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Abstract

Lambda-calculus is the core of functional programming, and many di�erent ways to evaluate
lambda-terms have been considered. One of the nicest, from the theoretical point of view, is
head linear reduction.
We compare two ways of implementing that speci�c evaluation strategy: “Krivine’s abstract

machine” and the “interaction abstract machine”. Runs on those machines stand in a relation
which can be accurately described using the call/return symmetry discovered by Asperti and
Laneve. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: �-calculus; Linear logic; Linear head reduction; Abstract machines; Geometry of
interaction; Reversible computations

1. Introduction

Lambda-calculus is the core of functional programming as the reader probably knows.
Many di�erent ways to evaluate lambda-terms have been considered. One of the nicest,
from the theoretical point of view, is head linear reduction which we will brie
y
present in the next paragraph.
The object of the present paper is to compare two ways of implementing that speci�c

evaluation strategy. The �rst one is the classical “Krivine’s abstract machine” and is
by far the simplest. The second one is the “interaction abstract machine” which is
designed after Girard’s geometry of interaction interpretation. Runs on those machines
stands in a relation which can be accurately described using the call/return symmetry
discovered by Asperti and Laneve.
To enjoy the story, the reader should be familiar with the basic de�nitions of lambda-

calculus: variable, term, occurrence of variable, free variable, redex, normal form. We
slightly depart from the usual notation for application (UV ) by using (U )V instead. For
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instance, the Church integer, 2, will be denoted by �f�x(f)(f)x. This notation helps in
locating redexes. Familiarity with the basic de�nitions of linear logic: formulas, duality
and proof-nets is welcome too, since they are given here in rather succinct form.

Linear head reduction. It is a variant of head reduction, where one substitutes at
each step the leftmost occurrence of variable whenever it is engaged into a redex. For
instance:

(�f (f)(f)x)�y y → (�f(�y y)(f)x)�y y

→ (�f(�y (f)x)(f)x)�y y

→ (�f(�y (�y y)x)(f)x)�y y

→ (�f(�y (�y x)x)(f)x)�y y;

where the successive leftmost occurrences of variables are underlined. Note that terms
always grow by this reduction. The actual de�nition involves detection of “hidden
redexes”, as in ((�z�f f)U )V → ((�z�f V )U )V . So one has to work with terms
up to ((�x T )U )V = (�x (T )V )U when x is not free in V . 1 Details on linear head
reduction may be found in [6].
Note that if a term is normal with respect to linear head reduction, up to the equiv-

alence above, it is in head normal form, except for some head redexes not concerning
the leftmost variable which may remain, waiting to be triggered to get an actual head
normal form. In the example:

(�f(�y (�y x)x)(f)x)�y y → (�y (�y x)x)(�y y)x

→ (�y x)x

→ x :

An irreversible linear head reduction machine. The KAM, or Krivine’s abstract
machine, is by far the simplest mechanization of linear head reduction. Its state is a
triple, (U; E; S) where
1. U is a subterm of the global term under evaluation;
2. S is a stack of closures (that is pairs (U; E) consisting in a subterm and an envi-
ronment) that still have not found the variable they match or “fall into”;

3. and E, the environment is a list of (x → U; E) giving values for variables free
in U .

The KAM repeatedly goes for the leftmost variable of the current subterm, storing
information along its way:

(T )U : E S
T : E (U; E):S

�x T : E (U; E′):S
T : (x → U; E′):E S

:

1 This equivalence is half of the �-equivalence de�ned in [18]. It is shown there that two �-equivalent
terms have the same length of head reduction, leftmost reduction and longest reduction. So �-equivalence,
and a fortiori the �ner equivalence we use here, is really a mild quotient on terms.
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so that when hitting that leftmost variable it can retrieve a subterm, together with an
appropriate environment, where to start again the process:

x : : : : (x → U; E): : : : S
U : E S

:

To make this de�nition precise, one has to say that in the value retrieval step, or jump
step, the value to be fetched in the environment sits at the nth place where n is x’s de
Bruijn index (the number of binders in the scope of which x is free). Because there
may be many values at hand in an environment for the same occurrence of variable.
The reader can check that equivalent terms, as de�ned above, have isomorphic runs

in the KAM.
Likewise one can de�ne an elegant environment machine, the PAM, or pointer ab-

stract machine, which builds no closures, but relies during the value retrieval step on
x’s B�ohm index (the number of applications in the right part of which x is free) rather
than on its de Bruijn index, to fetch a value (see [6] for a precise description of the
PAM).
When it turns to implementing the KAM, it would be foolish to actually duplicate

the environment in the application step, it is just a pointer here which gets duplicated.
But then, in the jump step, one cannot free the memory space allocated to the part
of the environment which the jump discards, and consequently, the whole process is
in
ationary, that is the amount of information collected grows steadily at each step.
This is what we mean when saying that the mechanism is irreversible. It has to call
for an external garbage-collection mechanism to dispose of the obsolete information.
The same remark applies to the PAM.

A reversible linear head reduction machine. The IAM, or interaction abstract ma-
chine, comes from Girard’s geometry of interaction interpretation of terms as par-
tial isometries, or, more to the earth, as partial one–one transformations on a count-
able base-set. Terms are presented as bi-deterministic automata on generalized words.
A run then consists in entering the automaton with a word at some given entry node
and then traveling inwards modifying that word according to the transitions encoun-
tered. Precise de�nitions and all needed preliminaries are given in Sections 2 and 3.
As said, the automaton is bi-deterministic, which means that: given a word and a

node, no two transitions apply, nor could two transitions have pushed the word there.
So that the mechanism is reversible. The amount of information needed to keep the
machine running, which is but the word, will sometimes grow and sometimes shrink.
It needs no external garbage-collection.

Contents of the paper. The purpose of the paper is to relate these two mechanisms.
First, we will proceed to the de�nition of the IAM in the somewhat more general frame
of Linear Logic proof-nets. We will next lead an analysis of its runs, based on Asperti
and Laneve’s call/return symmetry (see [4]). This is explained in Section 4. We then
conclude (Section 5) to the existence of a highly natural optimization of the IAM: the
JAM, or jumping abstract machine, which shortcuts redundant steps.
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Eventually this new machine can be specialized to �-calculus according to the two
basic embeddings of �-calculus in nets. If one uses the equation D = !D (!D, then the
specialized JAM happens to be isomorphic to the KAM. This embedding is presented
in Section 6 and the isomorphism established in Section 7. If one uses D = !D ( D,
then the JAM specializes to the PAM. Thus the KAM and the PAM are seen to be
two instances of the same machine, but using a di�erent subset of types.

Where ideas came from. Part of the results, namely that the PAM jumps along
the path that the token follows in the IAM, was known to us since 1989; also it was
independently discovered by Malacaria in 91, but for the KAM (private communication).
But the missing half, namely that reversible computations could be taught to jump, had
to wait until the discovery of the call/return symmetry due to Asperti and Laneve in
92. The last hint for solving that riddle was to use a variant of the diode or context
semantics (which Mackie also uses in [16] to simplify compilation) that makes it clear
how to shortcut the returns (see Lemmas 1 and 5).

Expectations. The reader will also want to know whether this may lead to something
really new. Well it did already. We recognized in [6] that the interaction processes
at work in Hyland and Ong (HO) and Abramsky, Jagadeesan and Malacaria (AJM)
respective new game semantics for PCF were precisely the PAM and the IAM (see
[2, 14]). The link here disclosed between the two machines helped in the construction
of an embedding of AJM-games into HO-games, which in turns gives a simple proof
of de�nability, or full abstraction, for AJM strategies.
But maybe the more interesting still lies ahead. From the JAM, as was suggested

by Asperti, it is quite easy to devise a mechanism which will allow jumps not only
for return paths, but will add on-the-
y edges embodying paths corresponding to redex
families as soon as they are detected (i.e., completed for the �rst time). This memo-
ization process clearly gives a L�evy optimal machine. It remains to see if that machine
is e�cient.

2. Preliminaries: nets, paths and duality

Nets. We only give here a brief description of nets, for more details on correctness
conditions, elementary steps of reduction (the analog of �-reduction for nets) and
properties of reduction, see [9, 7, 5, 17, 15].
Formulae are built with the connective ⊥, par (˝), tensor (⊗), of course (!) and

why not (?). They are considered up to de Morgan laws.
Nets are oriented graphs built over an alphabet of nodes, or links, with edges typed

by formulae of linear logic. Each link has a given number of incident edges called the
premises of the link and a given number of emergent edges called the conclusions of
the link.
axiom: no premise and two conclusions typed by dual formulae;
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cut: two premises typed by dual formulae and no conclusion;
par and tensor: the multiplicative links have two premises and one conclusion typed
by the par or the tensor of the premises;

of course: one premise and one conclusion typed by the of course of the formula
typing the premise;

dereliction: one premise and one conclusion typed by the why not of the formula
typing the premise;

weakening: no premise and one conclusion typed by a why not formula;
contraction: two premises and one conclusion typed by the same why not formula;
pax: one premise and one conclusion typed by the same why not formula.
Edges which are not premise of a link are the conclusions of the net.

Conditions on nets. Nets are required to ful�ll two additional conditions:

Box condition. to each of course link n in the net R is associated a subnet b
of R, called a box, such that one conclusion of b is the premise of n. We call n
the principal door of b. All the other conclusions of b are premise of pax links ai
in R. We call the ai’s the auxiliary doors of b. Each pax link in R must be auxiliary
door of exactly one box. Two boxes are either disjoint or included one in the other.

Sequentialization condition. any net may be built by induction; that is, a net is
either an axiom, or the tensor or cut of two nets, or the par, dereliction, contraction,
weakening or boxing of one net. Purely geometrical conditions known as correctness
conditions exist that are equivalent to the inductive one.
The reader may want to exercise that de�nition by checking that the nets built by

the translation of �-calculus in Section 6 satisfy those two conditions.
The depth of a node is the number of boxes it belongs to.

Paths. If e is an edge we denote by e∗ its reverted edge, i.e., the edge oriented
from the goal of e to the source of e.
A path is any sequence of edges and/or reverted edges such that, as usual, the goal

of any edge is the source of its successor in the sequence, if any. If ’ is a path we
denote by ’∗ its reverse.
A straight path must verify the additional condition that direction switchings only

happen in cut and axiom nodes, i.e., whenever e1e?
2 (resp. e

?
1e2) belongs to the path,

then e1 and e2 are the two premises (resp. conclusions) of a cut (resp. axiom) node.
Note that ’ is straight i� ’∗ is.
Let n be a node, which is neither a cut nor an axiom, and let ’ be a path. If ’

contains an edge (resp. a reverted edge) adjacent to n (i.e., such that the source or the
goal is n) then we say that ’ crosses n downwardly (resp. upwardly).

Exponential tree, branches and lifts. An exponential tree is a maximal subtree of a
net with edges typed by the same why not formula. Thus the leaves of an exponential
tree are weakening, dereliction and axiom links; the inside nodes of an exponential
tree are contraction and pax links. An exponential path is a path starting from any
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node of an exponential tree, and moving downward to its root. An exponential branch

 is an exponential path starting from a dereliction link; 
’s lift is the number of pax
links that 
 crosses.

Equations on formulae preserving duality. Possibly, e.g., when encoding untyped
�-calculus in linear logic (see Section 6 for such an encoding), one needs to quotient
formulae by an appropriate equivalence relation. So doing, one has to prove that the
equivalence preserves duality at the level of normalization. That is to say, termination
may well be lost, for instance if using O= !O(O or O= !O( !O, which both allows
for a faithful encoding of untyped �-calculus, but, local cut eliminability is preserved.
The equations just mentioned do preserve duality in our specialized sense, and so does
in general O=F[O] for any linear logic formula F .

3. The interaction abstract machine

Stacks. Let a stack be any �nite sequence of:
1. multiplicative constants, P and Q;
2. exponential signatures, which are binary trees with leaves labeled by the exponential
constants P′, Q′ and .

Notations. We denote by : and � the stack constructors and by · the binary tree
constructor; we will use �, �′ to range over signatures; � will be the set of stacks
equipped with Cantor’s topology.

Actions. Let A be the set of actions, that is partial and continuous one–one trans-
formations on �×�. With the composition and the inversion the set A of actions has
the structure of inverse monoid, i.e., satis�es:

(x∗)∗ = x;

xx∗x = x;

xx∗yy∗ = yy∗xx∗

for any actions x and y.
We will use (B; S) to range over pairs of stacks on which actions act; B, will be

termed the boxes stack, and S, the balancing stack.
Concretely, such actions (because they are continuous) can be �nitely presented as

�nite sets of clauses with non uni�able heads (because they are maps) and non uni�able
bodies (because they are one–one). Composition, with this representation, is resolution,
and inversion is simply exchanging head and body. See the “resolution algebra” in [13].

Attaching actions to edges. To each (oriented) edge e of a net, one associates an
action a(e) in A depending on the link of which e is a premise:
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cut: if e is premise of a cut then a(e) is the identity on (B; S);
multiplicative: if e is the left (resp. right) premise of a multiplicative link then a(e) is

p (resp. q) de�ned by

p(B; S)= (B; P : S) q(B; S)= (B;Q : S)

dereliction: if e is the premise of a dereliction link then a(e) is d de�ned by

d(B; S)= (B; : S);

contraction: if e is the left (resp. right) premise of a contraction link then a(e) is p′

(resp. q′) de�ned by

p′(B; � : S)= (B; (P′ · �) : S) q′(B; � : S)= (B; (Q′ · �) : S)
pal: if e is the principal door of a box then a(e) is b de�ned by

b(� :B; S)= (B; � : S);

pax: if e is the auxiliary door of a box then a(e) is the sequence of actions tb where
b is already de�ned and t is given by

t(B; � : �′ : S)= (B; (� · �′) : S):

Attaching actions to edges can be seen as equipping the net with a structure of
extended automaton. The rôle of words is played here by pairs of stacks, that of
transitions by actions (reduction then may be seen as a minimization process) and that
of states by signed nodes where the sign tells the direction (upward or downward) of
move. It is easy to see that the attachment here chosen turns the net in a bi-deterministic
automaton.

Format of stacks. Note that b is the only action above that modi�es stack B. Hence
the height of B minus the depth of the current node is invariant along any sequence
of actions. Whence the name “boxes stack” for B. We ask all boxes stacks to satisfy
this constraint called the depth invariant.
We may note also, in the typed case, that is, when no quotient is performed on

formulae, a similar constraint on the height of the balance stack. Let Se (resp. Sm)
denote S minus all multiplicative constants (resp. exponential signatures). Given A a
formula, to each atom X of A, one associates one-onely an Sm by induction on A: if
A=X then Sm= �, if A= A1, where is an exponential, then Sm

A (X )= Sm
A1 (X ), and if

A=A1 • A2 and X ∈ A1 (resp. X ∈ A2), then Sm
A (X )=P : Sm

A1 (X ) (resp. Q : Sm
A2 (X )).

Now, if once, Sm denotes an atom X in the type of the current node, say A, and if
the height of S e is the number of exponentials in A in the scope of which X stands,
then it was and will be so.
By the way multiplicative constants can be treated separately with a specialized third

stack, but it would not be as convenient technically.
The attachment just de�ned is the one natural bi-deterministic automaton structure

with which one can equip links, so that both constraints on heights, as explained above,
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are satis�ed. Here, we will not use the S-constraint, which is just mentioned in order
to make obvious the canonicity of this attachment, which the reader could otherwise
�nd quite arbitrary.
Axioms for such nets with a reversible extended automaton structure on the top of

it were given in [8] together with the de�nition of a local reduction on them, in order
to study optimal machines.

Action of a path. The mapping a(:) extends to a functor from the free ∗-category
of paths in the net R into the inverse monoid A. More explicitly, if e is an oriented
edge one sets a(e∗) to be a(e)∗ and then to any path � one associates the action a(�)
obtained by composing the actions associated to each (reversed or not) oriented edge
crossed by �. Note that a(�) may be nowhere de�ned, e.g., if � is e1e∗2 where e1 and
e2 are the two premises of a multiplicative link then a(�)= q∗p is the empty map.
If this is not the case, i.e., if for some (B; S), a(�)(B; S) is de�ned, then one says �
is regular.

The interaction abstract machine. Let R be a net.
A run of the IAM on R consists in an initial pair (�; S) and a straight path � starting

upward in a conclusion of R such that a(�)(�; S) is de�ned. A run is successful if �
ends downward in a conclusion. By determinicity, an initial pair de�nes at most one
successful run. Observe also that � in a run is always regular, by de�nition.
Let ex(R)= (eij) stand for the matrix indexed by the conclusions of R with eij ∈ A,

such that eij(�; S)= (�; S ′) i� there is a successful run starting in the ith conclusion with
the initial pair (�; S) and ending in the jth conclusion with the �nal pair (�; S ′). This
is Girard’s execution formula rephrased as appropriate in our framework; see [10, 11]
for the original presentation.
This may seem a formidable thing to compute, but remember that all actions are

�nitely representable, and then it is easy to come up with a �nitary formulation of this
ex(R). Note also that by bi-determinicity ex(R) is a self-dual action matrix.
Now, take note, ex(R) is not an invariant of net reduction, but it is an invariant of

closed reduction, that is reductions of nets where exponential steps handle boxes with
no auxiliary doors.

Output of a run. Up to this point, it may be hard to see in which sense this IAM
is able to compute something. To get some output one needs to introduce data-types,
and new links to represent constants and functions. These new nodes will be of the
same shape as axioms, in that they will have no premise.
In the case one only adds unary axioms for constants, it is easy to show that any

net of ground type, say o, will have a unique successful run � starting with the empty
initial pair (�; �) at the conclusion of type o and ending in the constant node which
is the actual value of the net. Because a such net must have a closed reduction to its
value. And then the fact that � ends at the right value node follows from the invariance
of ex(R) under such closed reductions. With functions, one has to add a side-e�ect



V. Danos, L. Regnier / Theoretical Computer Science 227 (1999) 79–97 87

stack where values are handled and given to functions. This strategy of “computing by
paths” is extended to built-in conditionals and �xpoints, in [16].

4. Well-balanced paths and !-cycles

In this section, we will set the stage for an optimization of the IAM de�ned in
the previous section. This optimization relies on the fact that runs in general enter in
redundant steps, which we are �rst going to identify and then to shortcut.
In the sequel we will sometimes simply write �(B; S) for a(�)(B; S).

4.1. Well-balanced paths

Let say two edges are dual when they are typed by dual formulae. A well-balanced
path (wbp), is a straight path starting downward with an edge e and ending upward
with a dual edge f?, and inductively given by
Cut: if e and f are premises of a same cut link, then ef? is a wbp;
Reversion: if ’ is a wbp, then its inverse ’? is a wbp;
Multiplicative stretching: if ’ is a wbp connecting a tensor link to a par link, e is
the left (resp. right) premise of the tensor and f is the left (resp. right) premise of
the par then e’f? is a wbp;

Exponential stretching: if ’ is a wbp connecting the root of an exponential tree t to
an of course link and 
 is an exponential branch of t starting from a dereliction link
d the premise of which is e and f is the premise of the of course link then e
’f?

is a wbp;
Composition: if ’1 is a wbp ending in a conclusion of an axiom link a and ’2 is a
wbp starting with the other conclusion of a then ’1’2 is a wbp.
This de�nition is equivalent to the one given in [3], yet is simpler because the

latter mixes stretching and composition. Note that composition is the only clause of
the de�nition that may generate unregular wbp’s.

Lemma 1 (Balance property). Let ’ be a wbp; then there is a partial and continuous
one–one transformation ’̃ such that, for any B and S:

’(B; S)= (’̃(B); S):

The lemma is easily checked by induction on the de�nition of wbp’s. Another easy
induction on paths, yields:

Lemma 2. Let � be a path; and B a stack; such that �(B; S) is de�ned for all S; then
there are multiplicative constants and exponential signatures x1; : : : ; xn; and a stack
B′; such that �(B; S)= (B′; x1 : · · · : xn : S).
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Lemma 3 (Converse balance property). .Let ’ be a path that begins downward and
ends upward. If

∃B; B′; ∀S:’(B; S)= (B′; S); (1)

then ’ is a wbp.

