

Edinburgh Research Explorer

Computational isomorphisms in classical logic

Citation for published version:
Danos, V, Joinet, J-B & Schellinx, H 2003, 'Computational isomorphisms in classical logic' Theoretical
Computer Science, vol. 294, no. 3, pp. 353 - 378. DOI: http://dx.doi.org/10.1016/S0304-3975(01)00148-7

Digital Object Identifier (DOI):
http://dx.doi.org/10.1016/S0304-3975(01)00148-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

Publisher Rights Statement:
Open Archive

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/S0304-3975(01)00148-7
https://www.research.ed.ac.uk/portal/en/publications/computational-isomorphisms-in-classical-logic(1375383f-ad26-42a6-b839-99b975221e00).html

Theoretical Computer Science 294 (2003) 353–378
www.elsevier.com/locate/tcs

Computational isomorphisms in classical logic

Vincent Danosa, Jean-Baptiste Joineta ; ∗, Harold Schellinxb; 1

a �Equipe de Logique Math�ematique, Universit�e Paris VII, France
bMathematisch Instituut, Universiteit Utrecht, Netherlands

Abstract

All standard ‘linear’ boolean equations are shown to be computationally realized within a
suitable classical sequent calculus LK�

p. Speci3cally, LK�
p can be equipped with a cut-elimination

compatible equivalence on derivations based upon reversibility properties of logical rules. So that
any pair of derivations, without structural rules, of F ⇒G and G⇒F , where F; G are 3rst-order
formulas ‘without any qualities’, de3nes a computational isomorphism. c© 2001 Elsevier Science
B.V. All rights reserved.

Keywords: Proof theory; Linear logic; Classical logic

1. Introduction

1.1. A patch of paradise to be broadened

In recent work [1] devoted to the proof theory of classical logic, we embarked on
the project of overcoming the obstacles that prevent cut from being a decent binary
operation on the set of classical sequent derivations. To clarify what we mean by
decency, let us have a look at the world of simply typed �-calculus, which, seen
from a normalization-as-computation point of view, is something close to a patch of
paradise.

Among the ingredients of ‘computational decency’ there, we not only encounter
(1) a framework to represent proofs (intuitionistic natural deduction, IND) and (2) a
noetherian and con)uent cut-elimination scheme (�-reduction), but also (3) a quotient
of the space of proofs (the �-quotient) where computational isomorphisms are realized.

∗ Corresponding author.
E-mail addresses: danos@logique.jussieu.fr (V. Danos), joinet@logique.jussieu.fr (J.B. Joinet),

schellin@math.ruu.nl (H. Schellinx).
1 Research part of the project ‘The Geometry of Logic’, 3nanced by the Netherlands Organization for

Scienti3c Research (NWO).

0304-3975/03/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00148 -7

354 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

As an example of a computational isomorphism, which gives a good impression of

how members of this intuitionistic triple (IND,�;
�≈) cooperate, consider f’s ‘twister’

T [f] = �y�x((f)x)y. Clearly,

f : A → (B → C) � T [T [f]] : A → (B → C)

Note that the term T [T [f]] has the eGect of switching the order of the arguments of
the function f, and then switching them back again. Does such a double switching
have an eGect in terms of computations? Of course one would like the answer to
be a 3rm “no!”. Otherwise said – we will be more precise later – we want this
kind of “commutativity” to be a computational isomorphism. By two �-reductions,
T [T [f]] = �y�x((�y�x((f)x)y)x)y becomes �y�x((f)y)x. So in order for this double
switching to be an ‘action without content or meaning’, we need to identify the terms
�y�x((f)y)x and f. But that gap between terms is exactly the one that is closed by
�-equivalence!

1.2. The classical triple

In [1] we constructed a classical triple: (LK�
p; tq;

s≈). It is an extension of the in-
tuitionistic triple, because the standard embedding of natural deduction into sequent
calculus actually sends �-equivalent derivations to tq-and-strongly equivalent ones, and
�-equivalent ones to strongly equivalent ones:

(IND; �;
�≈) ⊂ (LK�

p; tq;
s≈):

To build this classical triple, we start from a very general calculus for classical logic,
baptized LKtq (which includes logical rules in ‘all styles’: multiplicative, additive), and
equip it with a normalization scheme (tq) which asks of each cut formula a “colour”,
t or q, to decide which sub-proof is to be moved 3rst. This quite general scheme is
shown to be noetherian and conLuent using embeddings of classical logic into linear
logic. (We will review some of the main notions introduced in [1, Section 2.1]).

Just as asking that the above “commutativity” be a computational isomorphism forces
�-equivalence on IND-derivations, asking the boolean equivalences we consider to be
computational isomorphisms forces strong equivalence on LKtq-derivations. Strongly
equivalent proofs diGer only with respect to reversal of . . . reversible logical rules.
However, in LKtq pure, tq-reduction breaks

s≈-classes! The quotient induced by
s≈

consequentially is degenerated: all derivations having the same conclusion are identi-
3ed. For

s≈ to become compatible with the tq scheme, we need to (1) narrow the space
of LKtq proofs (the resulting fragment we call LK�) and (2) restrict the normalization-
space of LK� by polarizing derivations, i.e. by subordinating “colours” (hence normal-
ization steps) to reversibility properties of connectives.

Both LK� and LK�
p are complete with respect to classical provability and closed

under tq-normalization; and, by design, LK�
p realizes “linear” boolean equivalences as

computational isomorphisms.

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 355

1.3. Relationships between LK�
p and LC

Up to the stoup=no stoup formulation of the syntax, LC, Girard’s calculus for classi-
cal logic [2], simply is a fragment of LK�

p where one imposes a coordination between
styles and colours, and second, our strong equivalence is a syntactic materialization of
the identi3cations achieved by Girard’s denotational semantics for LC, which by the
way works for the whole of LK�

p.

1.4. An abstract criterion for isomorphisms

Let us now 3x a precise de3nition of computational isomorphism. And for that, let
us concentrate on sequent calculus, where composition appears via an explicit rule,
the cut-rule. Given a sequent calculus L with a conLuent and noetherian normal-
ization scheme, for any proofs � and �′ in L of �⇒�; F and F; �′ ⇒�′ respec-
tively, we can de3ne ��F �′ to be the normal form of the derivation obtained by
cutting � and �′ on F . Let idX denote the axiom X ⇒X which we suppose is a unit
w.r.t. �X .

Let now ≈ be an equivalence relation on L-proofs, such that any two equivalent
proofs � and �′ in L have equivalent normal forms (in which case we say the equiv-
alence is compatible with the normalization scheme).

De�nition 1. A pair of L-derivations � and � of F ⇒G and G⇒F de3ne a com-
putational isomorphism between F and G with respect to ≈, if ��G � ≈ idF and
��F � ≈ idG.

