative�

additive
� and equip it with a normalization scheme 	tq
 which asks of each

cut formula a �colour�� t or q� to decide which sub�proof is to be moved

�rst� This quite general scheme is shown to be noetherian and con�uent using
embeddings of classical logic into linear logic�

Just as asking that the above �commutativity� be a computational isomor�
phism forces ��equivalence on IND�derivations� asking the boolean equiva�

lences we consider to be computational isomorphisms forces strong equivalence

on LKtq�derivations� Strongly equivalent proofs di�er only with respect to re�
version of � � � reversible logical rules� However� in LKtq pure� tq�reduction

breaks
s

��classes� The quotient induced by
s

� consequentially is degenerated�

all derivations having the same conclusion are identi�ed� For
s

� to become
compatible with the tq scheme� we need to 	�
 narrow the space of LKtq proofs

	the resulting fragment we call LK�
 and 	�
 restrict the normalization�space

of LK� by polarizing derivations� i�e� by subordinating �colours� 	hence nor�
malization steps
 to reversibility properties of connectives�

Both LK� and LK�

p
are complete with respect to classical provability and

closed under tq�normalization� and� by design� LK�

p
realizes �linear� boolean

equivalences as computational isomorphisms�

�
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��� Relationships between LK�

p
and LC

Up to the stoup�no stoup formulation of the syntax� LC� Girard�s calculus for

classical logic ���� is but a fragment of LK�

p
where one imposes a coordination

between styles and colours� and second� our strong normalization is a syn�

tactic materialization of the identi�cations achieved by Girard�s denotational

semantics for LC� which by the way works for the whole of LK�

p
�

��� An abstract criterion for isomorphisms

Now let us become more precise about what exactly we mean by a compu�

tational isomorphism� And for that� let us concentrate on sequent calculus�

where composition appears via an explicit rule� the cut�rule�

Given a sequent calculus L with a con�uent and noetherian normalization

scheme� for any proofs � and �
� in L of � � �� F and F��� � �� respectively�

we can de�ne � �F �
� to be the normal form of the derivation obtained by

cutting � and �
� on F � Let idX denote the axiom X � X which we suppose

is a unit w�r�t� �X� Let now � be an equivalence relation on L�proofs� such

that any two equivalent proofs � and �
� in L have equivalent normal forms

	in which case we say the equivalence is compatible with the normalization

scheme
�

De�nition ��� A pair of L�derivations � and � of F � G and G � F de	ne

a computational isomorphism between F and G with respect to �� if ��G� �

idF and ��F � � idG�

The aim of the present paper is to provide a su�cient condition for a pair

of derivations of F � G and G � F to de�ne a computational isomorphism

in LK�

p
with respect to

s

�� Our criterion� which replaces empirical checkings

of the kind we saw in the example given before� is quite general� Let us say

a formula F is �without any qualities� when all relation symbols in F are

distinct� Then� in LK�

p
� any pair of derivations� without structural rules� of

F � G and G � F � where F � G are �rst�order formulas without any qualities�

de�ne a computational isomorphism with respect to strong equivalence�

The only di�culty in the proof is to show 	theorem ���
 that for such formulas

F � an LK�

p
�derivation� with no structural rules� of the sequent F � F always

is strongly equivalent to idF �

Linear derivations� which can be considered asMALL derivations 	LL deriva�

tions without exponentials
� seem to play a distinguished r�ole in the search

for the algebraic structure behind classical logic considered as a computational

system�

� Preliminaries

��� Strong equivalence

As will be clear from the introduction� the present paper heavily relies upon

our earlier work and we will freely use notions and notations from ���� More

�
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speci�cally� we refer to ��� for the de�nitions of LKtq
� LK�

� LK�
p� the de�nition

of tq�reduction� proofs of strong normalization and con�uence� etcetera� For

reference we added the �all�style� sequent calculus LK that underlies these

systems as an appendix�

The notion of strong equivalence of LK�derivations comes from reversibility

properties of logical operators� All unary multiplicative rules� binary additive

rules� both negation rules� right universal rules and left existential rules� are

reversible� one can always permute them down with any other rule� that is�

except when the reversible formula is active in the rule below� So two LK�

derivations � and ��
are said strongly equivalent� if they are the same up

to such permutations of reversible logical rules and canonical expansion of

identity�axioms�

Visually� strong equivalence can be thought of as the equivalence relation

induced by the �continuous� process of �opening� and �closing� in a proof oc�

currences of formulas that have a reversible main connective� if you think

of the main�active interspaces of such formulas as zippers in the proof� then

�opening� the formula 	permuting the reversible rule downwards
 unzips the

proof� �closing� it 	permuting the rule upwards� which is not always possible


zips it�

Only within LK�
p� as was proved in ���� is strong equivalence �computationally

meaningful��

Proposition ��� If two LK
�
p proofs are strongly equivalent� then so are their

normal forms�

��� Archetypes� linear derivations� and other characters

We consider a �rst�order language for classical logic built from a set of vari�

ables x�� x�� � � �� a set of n�ary function symbols f�� f�� � � �� a set of n�ary relation