Proof. One argues by induction on the length of ’. Note that the hypotheses ’ begins
downward, ends upward and (1) are true for ’ i� they are true for ’?.
1. Suppose there is a proper pre�x ’0 of ’ that already satis�es the hypothesis,

and suppose also there is an edge f such that ’=’0f? : : : ; then the target node of
f cannot be a multiplicative or exponential node, because f? in such cases is never
de�ned for all S’s, and we know ’ is. It cannot be a cut node either, since a cut node
cannot be reached upwardly. Consequently, one must have ’=’0f : : : ; and f must
be the conclusion of an axiom node, since only there a straight path may change its
orientation. But then ’=’0’1 with both paths satisfying the hypothesis, and so by
induction, ’ is a wbp obtained by the composition clause.
2. Suppose now there is no such proper pre�x, and put ’= e’′f?.
2a. If e is premise of a cut node, then ’′ is empty and ’= ef? is produced by

the �rst cut clause; because, else, the �rst two edges of ’ would form a proper pre�x
satisfying the hypothesis.
2b. If e is not, then ’′ cannot be empty and must begin downward. Dually, ’′ must

also end upward, else f? would be premise of a cut node, and hence form a proper
su�x satisfying the hypothesis with the last edge of ’′.
Now observe, that e and f must be either of course, dereliction or multiplicative

premises, since only those are de�ned for all S’s. In case e (resp. f) is a dereliction
premise, with associated exponential branch 
e (resp. 
f), then set e′= e
e (resp.
f′=f
f), else e′= e (resp. f′=f). One gets ’ decomposed as

(B; S) e′→ (B1; x : S)
’′
→ (B′

1; y : S)
f′?
→ (B′; S)

for some constants or signatures x and y. Put ’′′ to be the longest pre�x of ’′f?

such that for all S1, ’′′(B1; S1) is de�ned. By the lemma above, one knows there are
x1; : : : ; xn, and a stack B2, such that ’′′(B1; S1)= (B2; x1 : · · · : xn : S1). If ’′′=’′f?,
then ’(B; S)= (B2; x1 : · · · : xn : x : S), which is absurd, so ’′′ is a pre�x of ’′ in
fact. By maximality, one has that n=0 else it is always possible to extend ’′′, and we
just said that ’′′ could not be extended beyond the end of ’′. Again by maximality,
there is an of course premise, or an exponential branch, or a multiplicative premise,
say g, such that ’= e′’′′g? : : :; whence, e′’′′g?(B; S)= (B3; S), and since ’ has no
proper such su�x, it must be that ’′′=’′. But then ’′ is a wbp, by induction, and
the situation is simpli�ed in

(B; S) e′→ (B1; x : S)
’′
→ (B′

1; x : S)
f′?
→ (B′; S):

It remains to prove that ’ is obtained from ’′ by stretching: if e= e′ is a multiplicative
premise, then f=f′ must be of the same form, and likewise if e′= e
e, then f=f′
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must be an of course premise by duality (even in the untyped case, see the discussion
at the end of the preliminaries).

Lemma 4 (Sub-wbp property). Let ’ be a wbp and n a link crossed upwards by ’;
then there is a unique maximal sub-wbp ’0 of ’ ending upward in n:

Proof by induction on the de�nition of wbp’s.

4.2. !-strings and !-cycles

Let b, b′ be boxes in a net; a b-string is a straight path  starting upward and ending
downward, inductively de�ned by
Basic b-string: a basic b-string is a path starting upward and ending downward and
entirely contained in b;

General b-string: let  0,  1 be b-strings, 
 be an exponential branch exiting b, ’ be a
wbp, and  ′ be a b′-string, then  1
’ ′’?
? 0, if a path, is a b-string.

When a b-string  starts and ends in the principal door of b we call it a b-cycle (and
not a bicycle), or simply a !-cycle.

Lemma 5 (Boxes property). Let  be a !-cycle; then there are a partial
one–one transformation  ̃ and a partial identity � such that for any stacks B; S
and any exponential signature � :

 (B; � : S)= (�(B); � :  ̃ (S)):

As the balance property, the boxes property is easily proved by induction on the
de�nition of !-cycles. Those two lemmas are the IAM versions of the rendezvous and
the !-cycle properties in [3].

Lemma 6 (!-cycle su�x property). Let � be a path that ends downward in the prin-
cipal door of a box b. If

∃B; S; B′; S ′; � : �(B; S)= (B′; � : S ′); (2)

where � has been created along �; then there is a !-cycle  which is a su�x of �.

By “� has been created along �” we mean that there is an exponential signature �′

such that �?(B′; �′ : S ′) is unde�ned.

Proof. To prove this, let us de�ne  0 to be the su�x of � starting when � entered
b for the last time. Note that there must be such a  0 otherwise � cannot create �.
Indeed let �1 be � minus its last edge (which is the principal door of b). Then �1
lies in b and by the depth invariant does not depend on �, thus contradicting the fact
that � is created by �.
If  0 enters b by the principal door, then  =  0 and we are done. Else, let 
 be the

exponential branch which � uses to enter b at that time, and put (B0; 
(�1; : : : ; �p) : S0)
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to be the stacks just before climbing up 
. Note that � must be one of the �i’s, otherwise
by the depth invariant we see that the �nal stacks of � cannot be (B′; � : S ′). Put ’
to be the longest path such that ’?
? 0 is a su�x of � on the one hand, and on the
other hand ’(B0; S1) is de�ned for all S1.
So that, by Lemma 2, ’(B0; S1)= (B1; x1 : · · · : xn : S1) for all S1. Since � was

created by � and is contained in 
(�1; : : : ; �p), the latter has also been created by �
at some point before ’? starts. Using the same reasoning as for the converse balance
property, by maximality of ’ we deduce that n=0 so that ’(B0; S1)= (B1; S1) for all
S1. Now by Lemma 3, ’ is a wbp. Hence ’? begins in a !-node, and denoting by
�1 the pre�x of � such that �=�1’?
? 0 we have �1(B; S)= (B1; 
(�1; : : : ; �p) : S0).
Since we have already seen that 
(�1; : : : ; �p) has been created before ’? that is by �1,
we have by induction on the length, that there sits a !-cycle  ′, thus  1 = 
 ’  ′’?
? 0
is a su�x of � and a b-string. Going on like this, will clearly yield a !-cycle  which
is a su�x of �, as announced.