The aim of the present paper is to provide a suOcient condition for a pair of
derivations of F ⇒G and G⇒F to de3ne a computational isomorphism in LK�

p with

respect to
s≈. Actually, the pairs which are caught by our condition guarantee synonymy,

i.e. computational interchangeability (see Theorem 35), a property which is stronger
than the one 3xed in De3nition 1.

Our criterion, which replaces empirical checkings of the kind we saw in the twister
example given before, is quite general. Let us say a formula F is ‘without any quali-
ties’ when all relation symbols in F are distinct. Then: in LK�

p, any pair of derivations,
without structural rules, of F ⇒G and G⇒F , where F; G are 3rst-order formu-
las without any qualities, de3ne a computational isomorphism with respect to strong
equivalence.

The only diOculty in the proof is to show (Theorem 28) that for such formulas F ,
an LK�

p-derivation, with no structural rules, of the sequent F ⇒F always is strongly
equivalent to idF .

Linear derivations, which can be considered as MALL derivations (LL derivations
without exponentials), seem to play a distinguished rôle in the search for the algebraic
structure behind classical logic considered as a computational system.

356 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

2. Review of basic notions

In this section we quickly review some of the basic notions and a few results
from [1].

2.1. LKtq

The speci3c calculus LK we will consider and in which we formally distinguish
between connectives with multiplicative and with additive introduction rules (cf. [1, 5]),
can be found in the appendix.

Recall that there are two major sources of indeterminism in Gentzen’s original ‘cut-
pushing’ elimination procedure for classical sequent calculus: a structural one (should
one permute upwards to the left or to the right?) and a logical one (related to the
order of the two cuts obtained in performing some key-steps). In order to be able to
arrive at a deterministic procedure, in [1] we introduced two extensions, one of the
language, the other of the calculus:

1. Each formula comes equipped with a mapping of the set of its subformulas into
a ‘colour space’ {t; q}. (When necessary, we will make explicit the colour � of
the formula itself by means of a superscript: A�.) The rules now are supposed to
preserve colours, i.e. colours should respect identity classes of formulas in a proof
(cf. [1]).

2. The multiplicative unary rules come in two types, prescribing whether in the
‘key-step(s)’ of cut-elimination in which they are involved, the cut on the left
subformula comes before that on the right one, or conversely: we speak of the
orientation of the unary multiplicative rules.

The system thus de3ned will be referred to as (all-style) LKtq.
The following conventions are used in distinguishing between the occurrences of

formulas in a given logical rule, e.g. L→:

�1 ⇒ �1; A B; �2 ⇒ �2

�1; �2; A → B ⇒ �1; �2

The formula A → B is called the main formula of the rule with main connective →;
the occurrences A and B in the premisses will be referred to as the active formulas; all
other occurrences are said to be passive. These are the contextformulas and together
they constitute the context. In the special case of a cut, active formula occurrences are
also referred to as cutformulas.

In case of an identity axiom we say that both formula-occurrences are main.
We restrict the use of the term ‘main’ to logical rules and identity axioms. In case

of structural rules, if necessary, we speak of the weakened, respectively contracted
formula.

In an occurrence in a proof � of a rule having as conclusion a sequent � and
sequent(s) �′ (and �′′) as premise(s), � is called the successor-sequent of �′ (and
�′′) in �, and �′ (and �′′) are ancestor-sequents of �. Similarly we will speak of the

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 357

successor in � of a formula occurrence in �′; �′′ and of an ancestor in �′; �′′ of a
formula occurrence in �. Using the terminology of [1]: formula occurrences A in �
and �′; �′′ are successor-ancestor related iG both occurrences are in the same identity
class. E.g. in

A ⇒ C A ⇒ D
A ⇒ C ∧ D

the occurrences of A in the premises are both ancestors of the occurrence of A in the
conclusion, and the occurrence of A in the conclusion is a successor of each of the
occurrences of A in the premises; the occurrence C ∧ D does not have an ancestor.

A block (of sequents) in � is a sequence of sequents �0; �1; : : : ; �n in � such that
�i+1 is the successor of �i. Note that a block of sequents unambiguously de3nes a
block of (successive occurrences of) rules in �.

It is useful to think of a derivation in sequent calculus as a tree (the ‘proof tree’).
Each leaf (each axiom) uniquely de3nes a branch leading downwards to the tree’s root
(the derivation’s >nal sequent, the conclusion). Along such a branch we can follow
the occurrences of a formula A from its introduction (in an axiom, a logical rule or a
weakening) to its submergence (when it is active in a logical rule) or disappearence
(when it is active in a cut). See Fig. 1. ‘Meanwhile’, in between, in general many things
will happen to other formula-occurrences (occurrences not in the identity class of A).
We will call this ‘meanwhile’ the main-active or m-a-interspace 1 of the occurrence.
If nothing happens in between, we say that the m-a-interspace is)at: the formula is
‘born’, and immediately put to work.

Formally we de3ne the m-a-interspace as follows.
Given an occurrence of a formula A in some sequent � in a proof �, such that A is ‘newly

born’ (i.e is either main, or has just been weakened), we inductively de3ne a sequence of
occurrences A0; : : : ; An of A, together with a block BA of sequents �0; : : : ; �n, by

1. �0 := �; A0 :=A;
2. if �i ∈BA; Ai is not active, and �i+1 is the successor of �i, then �i+1 ∈BA, and Ai+1

is the successor of Ai in �i+1;
3. that is all.

Hence BA will contain �; �’s successor, et cetera, down to either �’s concluding
sequent, or a sequent in which A is active. BA of course is A’s main-active interspace.

With each active occurrence of a formula A, we can associate the 3nite set
{BA1 ; : : : ; BAn} of m-a-interspaces, where each Ai corresponds to a leaf of A’s tree of
ancestors.

Whereas the m-a-interspace is obtained by looking downward along the prooftree,
conversely, given an occurrence of a formula B in a sequent derivation �, we can
look upward. There we see the tree of B’s ancestors in �, i.e. the tree-like structure

1 Note the slight abuse of terminology: a ‘main-active interspace’ might actually be a ‘weakening-active
interspace’.

358 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Fig. 1. A proof tree � in which we traced (above) the m-a-interspace of a formula occurrence A and (below)
the tree of ancestors of a formula occurrence B.

obtained by following upwards in � all formula occurrences in the identity class of our
initial B, up to the introductions of B by axiom, logical or weakening rule (these form
the ancestor-tree’s leaves). See Fig. 1. The reader who wishes to do so, will easily
provide the (long and boring) inductive de3nition.

2.2. Cut-elimination: the tq-protocol

An occurrence of a coloured formula on the left-hand side (resp. right-hand side) of
the entailment-sign in a sequent is said to be attractive if its colour is t (resp. q): the
terminology is introduced to remind us that the subproof of the sequent containing the
non-attractive active cutformula ‘has to move 3rst’. We will often use the following

alternative iconic notation for At (resp. Aq), namely
*
A (resp.

(
A).

In each instance of a cut rule in an LKtq-proof, the cutformula will be coloured
either t or q. Thus, using our iconic notation, cuts are of one of the two following

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 359

forms: 2

⇒ *
A

*
A ⇒

⇒ and
⇒ (

A
(
A ⇒

⇒
Let us call the subderivation containing the attractive occurrence of the cutformula the
attracting subderivation.

De�nition 2 (tq-protocol). Reduction according to tq-protocol proceeds via two pos-
sible types of steps, ‘structural’ ones, S1 and S2, and ‘logical’ ones, L (‘key-steps’):

— An L-step applies when both cutformulas are main in a logical rule. L-steps have
to be speci3ed for each one of the connectives and, in case of the binary ones, for
each of the possible combinations of a left and a right introduction rule. (We obtain
as descendants one or two cuts on the immediate subformula(s) of the cutformula. In
case of two descendants, the order in which these cuts are applied is determined by
the orientation of the unary rule.)

— In case no L-step is applicable, necessarily an S-step applies, which consists in
‘transporting’ one of the cut’s subderivations up the tree of the cutformula’s ancestors
in the other one, duplicating it and contracting the context whenever passing an instance
of contraction (or via the context of a binary additive rule); this process ends when
reaching instances of introduction in an axiom, in which case the resulting ‘axiom-
cuts’ are reduced immediately, when reaching an introduction by weakening, which
are replaced by weakenings of the context formulas, or when reaching instances of
introduction of the main connective of the cutformula.

Of course, now one needs to know which of the two subderivations has to move.
This is decided by asking whether or not the attractive cutformula is main in a logical
rule. If the answer is “yes!”, we transport the attracting subderivation (S2); if it is
“no!”, we transport the other one (S1).

And that is it.

Note that neither the choice of orientations nor that of colours has to do with im-
posing a reduction strategy. We do not select redexes, but rather the way we reduce
them.

Figs. 2 and 3 show, schematically, the ‘movement’ involved in performing a struc-
tural reduction step.

The crucial diGerence between tq-reduction and the standard de3nitions of cut-
elimination steps in sequent calculus is in the de3nition of the structural steps, where
the complete tree of ancestors of one of the occurrences of the cutformula A is in-
volved: we raise (a copy of) the transported subderivation right up to the leaves,
disregarding all ‘events’ within the m-a-interspaces that make up the tree, to each of
the spots where an ancestor of the cutformula was introduced. Then we push the con-
textformulas of the 3nal sequent of the transported subderivation ‘back down’ along

2 In depicting proof 3gures, we will often indicate the context only when this is relevant to the argument.

360 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Fig. 2. A structural cut, either of type S1 or of type S2, depending on whether the occurrence of the
cut-formula in the left premiss of the cut is attractive or not. If it is, the reduction is of type S1. If it is
not, then the occurrence of the cut-formula in the right premiss of the cut is main in a logical rule, and the
reduction is of type S2.

the tree. At branchings originally due to explicit contractions on A, the contractions
now are inherited by these contextformulas.

2.3. Reversibility: LK�

Let �; �i’s be variables over {l; r}. In what follows we will sometimes use the fol-
lowing convenient notation: A�1

1 ; : : : ; A�n
n will denote the sequent �⇒� where � is the

submultiset of A�1
1 ; : : : ; A�n

n containing A�i
i ’s such that �i = l and � the complementary

submultiset. We use a ‘bar’ to indicate transposition within {l; r} i.e. Ul := r, Ur := l.
Similarly we will write �; A�.

De�nition 3 (Reversibility). (R1) A rule is said to be reversible iG from its conclusion
one can derive its premiss(es).

(R2) A (non-atomic) formula A� is called reversible iG, whenever a sequent �; A� is
derivable, we can ask for A� to be main, without loss of provability (i.e. there exists
a derivation of �; A� whose last rule introduces A�’s main connective).

In LK these notions coincide: a formula A� is reversible if and only if its introduction
rule on the �-hand side is reversible, and the reversible rules are exactly the unary

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 361

Fig. 3. The result of performing the one-step structural tq-reduction induced by the structural cut in Fig. 2.

multiplicative and binary additive rules, both negation rules, left existential and right
universal quanti3er rules: one can always permute them below any other rule, that is,
except when the reversible formula is active there.

In LKtq all of this continues to hold:

Proposition 4 (Reversible rules). Binary additive rules; unary multiplicative rules; left
existential and right universal quanti>er rules; as well as both rules for negation; are
reversible. The other ones are not.

De�nition 5 (LK�). A proof of LKtq is an LK�-proof iG every attractive (occurrence
of a) formula active in an irreversible or a negation rule is main.

This constraint can be rephrased as follows: the m-a-interspace associated to an
attractive formula occurrence active in an irreversible or a negation rule is Lat.

Theorem 6. LK� is stable under tq-normalization and all sequents provable in LKtq

are provable in LK� (see [1]).

362 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

2.4. Weak equivalence; strong equivalence

A well-known, sometimes execrated, property of sequent calculus, is the high number
of possible variations on a given derivation that is obtainable by simply permuting the
order of applications of rules. An interesting and rewarding line of research is that
into the question: which sort of permutations induce an equivalence relation on the
set of proofs of a given sequent that is compatible with our reduction, meaning that
if �′ is obtained by a number of certain permutations of applications of rules in �,
then the normal form of �′ can be obtained by a number of similar permutations
from the normal form of �. In [1] we consider two types of rule permutation-induced
equivalence relations on LKtq-proofs: weak equivalence (induced by permutations of
occurrences of structural rules) and strong equivalence (induced by weak equivalence
and permutations of occurrences of reversible rules).

Two proofs are said to be weakly equivalent (
w≈) if they diGer only up to contracted

weakenings, re-arrangement of multiple contractions on the same formula (associativity,
commutativity) and permutations of structural rules as, e.g. for a contraction and a
binary multiplicative rule:

C; C ⇒ A C; C ⇒ A B ⇒
C ⇒ A B ⇒ w≈ A → B; C; C ⇒

A → B; C ⇒ A → B; C ⇒

or a contraction and a binary additive rule:

C; C;⇒ A
C ⇒ A

B; C; C ⇒
B; C ⇒

A → B; C ⇒
w≈

C; C;⇒ A B; C; C ⇒
A → B; C; C;⇒
A → B; C ⇒

Proposition 7 (Weak equivalence is tq-compatible [1]). If two LKtq-proofs are
weakly equivalent; then so are their normal forms.

Intuitively, Proposition 7 tells us, among other things, that we may consider occur-
rences of structural rules in LKtq-derivations as being not localized.

The notion of strong equivalence of LK-derivations comes from reversibility prop-
erties of logical operators. Two LK-derivations � and �′ are said strongly equivalent
(

s≈), if they are weakly equivalent up to permutations of reversible logical rules and
canonical expansions of identity-axioms.

Intuitively, strong equivalence can be thought of as the equivalence relation induced
by the ‘continuous’ process of ‘opening’ and ‘closing’ in a proof, occurrences of formu-
las that have a reversible main connective: if you think of the main-active interspaces
of such formulas as zippers in the proof, then ‘opening’ the formula (permuting the
reversible rule downwards) unzips the proof, ‘closing’ it (permuting the rule upwards,
which is not always possible) zips it. Fig. 4 illustrates the zipping process:

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 363

Fig. 4. Strongly equivalent proofs.

De�nition 8 (Polarized proofs). An LKtq-proof is said to be polarized if a non-atomic
formula occurrence is reversible iG it is non-attractive.

De�nition 9 (LK�
p). An LK�-proof is in LK�

p iG it is polarized.

Note that, as LK� is complete for classical provability, so is LK�
p ⊂LK�.

Only within LK�
p , as was proved in [1], is strong equivalence ‘computationally mean-

ingful’:

Proposition 10. If two LK�
p proofs are strongly equivalent; then so are their normal

forms.

2.5. Archetypes; linear derivations; and other characters

We consider a 3rst-order language for classical logic built from a set of variables
x1; x2; : : : ; a set of n-ary function symbols f1; f2; : : : ; a set of n-ary relation symbols
R1; R2; : : : (where n= 0; 1; : : : and each function and relation symbol is supposed to
come with a 3xed arity; 0-ary relation symbols are sometimes referred to as propo-
sitional variables; for each n the set of n-ary function, relation symbols is supposed
to be in3nite), negation ¬, quanti3ers ∀;∃ and binary connectives ∧a;∨a;

a→;∧m;∨m;
m→

(the additive and multiplicative versions of the connectives well-known from classical
propositional logic).

De3ne as usual the set of terms inductively by: all variables are terms, and whenever
t1; : : : ; tn are terms and f is an n-ary function symbol, then f(t1; : : : ; tn) is a term; and
the set of formulas by: if R is an n-ary relation symbol and t1; : : : ; tn are terms, then
R(t1; : : : ; tn) is a(n atomic) formula and, whenever F;G are formulas and x a variable,
then ¬F;QxF; F ◦G are formulas (where Q ranges over quanti3ers and ◦ over binary
connectives).

De�nition 11. A 3rst-order formula F is an archetype iG all relation symbols occurring
in F are distinct, and, whenever QxG is a subformula of F , then x is a free variable
of G (i.e., there is no vacuous binding).

364 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

For example, (∀xR1(x)) ∨a R2(y; z) is an archetype, but both ∀xR(z) and R(f(t; t′))
∧a (∃xR(x; z)) are not.

De�nition 12. A linear derivation of F ⇒F for some 3rst-order formula F (notation:
)F) is a cut-free derivation of F ⇒F in the ‘all-style’ sequent calculus LK, that does
not make use of structural rules.

Clearly, given some F , we can in general not expect)F to be unique. Indeed, if F
is not atomic, then obvious distinct examples of)F are the proof consisting in nothing
but the identity axiom F ⇒F (the trivial)F , written as idF), and iterations of the
derivation called �F in [1]:

De�nition 13. If Fi is (are) the immediate subformula(s) of F , an iterated �-proof of
F ⇒F (notation: �F), consists in axiom(s) Fi ⇒Fi and=or iterated �-proofs of Fi ⇒Fi,
followed by precisely one instance of each of the logical rules introducing F’s main
connective.

3. Linear derivations of archetypical identities are units

In what follows we will characterize the derivations)F , and show that, in case F
is an archetype, any)F necessarily ends in an application of a reversible rule. Also,
every)F , by permutations of instances of reversible rules, can be transformed in an
iterated �-proof of F ⇒F . As a consequence we get that: for archetypes F , any linear
derivation of an identity F ⇒F is strongly equivalent to idF , a result which we then
relativize to LK�

p .
We start by assuming the archetype to be propositional, and then will use the char-

acterization of)F for propositional archetypes F in order to extend the characterization
to 3rst-order archetypes.

3.1. The propositional case

In the proof of the propositional case several times the following simple property is
invoked, which states that whenever a sequent �⇒� is provable in non-exponential
propositional linear logic without constants MALL (or equivalently LK without struc-
tural rules), in a cut-free derivation, because of the absence of weakening, every for-
mula X in � ∪ � can be ‘traced upwards’ to at least one identity axiom (otherwise
said: every formula X has at least one atomic subformula whose tree of ancestors has
a leaf in an identity axiom).

Lemma 14. Let � be a normal MALL-derivation (without constants) of X �; ��i . Then
there is at least one atomic subformula p of X that occurs positively (negatively) in
X and negatively (positively) in X ∪ �. Hence if a sequent � is provable; then any
formula in the multi-set � contains at least one atom p that occurs more than once
in �.

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 365

Proof. By induction on the length of cut free MALL-derivations.

Any propositional formula F is of the form ¬mF ′, where ¬m denotes m¿ 0 negation
signs and F ′ is either atomic or of the form F1 ◦F2 for some binary connective ◦.

Lemma 15. Let F be a propositional archetype. Then any non-trivial)F ends in an
application of the reversible rule introducing F ’s main connective.

Proof. If F’s main connective is a negation, then this clearly holds, as both introduction
rules are reversible.

Otherwise F is of the form F1 ◦F2, where ◦ is a binary connective. Let us suppose
that)F ends with an instance of the irreversible introduction rule.

In case ◦ is multiplicative,)F , written schematically, ends as follows:

...
...

F1 ◦ F2; Fi Fj

F1 ◦ F2; F1 ◦ F2

As Fj is an archetype, its derivability contradicts Lemma 14.
In case ◦ is additive,)F ends as in

...
F1 ◦ F2; Fi

F1 ◦ F2; F1 ◦ F2

Because of the fact that F1 ◦F2 is an archetype, all atoms in Fj (j �= i) occur precisely
once in the sequent F1 ◦F2; Fi. Now follow some branch containing ancestors of F1 ◦F2

upward in the proof tree. Such a branch necessarily ends in an instance of the reversible
introduction rule of ◦:

...
...

F1; � F2; �
F1 ◦ F2; �

where � consists entirely of subformulas of Fi. However, for j �= i derivability of Fj; �
contradicts Lemma 14, as Fj is an archetype and has no atoms in common with �.

By the above lemma we know that, for F a non-atomic propositional archetype, a
non-trivial)F necessarily ends in an application of the reversible rule introducing F’s
main connective.

But we also know what are the lowest occurrences of irreversible rules:

Lemma 16. Let F ≡¬m(F1 ◦F2) be an archetype. All lowest occurrences of irre-
versible rules in)F introduce the principal connective of F1 ◦F2. Moreover; all passive
formulas occurring in a premise of such a rule are subformulas of the active formula.

366 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Proof. Let us follow some branch of the proof tree from the root up to a 3rst occur-
rence of an irreversible rule.

If F1 ◦F2 is main formula in the rule, then a slight modi3cation of the argu-
ment of the proof of Lemma 15 shows that its conclusion cannot be of the form
¬k(F1 ◦F2); F1 ◦F2, for no k ¿ 0. Hence it is of the form �; F1 ◦F2, with all formulas
in � subformulas of F1; F2. As to the premiss(es), of course a passive occurrence of a
subformula of Fi in a premiss where Fj is active contradicts Lemma 14, unless i = j.
This proves the second half of our claim.

For the 3rst half, suppose F1 ◦F2 is not main formula in the rule. Then the conclusion
of the rule is a sequent of the form �; X1 • X2;¬k(F1 ◦F2), where k ¿ 0 and X1 • X2

is main in the irreversible rule. Clearly X1 • X2 and all formulas in � are subformulas
of either F1 or F2, and all atoms in � and X1 •X2 are distinct. If the rule applied is
multiplicative we 3nd the following sub-derivation in)F :

...

�1; X1

...

�2; X2

¬k(F1 ◦ F2); �; X1 • X2

As the rule is multiplicative, ¬k(F1 ◦F2) will occur either in �1 or in �2; hence
derivability of the other premiss contradicts Lemma 14.

If the rule applied is additive we 3nd the following sub-derivation in)F :

...

¬k(F1 ◦ F2); �; Xi

¬k(F1 ◦ F2); �; X1 • X2

where � and Xi, of course, again are subformulas of F1; F2.
Now take any branch in the tree of ancestors of the occurrence of X1 •X2 in

¬k(F1 ◦F2). Following it upwards, we necessarily arrive at an introduction of X1 •X2.
An introduction is either in an identity-axiom, a reversible rule having X1 •X2 as a
main formula, or an additive irreversible rule having a super-formula of X1 •X2 as
main formula.

The 3rst case is obviously excluded.
For the second case we reason as in the proof of Lemma 15: such an introduction

has the form
...

X1; �

...

X2; �

X1 • X2; �

where Xj, for j �= i, is easily seen to have no atoms in common with �, contradicting
Lemma 14.

For the 3nal case: if X1 •X2 is introduced in an additive irreversible rule, then it
occurs in Fi in a subformula of the form (: : : (X1 •X2) : : :)@Z or Z@(: : : (X1 •X2) : : :)

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 367

Fig. 5. A non-trivial)F .

(where @ denotes an additive connective). Hence, w.l.o.g., the introduction has the
form

...

Z; �

(: : : (X1 • X2) : : :)@Z; �

But Z cannot be a subformula of �, as it was ‘split oG’ in a reversible rule below the
irreversible rule introducing X1 •X2; hence it has no atoms in common with �, once
more contradicting Lemma 14.

Consequently, a non-trivial)F deriving ¬m(F1 ◦F2)�;¬m(F1 ◦F2) U�, where (F1 ◦F2)�,
say, is on the reversible side, necessarily is of the form as in Fig. 5.

There all formulas in �i are proper subformulas of F1 ◦F2. We will speak of the
irreversible bar in)F ; the reversible rules below are called)F ’s closing rules. Clearly
the number of closing rules in any non-trivial)F is at least 1.

Observe also that, for F ≡¬G, by a permutation of closing rules we can bring)F
in the form

)G

...

G U�; G�

G�; (¬G)�

(¬G) U�; (¬G)�

which ends ‘just like an �’.

De�nition 17. Let Fi be the immediate subformula(s) of F . We say that)F is lo-
cally � iG it is the identity axiom F ⇒F or consists in derivations)Fi followed

368 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

by precisely one instance of each of the logical rules introducing F’s main
connective.

We already saw that any)¬G can be transformed in a derivation that is locally
�. The following lemma shows that this can always be done, for whatever arche-
type F .

Lemma 18 (Zipping lemma). Let F ≡F1 ◦F2 be a propositional archetype. Then for
any)F there exists a permutation of its closing rules with the irreversible bar such
that the resulting derivation is locally �.

Proof. By induction on the number of closing rules in)F . If there is precisely one
closing rule, then our derivation already is locally �, hence the ‘empty’ permutation will
do. Otherwise, it is easy to see that a multiplicative reversible rule can be ‘pushed over’
the irreversible bar. Let us show that the same holds true for an additive reversible
rule.

Suppose that ◦ is multiplicative. We have, w.l.o.g. (the number of closing rules is
bigger than one, hence A •B necessarily is subformula of either F1 or F2), the following
sub-derivation:

�11 �12

...
...

F1; �1 F2; �2; A

F1 ◦ F2; �; A

�21 �22

...
...

F1; �3 F2; �4; B

F1 ◦ F2; �; B
F1 ◦ F2; �; A • B

But clearly this implies that �1 =�3 and �2 =�4. Hence we can push the reversible rule
‘over the bar’:

�j1

...

F1; �1

�12

...

F2; �2; A

�22

...

F2; �4; B

F2; �2; A • B

F1 ◦ F2; �; A • B

In case ◦ is additive the argument is similar, and left to the reader.

The following theorem then is an immediate corollary:

Theorem 19. Any linear derivation of F ⇒F; with F an archetype; is strongly equiv-
alent to idF .

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 369

Proof. By induction on the complexity of F , using (the zipping) Lemma 18. As re-
versal of F ⇒F can introduce structural rules, the converse does not hold: there are
non-linear derivations strongly equivalent to the identity axiom.

Let)′F denote any derivation obtained from a)F by removing zero or more of its
closing rules. Also the following proposition is a corollary to the above.

Proposition 20. Let F be an archetype. Then any sub-derivation of)F is of the form
)′G for some subformula G of F ; moreover; any sequent in)F is of the form �;¬nH;
where H is either atomic or has an irreversible main connective; and all formulas in
� are subformulas of ¬nH .

Let us mention another corollary, which is often used in the proofs of the lemmas
in the next section.

Lemma 21. Suppose)′F derives �; F . Then; for every atomic formula p occurring in
� there is an axiom A⇒A in)′F ; such that A contains p.

Proof. By induction on the complexity of F : if F is atomic, then)′F is the axiom
p⇒p; otherwise, by Proposition 20, following upwards a branch of ancestors of p in
)′F will lead us to the conclusion of some)′G for a proper subformula G of F , hence
containing an axiom as wanted by induction hypothesis.

3.2. Extension to >rst-order

In order to extend the above characterization to the 3rst-order case it suOces to
extend Lemmas 15, 16 and 18 to 3rst-order archetypes. We will make use of the fact
that 3rst-order formulas have an obvious underlying propositional structure.

De�nition 22. We inductively de3ne a mapping (·)[(‘flat’) from 3rst-order formulas
to propositional formulas by

Ri(t1; : : : ; tn)[:= ri

(¬F)[:= ¬F[

(QxF)[:= F[

(F1 ◦ F2)[:= F[
1 ◦ F[

2

where ri is a (new) propositional variable, and call F[the propositional collapse of F
(cf. [6, Chapter 9]).

The propositional collapse of 3rst-order formulas extends in an obvious way to 3rst-
order proofs; if � is a 3rst-order proof of �, then (modulo possible repetitions of
sequents due to erasing quanti3ers) �[is propositional proof of �[.

We are going to use the following trivial property of the (·)[-mapping:

370 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Lemma 23. Let F be a >rst-order archetype and)F a linear proof of F ⇒F . Then
F[is a propositional archetype and ()F)[a linear proof)[F of F[⇒F[.

Now, using the results in the propositional case, one shows that Lemmas 15 and 16
continue to hold in the 3rst-order case.

Lemma 24. Let F be a >rst-order archetype. Then any non-trivial)F ends in an
application of the reversible rule introducing F ’s main connective.

Proof. In case F’s main connective is not a quanti3er, the argument is identical to
that given in the proof of Lemma 15. Therefore, let us assume that F ≡QxG. In case
)F does not end in an instance of the reversible quanti3er rule, it has the following
form:

...

G[t=x]; (QxG)�

(QxG) U�; (QxG)�

Let R1[t=x]; : : : ; Rn[t=x] be the atomic subformulas of G[t=x], containing the term t. Now
follow some branch upward in the proof tree. Suppose at some point (QxG)� is ‘split
oG’ in a binary irreversible rule:

...

�1[t=x]

...

�2[t=x]; (QxG)�

�[t=x]; (QxG)�
:

But then ()F)[contains only isolated atoms in the sequent (�1[t=x])[, which consists
solely in distinct subformulas of the archetype (G[t=x])[. This contradicts Lemma 14.

Hence every branch upward from G[t=x]; (QxG)� will pass through an occurrence
of the reversible rule introducing (QxG)�:

...

�;G[y=x]

�; (QxG)�

with y not free in �;G(x): our)F has a ‘reversible bar’, say.
Now take some instance of a rule in this reversible bar such that � contains an

ancestor R[t=x] of a predicate ‘bound’ by Qx. By Lemma 21 the corresponding sub-
derivation in the propositional collapse of our 3rst order generic proof contains an
identity-axiom containing r. In the 3rst-order proof such an axiom, by the subformula-
property, is either of the form :::Ri[t=x]:::⇒ :::Ri[t=x]::: or :::Ri[y=x]:::⇒ :::Ri[y=x]:::.

But of course that is not possible, as it would imply t≡y, thus violating the variable
condition.

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 371

Lemma 25. Let F ≡¬mG (with G non-atomic; not starting with a negation) be a
>rst-order archetype. All lowest occurrences of irreversible rules in)F introduce the
principal connective or quanti>er of G. Moreover; all passive formulas occurring in
a premise of such a rule are subformulas of the active formula.

Proof. The (somewhat lengthy) proof uses the same type of argument as the proof
of Lemma 24, and is left mostly to the reader. Let us just show that all passive
formulas occurring in the premiss of a lowest instance of an irreversible quanti3er-rule
introducing the principal quanti3er of F ≡QxG in)F are subformulas of the active
formula.

Such an instance is separated by a certain number of closing rules from the con-
cluding inference:

)′
...

�;G[t=x]

�;QxG
...

G[y=x]; QxG

QxG;QxG

In case there is an R[y=x] ‘bound’ by the quanti3er present in �, then, by Lemma 21
we know that ()′)[contains an axiom A(r)⇒A(r); hence in)′ we need to have t≡y,
so indeed all formulas in � are subformulas of G[t=x].

Similarly, with due care as to the possibility of, when necessary, renaming variables
and terms, one may verify that also Lemma 18 continues to hold:

Lemma 26. Let F be a >rst-order archetype. Then for any)F there exists a permu-
tation of its closing rules with the irreversible bar such that the resulting derivation
is locally �.

Proof. Again we leave most of the veri3cation to the reader. Let us only show that in
a)F we may push a reversible quanti3er rule up over a lowest irreversible one, for,
say, F ≡∀aG.

)′
...

�; A[y=x]; G[t=a]
�; A[y=x];∀aG
�;QxA;∀aG

...
G[z=a];∀aG
∀aG;∀aG

372 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Now it might be the case that t≡y, which would prohibit the permutation of rules we
want to perform; however, in that case, due to the variable condition, the predicates
‘bound’ by ∀a cannot be present in A(x); �. But then all their occurrences in G[t=a]
have to be introduced in)′ by additive weakening (i.e. unary irreversible rules). Hence
t can be taken diGerent from y, w.o.l.g.

We therefore 3nd:

Theorem 27. Theorem 19 and Proposition 20 hold for all >rst-order archetypes.

4. Classical isomorphisms

4.1. Back to LK�
p

Linear derivations of archetypical identities, hence, are strongly equivalent to identity
axioms; shown while pretending to be ‘colour-blind’, this property of course continues
to hold in LKtq for coloured archetypes.

Note that if � is a derivation in LK�, or LK�
p , then zipping it can always be done

within LK�, or LK�
p . Hence the last theorem can be relativized to LK� or LK�

p , thus:

Theorem 28. Any linear LK�
p derivation of F ⇒F; with F an archetype; is strongly

equivalent to idF .

(Observe that the converse is false: Fig. 4 shows a non linear derivation strongly
equivalent to an idF). In LK�

p linear derivations of F ⇒F , for polarized 3rst-order
archetypes, are, of a strikingly simple form. E.g., the structure of the fully expanded
)F (all occurring identity axioms are atomic) in LK�

p is the following:
(i) Do all possible reversible rules, starting from the reversible rule introducing F’s

main connective (be careful: only one of the negation-rules is reversible in LK�
p and

while in LKtq derivations the negation-rules are in some sense ‘roaming free’, in LK�
p

they are strictly localized), until you are left with only atomic formulas or formulas
with an irreversible main connective; (ii) then decompose the ‘irreversible’ F , up to
the ‘duals’ of the formulas left in (i).

After step (ii) all leaves are of the form Fi ⇒Fi, and the process starts over again.
The result of step (i) is unique up to possible permutations of ‘independent’ re-

versible rules, but this is the only degree of freedom.

4.2. The criterion: linearity—the harvesting: classical isomorphisms

The following theorem gives a suOcient condition for the existence of a computa-
tional isomorphism between F and G:

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 373

Theorem 29. Suppose � and � are linear LK�
p-derivations of F ⇒G and G⇒F

respectively; where F and G are >rst-order archetypes. Then � and � de>ne a com-
putational isomorphism between F and G w.r.t.

s≈.

Proof. As being linear is stable under tq-reduction, we 3nd ��G � =)F
s≈ idF and

��F �=)G
s≈ idG. Hence � and � de3ne a computational isomorphism.

As a by-product of the above analysis we recover most linear boolean equivalences :
commutativity and associativity of conjunction and disjunction, involutivity of negation,
de Morgan laws, etc.

However observe that we cannot always use the condition of Theorem 29 above
to ‘catch’ isomorphisms. An example is given by the distributivity A∧m (B∨a C) ⇔
(A∧m B)∨a (A∧mC), for which there is a computational isomorphism; but of course
the formulas are not archetypical.

4.3. Linear isomorphisms

De�nition 30. An isomorphism (�; �) is linear whenever � and � are (strongly equiv-
alent to) linear derivations.

The following proposition expresses a necessary condition for the existence of linear
isomorphisms between F� and G�′ (where the superscripts indicate the colour of the
formulas, cf. [1]), in case F�, G�′ are 3rst-order archetypes.

Proposition 31. Let F�; G�′ be >rst-order archetypes. If � �= �′; then there are no linear
isomorphisms between F� and G�′ .

Proof. Suppose � and � are LK�
p derivations of the sequents F ⇒G and G⇒F re-

spectively, where F and G are 3rst-order archetypes of opposite polarities, then they
must be both attractive in one of the sequents, say F ⇒G, and both non-attractive
in the other. Because of the absence of structural rules, one of F and G, say G, has
to be logically main in �’s last rule. Then ��F � must end in this same rule since
F is attractive in �, so that the structural step will carry � above G’s last rule. But
then ��F � cannot be a)G: its last rule is an irreversible one, which contradicts
Lemma 24.

Let us observe that even with � �= �′, archetypal F�; G�′ could be isomorphic. Consider
for instance the two style-switching LK�

p derivations as given in Fig. 6
An easy computation shows that both �� (which is any of the strongly equivalent

derivations depicted in Fig. 4) and �� are strongly equivalent, respectively, to the
corresponding identity axiom. The style-switchers � and being non linear derivations,
this however does not contradict Proposition 31.

Now here is an example of a ‘good taste’ corollary to our approach, namely the
unicity of the archetypical, linear computational isomorphisms in LK�

p caught by means
of our criterion:

374 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Fig. 6. Style-switchers � and .

Theorem 32. Let F; G be archetypes; � and � linear LK�
p derivations of F ⇒G and

G⇒F . Any linear LK�
p derivation �′ of F ⇒G is strongly equivalent to �.

Proof. Using Proposition 31 and Lemma 4 of [1] we have ��G (��F �′) = (��G �)
�F �′, that is these two cuts commute. By linearity of �′ and Theorem 28, ��F �′
s≈ idG and since ��G �

s≈ idF , �
s≈�′.

Conversely, the necessary condition expressed by Proposition 31, shows that a certain
number of equivalences cannot be recovered at the computational level:
style-switchings, prenexi3cations and some distributivities, etc.

The reader will readily convince himself that the composition of proofs in classical
logic is not associative, not even in LK�

p . As a result, two formulas may very well
be ‘isomorphic’ (in the sense of De3nition 1) while being far from ‘synonymous’
(using the P-denotational semantics of [12], it is possible to de3ne a restriction of
LK�

p , endowed however with a partial reduction, which avoids the non-associativity of
cuts, and for which the notion of ‘isomorphism’ used in the present paper thus implies
‘synonymy’; see [7]). Indeed: it will in general be the case that identifying a proof �
and the proof obtained from � by replacing one of the two ‘isomorphic’ formulas by
the other, and then changing them back again—by means of two cuts with the proofs
de3ning the isomorphism—collapses our universe (in the sense that it will force the
identi3cation of all derivations of the sequent under consideration).

However, 3rst order archetypes that are linearly isomorphic, always are
‘synonymous’:

Lemma 33. Let � be an LK�
p derivation; F0 a positive occurrence of F in �; and

F1; : : : ; Fn+1 occurrences of F in � that are highest in some downward closed subtree
(a ‘truncation’) of the tree of F0’s ancestors in �. Let 0 be a proof of F; �⇒�;
and �′ (resp. �′′) the proof obtained from � by cutting each Fi+1 (resp. F0) with 0.
Provided in 0 each main-active interspace having the speci>ed occurrence of F as
root (i.e. each block of rules following an introduction of F in 0) contains at most
reversible logical rules introducing subformulas of � and �; the proofs �′′ and �′

have strongly equivalent normal forms.

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 375

Proof. Whenever F0 is attractive, then reducing the cut on F0 in �′′; or reducing the
cuts on the Fi+1’s in �′, leads to the same proof. In case F0 is not attractive, one
veri3es by induction on the depth of the reversible layer, that the proof obtained from
�′′ by reversing the subformulas of �; � that are introduced in the ‘reversible layer’,
reduces to the same proof as the one obtained when one 3rst reverses in �′ those
subformulas of �; �, and then reduces the cuts on the Fi+1’s.

Lemma 34. Let F; G be >rst-order archetypes; � and � linear cut-free LK�
p deriva-

tions of F ⇒G and G⇒F . Suppose that F is reversible in � and that the last rule
of � is not an introduction rule for G. Then the lowest part of � is of the following
form: an ‘irreversible bar’ of rules introducing G (cf. Fig. 5); followed by a non void
sequence of reversible rules “closing” F .

Proof. By Theorem 29 and Proposition 31, G is attractive in �. Thus the evaluation
of ��G � begins with an ascent of � in � until the introduction rules for G are met;
now, the sequence of rules ‘traversed’ by �, will remain throughout the cut-elimination
process: they are thus the last rules in ��G �, which is a)G. Hence, by our analysis
of the structure of)’s, they all are logical reversible ‘closing rules’ for F .

Theorem 35. Let F; G be archetypes; � and � linear LK�
p derivations of F ⇒G and

G⇒F . Let � be an LK�
p derivation; F0 an occurrence of F in �; and F1; : : : ; Fn+1

occurrences of F in � corresponding to a truncation of the tree of F0’s ancestors in
�. Let �′ be the proof obtained from � by >rst cutting each Fi (16i6n+ 1) with �
(or �); then performing; but now on G; the rules originally applied on descendants of
the Fi; and >nally cutting the occurrence of G that replaces F; with � (or �). Then
the proofs �′ and � have strongly equivalent normal forms.

Proof. By symmetry it suOces to consider the case where F0 is, say, positive in �.
Consider the proof �′′ obtained from � by cutting F0 with �, and then, immediately
below, the formula G with �. By Proposition 31 we know that F and G have the
same polarity, so that whatever the polarity of F , the ‘layer’ of rules following the
introductions of F in �, by Lemma 34, contains at most reversible rules introduc-
ing subformulas of G. Hence � satis3es the condition put on 0 in Lemma 33, which
thus applies: �′ and �′′ have strongly equivalent normal forms. Now observe that,
by Proposition 31 and Lemma 4 of [1], the two cuts introduced in �′′ commute.
So by Theorem 29, � and �′′ (hence �′ as well) have strongly equivalent normal
form.

Granted that the maximization of isomorphisms reduces the ‘noise’ of the syntax, that
is the amount of syntactic details which blur the actual computational phenomenon, then
our classical triple should be a good calculus in which to examine the computational
content of classical proofs.

376 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

5. The same result in �1-calculus

We now re-contextualize our result in the frame of typed �1-calculus (see [9–11]
for de3nitions).

5.1. Embedding typed �1-calculus into LK�
p

Terms in this calculus denote deductions in Parigot’s classical natural deduction
(CND for short) restricted to the multiplicative implication and universal quanti3ers
of 3rst and second order. This natural deduction is embeddable in LK in the usual
way, that is, introduction rules are read oG as right rules and elimination rules as cuts
against the left rule, e.g.

...

� A → B

...

� A B′ � B

A → B � B

� B

Observe that if all formulas are polarized (that is, in this case, chosen of colour t), the
proof above does satisfy the �-constraint, for it is the ‘primed’ B that should be main
and it is. Hence this embedding maps CND into LK�

p and (with some adjustments
in the translation) it is an homomorphism with respect to normalization (up to strong
equivalence).

5.2. Reversal of a �1-term

Let R, the reversal, be the mapping of unnamed terms of type A→B to unnamed
terms of the form �xA1�B t, de3ned by induction as follows:

1. R(xA→B) = �z A1�B [�](x)z;
2. R(�xAuB) = �xA1�B [�]uB;
3. R((u)C→A→BvC) = �z′A1�B [�](�zC1�′B u′′)vC , if R(u) = �zC1�A→B u′ and R(1

�A→B u′) = �z′A1�′B u′′;
4. R(14A→B t) = �xA1�Bt[[�]u′[�=�; x=z]=[4]u], if R(u) = �z A1�B u′.

This application can be extended to a mapping of unnamed terms of type ∀X A to
unnamed terms of the form ∀X1�A t.

5.3. Guess

Now for a plausible guess: (1) the equivalence relation generated by R is compatible
with �1-normalization and (2) our main result still holds, that is, two linear �1-terms
proving an equivalence between archetypes compose in both directions to a unit in the
quotient.

V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378 377

Reversal, which is just �-expansion in the intuitionistic case, was already (inde-
pendently) considered by Parigot as a preliminary transformation in the problem of
reading back �1-integers; also Herbelin in [4, 3] dealt with fully reversed terms (which
is possible only in the absence of second order quanti3cation) in his game-theoretic
interpretation of �1; 3nally Ong, in [8], proposes a 15-rule, which might de3ne the
same equivalence relation as ours, and proves its soundness by model-theoretic means.

Appendix

LK, classical logic

Identity axiom and cut rule:

(Ax) A � A (cut)
�1 � �1; A A; �2 � �2

�1; �2 � �1; �2

Axioms for the constants:

(�m) � �m (�a) � � �a; �

(⊥m) ⊥m � (⊥a) �;⊥a � �

Negation rules:

(L¬)
� � A; �
�;¬A � �

(R¬)
�; A � �
� � ¬A; �

Multiplicative logical rules:

(L m→)
�1 � �1; A B; �2 � �2

�1; �2; A
m→B � �1; �2

(R m→)
�; A � B; �

� � A m→B; �

(L∨m)
�1; A � �1 �2; B � �2

�1; �2; A ∨m B � �1; �2
(R∨m)

� � A; B; �
� � A ∨m B; �

(R∧m)
�1 � A; �1 �2 � B; �2

�1; �2 � A ∧m B; �1; �2
(L∧m)

�; A; B � �
�; A ∧m B � �

Additive logical rules:

(R a→)
�; A � �

� � A a→B; �

� � B; �

� � A a→B; �
(L a→)

� � �; A B; � � �

�; A a→B � �

(R∨a)
� � A; �

� � A ∨a B; �
� � B; �

� � A ∨a B; �
(L∨a)

�; A � � �; B � �
�; A ∨a B � �

(L∧a)
�; A � �

�; A ∧a B � �
�; B � �

�; A ∧a B � �
(R∧a)

� � A; � � � B; �
� � A ∧a B; �

378 V. Danos et al. / Theoretical Computer Science 294 (2003) 353–378

Rules for quanti>ers (y not free in �, �):

(L∀)
�; A[t=x] � �
�;∀xA � �

(R∀)
� � A[y=x]; �
� � ∀xA; �

(L∃)
�; A[y=x] � �
�;∃xA � �

(R∃)
� � A[t=x]; �
� � ∃xA; �

Structural rules:

(LW)
� � �

�; A � �
(RW)

� � �
� � A; �

(LC)
�; A; A � �
�; A � �

(RC)
� � A; A; �
� � A; �

References

[1] V. Danos, J.-B. Joinet, H. Schellinx, A new deconstructive logic: linear logic, J. Symbolic Logic
62 (3) (1997) 755–807 (DJS-papers are available at http://www.logique.jussieu.fr/
www.hars/djsf.html).

[2] J.-Y. Girard, A new constructive logic: classical logic, Math. Struct. Comput. Sci. 1 (3) (1991) 255–296.
[3] H. Herbelin, SXequents qu’on calcule. De l’interprXetation du calcul des sXequents comme calcul de �-termes

et comme calcul de stratXegies gagnantes, ThYese de Doctorat, UniversitXe de Paris 7, PrXepublications du
LITP, 1995.

[4] H. Herbelin, BZohm trees and games, weak-head reduction and interaction between strategies, TLCA,
1997.

[5] J.-B. Joinet, H. Schellinx, L. Tortora de Falco, SN and CR for free-style LKtq: linear decorations and
simulation of normalization, preprint no. 1067, Utrecht University, Department of Mathematics, 1998;
J. Symbolic Logic, in press.

[6] J.L. Krivine, Lambda-Calculus, Types and Models, Ellis Horwood, London, 1993.
[7] O. Laurent, M. Quatrini, L. Tortora de Falco, Polarized and focalized linear and classical proofs,

PrXepublication no. 24, Institut de MathXematiques de Luminy, UniversitXe de Marseille-Luminy, submitted
for publication.

[8] C.-H.L. Ong, A semantic view of classical proofs: type-theoretical, categorical and denotational
characterizations, in: Logic in Computer Science, IEEE Computer Society Press, 1996, pp. 230–241.

[9] M. Parigot, �1-Calculus: an algorithmic interpretation of classical natural deduction, in: A. Voronkov
(Ed.), Logic Programming and Automated Reasoning, LNAI 624, Springer, Berlin, 1992, pp. 190–201.

[10] M. Parigot, Strong normalization for second order classical natural deduction, in: Logic in Computer
Science, IEEE Computer Society Press, 1993, pp. 39–46.

[11] M. Parigot, Proofs of strong normalization for second order classical natural deduction, J. Symbolic
Logic 62 (4) (1997) 1461–1479.

[12] M. Quatrini, L. Tortora de Falco, Polarisation des preuves classiques et renversement, Compte-Rendu
de l’AcadXemie Sci. SXer. I, Paris 322 (1996).