symbols R�� R�� � � � 	where n 
 �� �� � � � and each function and relation symbol

is supposed to come with a �xed arity� ��ary relation symbols are sometimes

referred to as propositional variables� for each n the set of n�ary function� rela�

tion symbols is supposed to be in�nite
� negation �� quanti�ers ��� and binary

connectives 	a�
a�
a

��	m�
m�
m

� 	the additive and multiplicative versions of

the connectives well�known from classical propositional logic
�

De�ne as usual the set of terms inductively by� all variables are terms�

and whenever t�� � � � � tn are terms and f is an n�ary function symbol� then

f	t�� � � � � tn
 is a term� and the set of formulas by� if R is an n�ary relation

symbol and t�� � � � � tn are terms� then R	t�� � � � � tn
 is a	n atomic
 formula and�

whenever F�G are formulas and x a variable� then �F�QxF�F �G are formulas

	where Q ranges over quanti�ers and � over binary connectives
�

De�nition ��� A 	rst�order formula F is an archetype i
 all relation sym�

bols occurring in F are distinct� and� whenever QxG is a subformula of F �

then x is a free variable of G �i�e�� there is no vacuous binding��

For example� 	�xR�	x

 
a R�	y� z
 is an archetype� but both �xR	z
 and

R	f	t� t�

 	a 	�xR	x� z

 are not�

�
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De�nition ��� A linear derivation of F � F for some 	rst�order formula
F �notation
 	F � is a normal derivation of F � F in the �all�style� sequent

calculus LK� that does not make use of structural rules�

Clearly� given some F � we can in general not expect 	F to be unique� Indeed� if
F is not atomic� then obvious distinct examples of 	F are the proof consisting

in nothing but the identity axiom F � F 	the trivial 	F � written as idF 
� and
iterations of the derivation called �F in ����

De�nition ��� If Fi is �are� the immediate subformula�s� of F � an iterated ��
proof of F � F �notation
 �F �� consists in axiom�s� Fi � Fi and�or iterated
��proofs of Fi � Fi� followed by precisely one instance of each of the logical

rules introducing F �s main connective�

� Linear derivations of archetypical identities are units

In what follows we will characterize the derivations 	F � and show that� in case
F is an archetype� any 	F necessarily ends in an application of a reversible

rule� Also� every 	F � by permutations of instances of reversible rules� can
be transformed in an iterated ��proof of F � F � As a consequence we get

that� for archetypes F � any linear derivation of an identity F � F is strongly

equivalent to idF � a result which we then relativize to LK�
p�

We start by assuming the archetype to be propositional� and then will use the
characterization of 	F for propositional archetypes F in order to extend the

characterization to �rst�order archetypes�

��� The propositional case

In the proof of the propositional case several times the following simple prop�
erty is invoked� which states that whenever a sequent � � � is provable in

non�exponential propositional linear logic 	without constants
 	MALL
� in a

cut�free derivation� because of the absence of weakening� every formula X in
� 
� can be �traced upwards� to at least one identity axiom 	otherwise said�

every formula X has at least one atomic subformula whose tree of ancestors
has a leaf in an identity axiom
�

Let 
i�s be variables over fl� rg� We will use the following convenient notation�

A��
�
� � � � � A�n

n will denote the sequent � � � where � is the submultiset of
A��

�
� � � � � A�n

n containing A�i
i �s such that 
i 
 l and � the complementary

submultiset� We use a �bar� to indicate transposition within fl� rg i�e� �l �
 r�

�r �
 l�

Lemma ��� Let � be a normal MALL�derivation �without constants� of
X����i� Then there is at least one atomic subformula p of X that occurs

positively �negatively� in X and negatively �positively� in X 
�� Hence if a
sequent � is provable� then any formula in the multi�set � contains at least
one atom p that occurs more than once in ��

Any propositional formula F is of the form �mF �� where �m denotes m � �

�
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��

���

irr� ��rule

��� 	F� � F�

�� ����������

�
n

���

irr� ��rule

�n� 	F� � F�

��

�
m	F� � F�
���m	F� � F�
��

�������������������

���������

reversible rules

�������������������

Fig� 	� A non�trivial �F

negation signs and F
� is either atomic or of the form F� � F� for some binary

connective ��

Lemma ��� Let F be a propositional archetype� Then any non�trivial 	F ends

in an application of the reversible rule introducing F �s main connective�

By the above lemma we know that� for F a non�atomic propositional arche�
type� a non�trivial 	F necessarily ends in an application of the reversible rule
introducing F �s main connective�

But we also know what are the lowest occurrences of irreversible rules�

Lemma ��� Let F � �
m	F� � F�
 be an archetype� All lowest occurrences of

irreversible rules in 	F introduce the principal connective of F��F�� Moreover�

all passive formulas occurring in a premise of such a rule are subformulas of

the active formula�

Consequently� a non�trivial 	F deriving �
m	F� � F�


�

��
m	F� � F�


��� where

	F��F�

�� say� is on the reversible side� necessarily is of the form as in �gure ��

There all formulas in �i are proper subformulas of F� � F�� We will speak

of the irreversible bar in 	F � the reversible rules below are called 	F �s closing
rules� Clearly the number of closing rules in any non�trivial 	F is at least ��

Observe also that� for F � �G� by a permutation of closing rules we can bring

	F in the form
	G

���
G

��
� G

�

G
�

� 	�G
�

	�G
��� 	�G
�

which ends �just like an ���

De�nition ��� Let Fi be the immediate subformula�s� of F � We say that 	F
is locally � i
 it is the identity axiom F � F or consists in derivations 	Fi

followed by precisely one instance of each of the logical rules introducing F �s
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main connective�

We already saw that any 	
�G can be transformed in a derivation that is locally

�� The following lemma shows that this can always be done� for whatever

archetype F �

Lemma ��� Let F � F� � F� be a propositional archetype� Then for any 	F

there exists a permutation of its closing rules with the irreversible bar such

that the resulting derivation is locally ��

The following theorem then is an immediate corrollary�

Theorem ��� Any linear derivation of F � F � with F an archetype� is

strongly equivalent to idF �

Proof� By induction on the complexity of F � using 	the zipping
 lemma ����

As reversion of F � F can introduce structural rules� the converse does not

hold� there are non�linear derivations strongly equivalent to the identity ax�

iom� �

Let 	 �
F
denote any derivation obtained from a 	F by removing zero or more of

its closing rules� Also the following proposition is a corollary to the above�

Proposition ��	 Let F be an archetype� Then any sub�derivation of 	F is of

the form 	
�

G
for some subformula G of F � moreover� any sequent in 	F is of the

form ���n
H� where H is either atomic or has an irreversible main connective�

and all formulas in � are subformulas of �
n
H�

Let us mention another corollary� which is often used in the proofs of the

lemmas in the next section�

Lemma ��
 Suppose 	
�

F
derives �� F � Then� for every atomic formula p oc�

curring in � there is an axiom A � A in 	
�

F
� such that A contains p�

��� Extension to 	rst�order

In order to extend the above characterization to the �rst�order case it su�ces

to extend lemmas ���� ��� and ��� to �rst�order archetypes� We will make use

of the fact that �rst�order formulas have an obvious underlying propositional

structure�

De�nition ��� We inductively de	ne a mapping 	�
� ���at�� from 	rst�order

formulas to propositional formulas by


Ri�t�� � � � � tn�
� 
� ri

��F �� 
� �F �

�QxF �� 
� F �

�F� � F��
� 
� F �

�
� F �

�

where ri is a �new� propositional variable� and call F
�
the propositional col�

lapse of F � �Cf� ���� chapter !��

"
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The propositional collapse of �rst�order formulas extends in an obvious way

to �rst�order proofs� if � is a �rst�order proof of �� then� 	modulo possible

repetitions of sequents due to erasing quanti�ers
 �� is propositional proof of

���

We are going to use the following trivial property of the 	�
��mapping�

Lemma ���� Let F be a 	rst�order archetype and 	F a linear proof of F � F �

Then F
� is a propositional archetype and 		F 


� a linear proof 	F � of F �
� F

��

Now� using the results in the propositional case� one shows that lemmas ���

and ��� continue to hold in the �rst�order case�

Lemma ���� Let F be a 	rst�order archetype� Then any non�trivial 	F ends

in an application of the reversible rule introducing F �s main connective�

Lemma ���� Let F � �
m
G �with G non�atomic� not starting with a nega�

tion� be a 	rst�order archetype� All lowest occurrences of irreversible rules in

	F introduce the principal connective or quanti	er of G� Moreover� all passive

formulas occurring in a premise of such a rule are subformulas of the active

formula�

Similarly� with due care as to the possibility of� when necessary� renaming

variables and terms� one may verify that also lemma ��� continues to hold�

Lemma ���� Let F be a 	rst�order archetype� Then for any 	F there exists a

permutation of its closing rules with the irreversible bar such that the resulting