Call and return of a !-cycle. Let ’ be a wbp and  be a !-cycle starting and ending
in an of course link n. Suppose that  is a subpath of ’. Necessarily ’ crosses n
upwardly so that by Lemma 4, ’ has a unique sub-wbp ’1 connecting the root of an
exponential tree t1 to n such that ’1 is a subpath of ’. We call ’1 the call path
of  in ’ (denoted call’( )). Furthermore, since ’ does not end in n, there is an
exponential branch 
1 of t1 such that 
1’1 is contained in ’. We call 
1 the opening
branch of  in ’ (denoted open’( )).
Symmetrically, there is a unique wbp ’2 connecting the root of an exponential tree

t2 to n and an exponential branch 
2 of t2 such that  ’?
2


?
2 is a subpath of ’. We call

’2 the return path of  in ’ (denoted return’( )) and 
2 the closing branch of  in
’ (denoted close’( )). Summing up, we have that ’ contains the subpath

open’( ) call’( ) return’( )
? close’( )?

for any !-cycle  contained in ’.

Legal paths. A wbp ’ connecting two multiplicative links is legal if for any !-cycle
 contained in ’ we have

call’( )= return’( ) and open’( )= close’( ):

Theorem 7 (Legal and regular paths). Let � be a wbp; then � is legal i� � is regular,
that is, a(�) is not the empty map.

Proof. Consider a moment a(�) as acting on B−1S, that is B reversed concatenated
with S, instead of (B; S). With this notational variant one gets back the model of the
geometry of interaction described in [1] which was shown in [3] to assign nonempty
maps to legal paths and only to them.
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5. The jumping abstract machine

Analysis of legal runs. As stated by the Theorem 7 above, IAM runs are exactly legal
paths. Now the call-return symmetry of legal paths suggests that too much computation
is done by the IAM. More precisely let � be a legal path,  be a !-cycle at some box
b in �, ’ be the call (and return by legality) path of  , 
 be the opening (and closing
by legality) branch of  in some exponential tree t. So � is : : : 
’ ’?
? : : : .
Now the computation of the action a(
’ ’?
?) may be decomposed in:

1. 
(�1 : · · · : �p :B; S)= (B; � : S) where � is an exponential signature depending on
�1; : : : ; �p and p is the lift of 
;

2. ’(B; � : S)= (’̃(B); � : S) because ’ is a wbp, hence satis�es the balance
property 1;

3.  (’̃(B); � : S)= (’̃(B); � :  ̃ (S)) because  is a !-cycle, hence satis�es the boxes
property 5. Note that we assume here that B is chosen so that ’̃(B) is in the
domain of the partial identity � de�ned in Lemma 5, for otherwise the computation
stops here.

4. ’?(’̃(B); � :  ̃ (S))= (B; � :  ̃ (S)) because ’̃ is one–one.
5. 
?(B; � :  ̃ (S))= (�1 : · · · : �p :B;  ̃ (S)).
At the beginning of step 4 the legality condition imposes what is to follow: ’?
?. Also
note that right before that same step, � which was the exponential signature built by

 is directly accessible on top of the balancing stack � :  ̃ (S). Therefore, the action of
’?
? is only to move back to the starting node n of 
 (a dereliction link by de�nition
of exponential branches) and restore the boxes stack �1 : · · · : �p :B. Now if the action
of 
 at step 1 were to push the address of n together with the stack �1 : · · · : �p :B
on top of S, in place of the exponential signature �, then at step 4 one could pop
this information which would be precisely on top of  ̃ (S), in the balance stack, jump
directly to n and restore �1 : · · · : �p :B, ready to continue the computation. This would
save the computation of ’?
?.

Optimization. We shall now build an abstract machine which computes legal runs.
The JAM proceeds by moving inside a net R, managing a state consisting in the
couple of an environment B and a stack S. Objects stored into B and S are as before
the constants P and Q, and additionally closures in place of signatures, i.e., pairs (n; B)
where n is the address of a dereliction link and B is an environment. Moves and their
associated transitions on states are the same as the actions in the IAM except there are
no more upward moves in why not links, and one has instead of the downward moves
in an exponential branch and in an of course, the two expected alternative transitions,
one that pushes a closure on S, and the other that pops it from B:
setjump (downward an exponential branch): let p be the lift of the exponential branch
and n its starting dereliction node; then the transition is:

(�1 : · · · �p :B; S)→(B; (n; �1 : · · · �p :B); S):
longjump (downward a principal door): the state has the form (� :B; S) where � is a
closure (n; B′), the transition jumps to the premise of the dereliction n, changes the
state to (B′; S) and gets ready to move upward,
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Notations. Let n be (the address of) a dereliction link. Then n is a leaf of an
exponential tree tn and determines a unique exponential branch 
n in tn. Let pn be the
lift of 
n. Then the action a(
n) has the form


n(�1 : · · · : �pn :B; S)= (B; �n(�1; : : : ; �pn) : S);

where �n is a one–one mapping associating an exponential signature to each pn-uple
(not each pineapple) of exponential signatures.
Relation to the IAM. We de�ne inductively a mapping associating to each stack S

(resp. environment B) of a state a balancing stack Ŝ (resp. box stack B̂) and to each
closure � an exponential signature �̂:
• if S is X : S ′ for a multiplicative constant X then Ŝ is X : Ŝ ′;
• if S is � : S ′ for some closure � then Ŝ is �̂ : Ŝ ′; same for B;
• if � is the closure (n; B) then, assuming the notations of the foregoing paragraph, B
has the form �1 : · · · : �pn :B

′ and we de�ne �̂ to be �n(�̂1; : : : ; �̂pn
).

Note that �̂ does not depend on B′ above, and hence can be arbitrarily smaller than �.
Thus the optimized process will need more space to manage its additional information.

Theorem 8 (Correctness of the JAM). Let R be a net, with no exponential axioms,
let n and m be two nodes of R. The JAM moves from n to m; changing a state (B; S);
with no closures in B nor S; into a state (B′; S ′); i� there is a path � in R linking n
to m and such that �(B̂; Ŝ)= (B̂′; Ŝ ′).

Which means that the JAM agrees with the IAM if no closures are given in advance.
A particular and important case to apply the theorem is when n and m are conclusions
of R. Then this means that, up to the :̂ translation the J -machine computes the execution
formula as the I -machine does.

Proof. The proof is by induction on the transitions of the JAM.
1. Suppose the J -run is above a premise of the principal door of a box b, preparing

for a downward !-transition. Note that the boxes stack cannot be empty because of the
depth invariant, so that the transition always takes place and the J -run now jumps.
We only have to show that � just completed a call/!-cycle con�guration. Indeed, if

this is the case, the analysis of legal runs at the beginning of this section proves that the
IAM will run until it completes the return path and there arrive with the correct state.
First, there is a su�x of �, say  which is a !-cycle, by Lemma 6. Now we need

to show there is a wbp, say ’, such that ’ is a su�x of �. Put (B; � : S) to be the
I -state at the beginning of  , and de�ne ’ to be the longest path such that ’ is a
su�x of � on the one hand, and on the other hand ’?(B; S) is de�ned for all S. Note
that, since � was created by � and by hypothesis is tranported by ’, the latter is a
proper subpath of the former. Therefore, by the maximality hypothesis and the same
reasoning as in the converse balance lemma, ’ must be a wbp.
2. In any other cases the argument is routine; the reader might try the case when

the jump is set to check the de�nition of �̂.
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6. A translation of �-calculus

We shall now give a de�nition of nets derived from a translation of untyped
�-calculus. We work with the formulae I , O, ?I and !O which are asked to satisfy

O⊥= I and O= !O (!O:

The second equation, which allows interpretation of untyped �-calculus, is similar to
the domain equation D= !(D ( D) whose solutions are models of (call-by-value) �-
calculus. It is used by, e.g., Abadi, Gonthier and L�evy in [3]. For the purpose of
translating �-calculus into nets, an other possible equation is O = !O ( O.
Translating �-calculus. To each �-term T with free variables x1; : : : ; xn we associate
a net T ◦ with n conclusions ?I and one conclusion !O. We keep a one–one corre-
spondence between the ?I -conclusions of T ◦ and the free variables of T along the
translation:
Variable: a variable x is translated into an axiom

Application: if T is (U )V then its translation is

Free variables that U ◦ and V ◦ have in common are contracted by means of contraction
links.
Abstraction: the �-abstraction corresponds to a par and a box, i.e., if T is � x U then
T ◦ is
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where the ?I premise of the par is the conclusion of U ◦ corresponding to x. If x is
not free in T , then the ?I premise of the par is created with a weakening link.
Correspondence between T and T ◦. The translation is made in such a way that each
edge typed with a !O formula corresponds to a unique subterm of T : the !O conclusion
of R corresponds to the whole term, the !O conclusion of an axiom link corresponds
to either an occurrence of variable in T if the axiom was introduced by the �rst rule,
or to an application subterm (U )V in T if the axiom was introduced by the second
rule. The !O conclusion of an of course link corresponds to an abstraction subterm
� x U in T .
Therefore, each of course link, as well as each par link, corresponds to a unique

� in T . Each dereliction link, each tensor link and each cut link in T ◦ corresponds
to a unique application in T . Moreover, the leaves of the exponential trees in T ◦

(if not the degenerate case of the dereliction’s) are all axiom links corresponding to
occurrences of variable in T . Thus to each occurrence of variable in T corresponds a
unique exponential path starting from the conclusion of an axiom.
De Bruijn code. Consider an exponential path 
 in T ◦ attached to an occurrence of
variable x in T and denote ax the axiom link associated to x and nx the root of
the corresponding exponential tree. Let px be the lift of 
. By de�nition px is the
number of boxes that 
 exits when moving downward from ax to nx. But each such
box corresponds to an abstraction subterm of T which contains the occurrence x since
ax is contained in the boxes. Furthermore, none of these abstractions can bind x since

 only contains pax links. Now if x is bounded in T then (the conclusion of) nx is
premise of a par link followed by an of course link, both corresponding to � x in T .
In this case px is nothing but the de Bruijn code of x:

7. �-calculus and the JAM

!O-transitions. Let R=T ◦ be a net obtained by the translation of a term T . We
shall now describe all !O-transitions of the JAM, i.e., the three compound moves of
the JAM from a !O formula upwardly to a !O formula upwardly. In �-calculus terms
a !O-transition corresponds to a move from a subterm of T to a subterm of T .
We suppose that we start from the !O conclusion of R with an empty state (empty

environment and empty stack). Along the analysis we shall maintain two invariants
(which are obviously satis�ed at the beginning):
Depth invariant: B has the shape �1 : · · · : �m where m is the depth of the current posi-
tion, ie, the number of boxes containing the current position, and the �i’s are closures;

Stack invariant: S has the shape: S = �1 :Q : �2 :Q : · · · : �n :Q for some n, where the
�i are closures.
So suppose we are moving upwardly in a !O-edge e with state (B; S). There are

three cases:
Application case. e is the conclusion of an axiom link a which comes from the

translation of an application in T . Then the moves to come are:
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1. down the ?I -conclusion f of a; since we are in the application case, f must be the
right premise of a tensor link, therefore the move changes the state into (B;Q : S);

2. down the I conclusion of the tensor which must be the premise of a dereliction link
d so the state is now (B; (d; B) :Q : S);

3. down the ?I conclusion of d which is premise of a cut link. This move leaves the
state invariant;

4. up the !O premise of the cut link, which again leaves the state invariant and �nishes
the sequence with state (B; (d; B) :Q : S).

Since this sequence of moves never crossed a door of a box, the depths of the initial
and �nal links are the same, thus the depth invariant is respected. Obviously the stack
invariant is respected too.
Abstraction case. e is the conclusion of an of course link coming from the trans-

lation of a � in T . If the stack S is empty the machine does nothing. Otherwise the
sequence of moves is:
1. up the premise f of the of course link which is conclusion of a par link. Since S
is � :Q : S ′ for some closure � and some stack S ′ the move changes the state into
(� :B;Q : S ′).

2. Now we are to move up a premise of the par link; since the state is (� :B;Q : S)
we choose the right premise which is typed by !O, and we stop in its source link
with state (� :B; S ′).
In this !O-transition we entered one box so the depth increased by one. Also the

length of the environment increased by one since we popped a closure from the stack
into the environment. Thus the depth invariant was preserved. Since the sequence
popped the two �rst elements of S, the stack invariant also is.
Variable case. e is the !O conclusion of an axiom link a which this time comes

from the translation of an occurrence of variable x. Let 
 be the exponential path
associated to x; n
 its �nal link and p
 its lift. By de�nition of lift, the depth of a is
at least p
, thus by the depth invariant we have B= �1 : · · · : �p
 :B

′ for some B′ and
some closures �i. The !O-transition is:
1. down 
; since the lift of 
, i.e., the number of pax crossed by 
 is p
, the e�ect of
this sequence of moves is to change the state into (B′; S);

2. if x is free in T then n
 is a conclusion of T ◦ and the machine stops there. Otherwise
the conclusion f of n
, which is typed by ?I , is the left premise of the par link
corresponding to � x. Moving downward f changes the state into (B′; P : S);

3. the conclusion of the par must be the premise of an of course link, ie, the principal
door of a box. By the depth invariant again we have B′= � :B′′ where � is the
closure (d1; B0). Thus the transition is to jump to the premise g of the dereliction
link d with state (B0; P : S);

4. g must be the conclusion of a tensor link. Because of the P on top of the stack,
the next move is to go up the left premise of the tensor which is typed by !O.
Therefore this move ends the !O-transition with state (B0; S).
Since S is invariant during this !O-transition, the stack invariant is respected. On

the other hand, since the initial state is empty, � was created at some previous step s
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of the execution by a downward move in the premise of d. Since B0 was stored in �,
this means that at step s, the state had the shape (B0; S ′) for some S ′. Therefore by
induction on s, which is strictly earlier than the current step, the depth invariant was
respected so that B0 has the right number of elements.
Note that there is a small gap here. Indeed we de�ned the J -machine for nets with

atomic axioms and we are using it with nets with non atomic axioms (conclusions are
!O, ?I). To �ll the gap we have added to the J -machine some transitions allowing us
to move downward an exponential path step by step: in contraction do nothing, in pax
pop the �rst closure from B. In fact this addition to the J -machine can be simulated if
one �-expands the non atomic axioms, that is replacing all non atomic axioms links by

To be completely precise, the reader can check that the new J -machine acting on non
atomic nets save some jumps: when the old machine acting on the �-expanded net was
making a series of jumps through �-expanded axioms starting from an of course link
coming from a � and ending into a dereliction coming from an application, the new
one makes only one jump, as described above.
Conclusion. A !O-position in the net T ◦ may be encoded by its corresponding sub-

term in T . Also, if the dereliction link d corresponds to the application subterm (U )V
of T , one may encode the address of d by V . This is unambiguous since there is a
one–one correspondence between dereliction links in T ◦ and application subterms of
T , as said before. With these new conventions the !O-transitions are simply the KAM’s
transitions, hence:

Theorem 9 (JAM/KAM-isomorphism). The JAM; when applied to �-terms translated
as in Section 6 is isomorphic to the KAM.
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