derivation is locally ��

We therefore �nd�

Theorem ���� Theorem ��� and proposition ��� hold for all 	rst�order arche�

types�

� Classical isomorphisms

��� Back to LK�
p

Linear derivations of archetypical identities� hence� are strongly equivalent to

identity axioms� shown while pretending to be �colour�blind�� this property of

course continues to hold in LKtq for coloured archetypes�

Note that if � is a derivation in LK�� or LK�
p� then zipping it can always be

done within LK
�� or LK�

p� Hence the last theorem can be relativized to LK�

or LK�
p� thus�

Theorem ��� Any linear LK�
p derivation of F � F � with F an archetype� is

strongly equivalent to idF �

In LK
�
p linear derivations of F � F � for polarized �rst�order archetypes� are�

of a strikingly simple form� E�g�� the structure of the fully expanded 	F 	all

occurring identity axioms are atomic
 in LK�
p is the following�

	i
 do all possible reversible rules� starting from the reversible rule introducing

F �s main connective 	be careful� only one of the negation�rules is reversible

#
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in LK�

p
and while in LKtq derivations the negation�rules are in some sense

�roaming free�� in LK�

p
they are strictly localized
� until you are left with only

atomic formulas or formulas with an irreversible main connective� 	ii
 then

decompose the �irreversible� F � up to the �duals� of the formulas left in 	i
�

After step 	ii
 all leaves are of the form Fi � Fi� and the process starts over

again�

The result of step 	i
 is unique up to possible permutations of �independent�

reversible rules� but this is the only degree of freedom�

��� The criterion
 linearity � The harvesting
 classical isomorphisms�

The following theorem gives a su�cient condition for the existence of a com�

putational isomorphism between F and G�

Theorem ��� Suppose � and � are linear LK
�

p
�derivations of F � G and

G � F respectively� where F and G are 	rst�order archetypes� Then � and �

de	ne a computational isomorphism between F and G w�r�t�
s

��

Proof� As being linear is stable under tq�reduction� we �nd ��G� 
 	F
s

� idF

and ��F � 
 	G
s

� idG� Hence � and � de�ne a computational isomorphism��

As a by�product of the above analysis we recover most linear boolean equiv�

alences � commutativity and associativity of conjunction and disjunction� in�

volutivity of negation� de Morgan laws� etc�

However observe that we cannot always use the condition of theorem ���

above to �catch� isomorphisms� An example is given by the distributivity

A 	m 	B 
a C
� 	A 	m B
 
a 	A 	m C
� for which there is a computational

isomorphism� but of course the formulas are not archetypical�

��� Linear isomorphisms

De�nition ��� An isomorphism 	�� �
 is linear whenever � and � are �strongly

equivalent to� linear derivations�

The following proposition expresses a necessary condition for the existence of

linear isomorphisms between F � and G�
�

	where the superscripts indicate the

colour of the formulas� cf� ���
� in case F �� G�
�

are �rst�order archetypes�

Proposition ��� Let F �� G�
�

be 	rst�order archetypes� If � �
 ��
� then there

are no linear isomorphisms between F �
and G�

�

�

Proof� Suppose � and � are LK�

p
derivations of the sequents F � G and

G � F respectively� where F and G are �rst�order archetypes of opposite

polarities� then they must be both attractive in one of the sequents� say F � G�

and both non�attractive in the other� Because of the absence of structural

rules� one of F and G� say G� has to be logically main in ��s last rule� Then

� �F � must end in this same rule since F is attractive in �� so that the

structural step will carry � above G�s last rule� But then ��F � can�t be a 	G
since its last rule is an irreversible one� which would contradict lemma ������

!
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Now here is an example of a �good taste� corollary to our approach� namely

the unicity of the archetypical� linear computational isomorphisms in LK
�

p

caught by means of our criterion�

Theorem ��� Let F � G be archetypes� � and � linear LK
�

p
derivations of

F � G and G � F � Any linear LK
�

p
derivation ��

of F � G is strongly

equivalent to ��

Proof� Using proposition ��� and lemma � of ��� we have � �G 	� �F �
�
 


	��G �
�F �
�� that is these two cuts commute� By linearity of �� and theo�

rem ���� ��F �
�
s

� idG and since ��G �
s

� idF � �
s

� ��� �

Conversely� the necessary condition in proposition ���� shows that a certain

number of equivalences can�t be recovered at the computational level� style�

switchings� prenexi�cations and some distributivities� etc�

Granted that the maximization of isomorphisms reduce the �noise� of the syn�

tax� that is the amount of syntactic details which blur the actual compu�

tational phenomenon� then our classical triple should be a good calculus in

which to examine the computational content of classical proofs�

� The same result in ���calculus

We now re�contextualize our result in the frame of typed ���calculus 	see �#$

��� for de�nitions
�

��� Embedding typed ���calculus into LK
�

p

Terms in this calculus denote deductions in Parigot�s Classical Natural Deduc�
tion 	CND for short
 restricted to the multiplicative implication and universal
quanti�ers of �rst and second order� This natural deduction is embeddable in
LK in the usual way� that is introduction rules are read o� as right rules and
elimination rules as cuts against the left rule� e�g��

�

�

�

� A� B

�

�

�

� A B� � B

A� B � B

� A

Observe that if all formulas are polarized 	that is� in this case� chosen of colour

t
� the proof above does satisfy the ��constraint� for it is the �primed� B that

should be main and it is� Hence this embedding mapsCND into LK�

p
and this

embedding even happens to be a homomorphismwith respect to normalization

	up to the equivalence induced by the �delocalization� of structural rules� cf�

� �
�

��
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��� Reversion of a ���term

Let R� the reversion� be the mapping of unnamed terms of type A � B to

unnamed terms of the form �xA��B t� de�ned by induction as follows�

	i
 R	xA�B
 
 �zA��B ���	x
z�

	ii
 R	�xAuB
 
 �xA��B ���uB�

	iii
 R		u
C�A�BvC
 
 �z�A��B ���	�zC���B u��
vC� if R	u
 
 �zC��A�B u�

and R	��A�B u�
 
 �z�A���B u���

	iv
 R	�
A�B t
 
 �xA��B t����u������ x�z���
�u�� if R	u
 
 �zA��B u��

This application can be extended to a mapping of unnamed terms of type

�X A to unnamed terms of the form �X��A t�

��� Guess

Now for a plausible guess� �
 the equivalence relation generated by R is com�

patible with ���normalization and �
 our main result still holds� that is� two

linear ���terms proving an equivalence between archetypes compose in both

directions to a unit in the quotient�

Reversion� which is just ��expansion in the intuitionistic case� was already

	independently
 considered by Parigot as a preliminary transformation in the

problem of reading back �� integers� also Herbelin in ����� dealt with fully

reversed terms 	which is possible only in the absence of second order quan�

ti�cation
 in his game�theoretic interpretation of ��� �nally Ong� in a recent

paper �"�� proposes a ���rule� which might de�ne the same equivalence rela�

tion as ours� and proves its soundness by model�theoretic means� Concerning

this last study it would be interesting to see whether our result is expressible

in his categorical framework�
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Appendix� LK� classical logic

Identity axiom and cut rule�


Ax� A � A 
cut�
�� � ��� A A��� � ��

����� � �����

Axioms for the constants�


�m� � �m 
�a� � � �a��


�m� �m � 
�a� ���a � �

Negation rules�


L��
� � A��

���A � �

R��

�� A � �

� � �A��

Multiplicative logical rules�


L
m

��
�� � ��� A B��� � ��

������ A
m

� B � �����


R
m

��
�� A � B��

� � A
m

� B��


L�m�
��� A � �� ��� B � ��

������ A �m B � �����


R�m�
� � A�B��

� � A �m B��


R�m�
�� � A��� �� � B���

����� � A �m B������


L�m�
�� A�B � �

�� A �m B � �

Additive logical rules�


R
a

��
�� A � �

� � A
a

� B��

� � B��

� � A
a

� B��

L

a

��
� � �� A B�� � �

�� A
a

� B � �


R�a�
� � A��

� � A �a B��

� � B��

� � A �a B��

L�a�

�� A � � �� B � �

�� A �a B � �


L�a�
�� A � �

�� A �a B � �

�� B � �

�� A �a B � �

R�a�

� � A�� � � B��

� � A �a B��

Rules for quanti�ers �y not free in �� ���


L	�
�� A�t�x� � �

�� 	xA � �

R	�

� � A�y�x���

� � 	xA��


L
�
�� A�y�x� � �

�� 
xA � �

R
�

� � A�t�x���

� � 
xA��

Structural rules�


LW�
� � �

�� A � �

RW�

� � �

� � A��


LC�
�� A�A � �

�� A � �

RC�

� � A�A��

� � A��

��


