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Formal Molecular Biology Done in CCS-R
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Abstract

We present CCS-R, a reversible variant of Milner’s CCS offering a backtracking mechanism. Formalization
of biological systems satisfying a “perfect mix” assumption within CCS-R is discussed.

Keywords: Reversible computation. CCS, backtracking mechanism

1 A Language for the cell

What some consider a revolution in biology has started a few years ago. New

measurement technologies, such as DNA micro-arrays, are now producing huge

amounts of data at the molecular level. For the first time in biology, a top-down ap-

proach, complementing the usual bottom-up one, is shown to be possible [10]. These

genome-wide snapshots could be immensely valuable in the process of reconstruc-

tion and validation of the cell molecular mechanisms. But, with this new possibility

comes also the very basic question of how what one wants to reconstruct should

be represented in the first place. In which language should the dense networks of

interacting processes the cell is made of be described, simulated and analyzed?

The bulk of the reconstruction effort for now is aiming at genetic regulation

networks, that is graphs tracing the mutual influences of genes, and there isn’t

really a need of a formalism so far because the situation is simple and clear enough.

But sooner or later further levels of details, such as protein-protein interactions
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and protein-DNA interactions, will have to find their place in the picture. Various

static graphical notations are already commonplace in molecular biology, as in the

KEGG pathway data-base for instance [12], but reconstruction tasks demand access

to the dynamics. The language one needs to represent the fine molecular details of

the cellular processes, the “language of the cell” so to speak, has to describe the

evolution of these processes.

As one can imagine, the question hasn’t gone unnoticed, and many different

languages have already been proposed: plain differential systems [18], Petri Nets

of various sorts [9,13], Hybrid Automata [8] and State Charts [11] to name a few.

All these are giving means to construct models but we remark that they don’t, by

themselves, propose a picture of what molecular biology is.

1.1 π-calculus modeling.

Recently, Regev, Shapiro [17,15,16] and a number of other authors [1,3] have brought

to the fore the idea that process algebras, languages otherwise developed for the

modeling of communication in decentralized computational systems, might be use-

ful. This proposition belongs to a markedly different category since, in some sense, it

is trying to explain, at a suitable level of idealization, what molecular biology is. For

instance, in π-calculus, a molecule is a π-calculus agent, binding is communication,

continuous physical contact is private name sharing, etc.

Seducive as this view on molecular interactions may be, if only because these

interactions are really asynchronous and concurrent, one has to confess that the

actual code representing precise biological systems (such as the EGF-MAPK cascade

in Regev’s formalization) is sometimes hardly legible and, worse, that there is much

latitude in the way a given biological phenomenon is represented.

Moreover, and here we are getting closer to the topic of this paper, the examples

that were given so far are always running forward, rarely letting a binding or an

activation be undone. While this might be a quite reasonable assumption in some

cases, for instance when describing a signal transduction pathway, it is certainly a

departure from actual biochemistry where practically all reactions are reversible.

1.2 Reversibility and regulation.

Not only most reactions are reversible but reversibility actually impacts on the

system behaviour. Fig. 1 illustrates this with a biologically plausible example:

proteins A and B are competing to bind with some C (which could be a complex

or a group of binding sites on DNA). Since binding is blind and a purely local

operation, one may and will reach sometimes an indefinite state where both A and

B are bound with C. But the system won’t stay there, sooner or later A or B will

leave. Now if one thinks of this system as a molecular switch, with A switching the

system on and B preventing this, then it is crucial that the system can escape from

the intermediate state, or else the switch is off forever.

So reversibility is not just a biochemical constraint bearing on the cell self-

programming, it is actually a basic mechanism in regulation that prevents deadlocks
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and is instrumental in obtaining switch-like behaviours.

B

B

B A

C

C

C

A

A

C

A

Initial solution

Unstable complex

Protein B inhibited

Protein A inhibited

B

Fig. 1. Competition between two proteins.

The contribution of this paper is to introduce a process algebra with reversibility

wired in the syntax.

In principle, reversibility can be expressed in π-calculus, and one might well

wonder if reversibility makes a worthwhile addition. We think it does. First, re-

versibility seems so much the rule in biological systems that it is natural to build

it in the calculus and bring in so doing the modeling language closer to real thing.

Second, while it is easy to declare that specific actions are irreversible and therefore

unbacktrackable, it is not a simple matter to encode reversible actions in a world

where irreversibility is the default option. It is certainly possible but has a certain

cost in terms of time, legibility and introduces plenty of non biological events in the

model. Our reversible language is also relying on a much simpler communication

algebra than π, namely CCS, and therefore one can expect our models to perform

better on the grounds of legibility and analyzability as well.

1.3 Outline.

The process algebraic development and the biological application are kept in sepa-

rate sections. For the reader with a biological background, this is as lively an intro-

duction as we could manage to process algebras. Care was taken to explain process

algebraic matters in some details and with many examples, but some familiarity

with CCS of course would ease the understanding of the paper. We recommend

Milner’s book [14].

First, we define the basic syntax, give a few examples and prove that backtrack-

ing is sound in the sense that CCS and CCS-R systems have the same reachable

states. Section 3 discusses the modeling of biomolecular interactions and makes a

case for a slight modification of CCS-R, called CCS-Rμ, remedying the fake causal

dependencies induced by the expansion law by introducing multi-actions. Section

4 illustrates the CCS-Rμ modeling ability under a “perfect mix assumption”, by

which we mean that all reactants may interact in the solution provided they have

a complementary interface. And finally section 5 discusses what happens when the

mix isn’t perfect.
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2 CCS-R

As said, our starting point is Milner’s CCS [14] which describes interaction as binary

synchronized communication. Something happens in a CCS system when two agents

are doing complementary actions at the same time, very much as a handshake.

Processes can try some different synchronizations, a behaviour which is written∑
ai.Pi; the sum then represents the willingness of the process to do any of the

actions ai and the Pi are the corresponding subsequent behaviours. Processes can

also divide in parallel components, often called threads; this is written
∏

Pi where

the Pi are the concurrently running sub-processes.

2.1 A syntax for backtrack

The plan to implement backtrack is to assign an identifier to each thread and then

an individual memory stack keeping track of past communications. Upon doing a

forward transition the information needed for roll-back will have to be stored on

the memory stack.

Two constraints are shaping the actual syntactic solution explained below. First

comes soundness: reversing computations should not give access to formerly un-

reachable states; the second is expressiveness: the memorizing scheme should not

induce fake causal dependencies on backward sequences of actions. This section is

only concerned with the first question, while the second will be taken care of later

in the paper.

The syntax for CCS-R is given in Fig. 2 and defines actions, processes and mem-

ories. One records two kinds of events in memories, communications and linking

(unfolding of a process definition). The set of identifiers, written U is taken to be

N
�, that is identifiers are words of integers. We also use the following shorthand

notation :

∏
Mi[Pi]ui

:= M1[P1]u1
| . . . | Mk[Pk]uk

.

It is understood, as in CCS, that each constant K is accompanied by a definition

K := P where P is a plain CCS process.
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Actions: a ::= x | x̄ | . . . Action on a channel

| τ Silent action

Processes: P ::= 0 End of process

|
∑

ai.Pi Choice

|
∏

Mi[Pi]ui
Concurrent threads

| K Constant

| (νx)P Restriction

Memories: M ::= 〈def :K(u)〉.M Linking trace

| 〈u,a,P 〉.M Communication trace

| 〈〉 Empty memory

Fig. 2. CCS-R

2.2 From CCS-R to CCS and back.

Our calculus is clearly only a “decoration” of CCS which can be erased by way of

the following forgetful map φ : CCS-R −→ CCS:

φ(0) = 0

φ(
∑

ai.Pi) =
∑

ai.φ(Pi)

φ(
∏

Mi[Pi]ui
) =

∏
φ(Pi)

φ(K) = K

φ((νx)P ) = (νx)φ(P )

Conversely one can equip a CCS process with identifiers and empty memories with

the following U -indexed family of lifting functions � : U × CCS −→ CCS-R:

�u(0) = 0

�u(
∑

ai.Pi) =
∑

ai.�u(Pi)

�u(
∏

Pi) =
∏

〈〉[�u.i(Pi)]u.i

�u(K) = K

�u((νx)P ) = (νx)�u(P )
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Let CCS-Ri ⊂ CCS-R stand for the set of CCS-R terms with empty memories (or

in initial state). All lifting maps have their codomains included in CCS-Ri and are

post-inverses to the forgetting map φ, that is for all u ∈ U , φ ◦ �u is the identity.

Not quite the converse ! The transformation �u ◦ φ is erasing all memories.

2.3 CCS-R structural congruence

We now want to define structural congruence, written ≡. This is giving some

flexibility in the handling of the syntax. The first and most important principle is

that memory can be distributed or shared among sub-threads:

M [
∏

〈〉[Pi]ui
]u ≡ 〈〉[

∏
M [Pi]ui

]u (share)

Together with this first equation that will ensure consistency of the memorisation

mechanism, we take care of process definition unfolding. When K := P we set

(recall P is a plain CCS process):

M [K]u ≡ 〈def :K(u)〉.M [�u(P )]u (link)

New syntactic sub-threads have to be labelled “on the fly”, for instance, if K :=

(x.K + y.0) | x̄.K, then:

�1((x.K + y.0) | x̄.K) = 〈〉[�11(x.K + y.0)]11 | 〈〉[�12(x̄.K)]12

= 〈〉[x.K + y.0]11 | 〈〉[x̄.K]12,

〈〉[K]1 ≡ 〈def :K(1)〉[〈〉[x.K + y.0]11 | 〈〉[x̄.K]12]1

To conclude the definition we add the usual CCS equations:

P1 | P2 ≡ P2 | P1

(P1 | P2) | P3 ≡ P1 | (P2 | P3)

P1 + P2 ≡ P2 + P1

(P1 + P2) + P3 ≡ P1 + (P2 + P3)

P + 0 ≡ P

(νx)P1 | P2 ≡ (νx)(P1 | P2) if x �∈ P2

and define structural congruence as the least equivalence relation on terms closed

under all syntactical constructions and containing the equations above.

2.4 Transition rules

With our structural congruence in place, we can now define a labelled transition

system (LTS for short) for CCS-R. This is describing the structure of all possible

V. Danos, J. Krivine / Electronic Notes in Theoretical Computer Science 180 (2007) 31–4936



computation traces.

A process can evolve through two kinds of transitions: internal or τ -transitions,

with labels of the form (u, r, τ) where τ is the silent action and u, r are identifying

the partners that made the communication happen; or external transitions with

labels of the form (u, r, a) with a an ordinary action, u identifying the process

responsible for a and r being an identifier provided by the context.

2.4.1 Basic rules

We first have two basic transitions:

(com)

M [a.Q + P ]u
u,r,a
−→ 〈r,a,P 〉.M [Q]u

(back)

〈r,a,P 〉.M [Q]u
u,r,a
←− M [a.Q + P ]u

One observes that (back) which is undoing a communication is also a communica-

tion. It is the exact inverse to (com). To keep the system consistent one is allowed

to roll-back if and only if the other former partner in communication is willing to.

We will use sometimes irreversible or unbacktrackable actions, written a. For

such actions communication is simply not memorized, and one uses the simplified

(com)′:
(com)′

M [a.Q + P ]u
u,r,a
−→ M [Q]u

2.4.2 Contextual rules

We turn to the definition of contextual rules, explaining what becomes of a basic

transition when done in a context.

Below, when we no longer want to distinguish between foward communication

and backward communication, we write
u,r,a
←→ meaning either

u,r,a
−→ or

u,r,a
←−.

P
u,r,a
←→ P ′

(ξ)

〈〉[P ]u
u,r,a
←→ 〈〉[P ′]u

P
u,r,a
←→ P ′

(par)

(P | Q)
u,r,a
←→ (P ′ | Q)

P
u,r,a
←→ P ′ a �= c, c̄

(res)

(νc)P
u,r,a
←→ (νc)P ′

P1
u,r,a
←→ P ′

1 P2
r,u,ā
←→ P ′

2
(syn)

(P1 | P2)
u,r,τ
←→ (P ′

1 | P ′
2)

P ≡ P ′ P ′ u,r,a
←→ Q′ Q′ ≡ Q

(≡)

P
u,r,a
←→ Q

There is nothing remarkable in these rules except that the (ξ) rule is requiring that

the memory stack guarding a given thread be empty before any action involving its

sub-threads can take place. This rule, used with the (share) congruence rule, is

the core of CCS-R system (see example 1 below).
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We will write P
∗

←→ P ′, meaning there is a succession of transitions, including

possibly zero, starting from P and leading to P ′.

2.5 Causality and Backtrack

Labels in our transition system are not unlike “proof terms” used to label CCS

transitions in [5,4]. The original motivation for introducing these proof terms was

to have enough information to analyze the causal dependencies between actions.

Not every action done after an action a is actually depending on a. For example,

both a|b and a.b can produce the computation trace a · b, but only in the latter case

is b depending on a, in the former a and b are concurrent.

A proper backtrack mechanism has to perform some implicit causality analysis,

or else one could backtrack on some action a without backtracking first on a b that

a has made to happen: a disaster ! So it is perhaps unsurprising that there is a

family resemblance with causality-oriented systems.

2.6 Sharing and Linking

From now on, we will write simply [P ]u instead of 〈〉[P ]u and use Mu to denote the

memory stack of the process identified by the identifier u.

Example 1: the need for (share).

Consider the system:

S = [x.([y.0 + R]11 | [ȳ.0]12) + Q ]1

and suppose for a moment there isn’t any restriction on the (ξ) rule, then the

following sequence of transitions becomes possible:

S
1,r,x
−→ S1 = 〈r,x,Q〉[ [y.0 + R]11 | [ȳ.0]12]1
11,12,τ
−→ S2 = 〈r,x,Q〉[〈12,y,R〉[0]11 | 〈11,ȳ,0〉[0]12 ]1

1,r,x
←− S ′

1 = [x.(〈12,y,R〉[0]11 | 〈11,ȳ,0〉[0]12) + Q ]1

The reduction inside [ ]1 resulting in S2 is a problem, because after this one could

backtrack on M1 and produce a process corresponding to φ(S ′
1) = x.(0 | 0) + Q in

CCS, which is unreachable from φ(S). The point of the restriction of the (ξ) rule is

to forbid the direct transition from S1 to S2. Apart from an immediate backtrack,

only (share) can be applied to S1:

S1 ≡ 〈〉[〈r,x,Q〉[y.0 + R]11 | 〈r,x,Q〉[ȳ.0]12]1
11,12,τ
−→ 〈〉[〈12,y,R〉.〈r,x,Q〉[0]11 | 〈11,ȳ,0〉.〈r,x,Q〉[0]12]1

but then memories are set correctly and the obtained process has to first to backtrack

on the internal communication on y before undoing the communication on x.

V. Danos, J. Krivine / Electronic Notes in Theoretical Computer Science 180 (2007) 31–4938



Example 2: the rôle of (link).

Consider now the system [K]1 with K := x.K + Q; if one could freely unfold a

constant without keeping track of this in the associated memory, then we would get

this:

[K]1
1,r1,x
−→ 〈r1,x,Q〉[K]1

1,r2,x
−→ 〈r2,x,Q〉〈r1,x,Q〉[K]1

1,r2,x
←− 〈r1,x,Q〉[x.K + Q]1

1,r1,x
←− 〈〉[x.(x.K + Q) + Q]1

The resulting process is structurally equivalent to the original one, but one wants

to force the re-folding of unfolded definitions when rolling back and this is why one

records unfoldings in memory. In our example, we get:

[K]1 ≡ 〈def :K(1)〉[x.K + Q]1
1,r1,x
−→ 〈r1,x,Q〉.〈def :K(1)〉[K]1

≡ 〈def :K(1)〉.〈r1,x,Q〉.〈def :K(1)〉[x.K + Q]1
1,r2,x
−→ 〈r2,x,Q〉.〈def :K(1)〉.〈r1,x,Q〉.〈def :K(1)〉[K]1
1,r2,x
←− 〈def :K(1)〉.〈r1,x,Q〉.〈def :K(1)〉[x.K + Q]1

≡ 〈r1,x,Q〉.〈def :K(1)〉[K]1
1,r1,x
←− 〈def :K(1)〉[x.K + Q]1

≡ 〈〉[K]1

and (link) is recovering the exact original process.

2.7 Soundness

Now that the system has a clearcut definition and some examples, it is time to prove

that it actually works as expected.

Lemma 2.1 (Reversibility)

∀P ∈ CCS-R, P
u,r,a
−→ P ′ ⇐⇒ P ′ u,r,a

←− P

Both implications are shown by induction on the LTS structure. From this

one sees directly that: P
∗

←→ P ′ iff P ′ ∗
←→ P , in other words accessibility is a

symmetric relation, which is a rigorous way of saying that our transition system is

reversible.

Lemma 2.2 (Soundness)

∀P ∈ CCS-R, P
u,r,a
−→ P ′ ⇒ φ(P )

a
−→ φ(P ′)

where
a

−→ is a CCS transition.

Again the proof is by induction on the LTS.
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Lemma 2.3 (Completeness) ∀P ∈ CCS-R,

φ(P )
a

−→ Q ⇒ ∃u, r,Q′ : P
u,r,a
−→ Q′ ∧ φ(Q′) = Q

The proof is by induction on P .

Theorem 2.4 (Equivalence)

∀P ∈ CCS-Ri, P
∗

←→ P ′ ⇐⇒ φ(P )
∗

−→ φ(P ′)

Take note that P has to be in CCS-Ri for this theorem to be true, else some

memory might be hidden in P . An evident example is P = 〈r,a,Q〉[0]1 which can

roll-back to 〈〉[a.0 + Q]1 while φ(P ) = 0 has, by definition, no transition in CCS.

All the proofs above are routine; the theorem follows immediately from the

lemmas.

3 Formalizing biological systems

Let us close the process algebra chapter and turn to the biological question. We

first explain our mental picture of biological interactions and in so doing we per-

form various modifications on our basic language to adapt it to the specific task of

representing such interactions.

3.1 Elasticity and Plasticity

In a solution, several complexes may form. Some of them will be stable, others will

not, but indeed proteins do not have the knowledge of what is stable and what is

not. So in our mental model, proteins always try to bind with any complemen-

tary interface present in the solution, while nature tries to bring back reactants in

their original states. This principle of protein elasticity is illustrated in Fig 3. In

the absence of any constraint on the spatial configuration of a protein, such as a

complexation or an activation (see below), it will always fold back to its original

configuration. This fits perfectly with our backtrack mechanism.

hidden site

A

B

Unfolding

Initial configuration Complexation

visible site

Fig. 3. Protein elasticity

V. Danos, J. Krivine / Electronic Notes in Theoretical Computer Science 180 (2007) 31–4940



That said, complexations are not the only way that a protein can change its

interaction capabilities. It can also be phosphorylated or activated otherwise. 3 So

there also is a certain amount of plasticity going on. Fig. 4 gives an illustration

of this: B� represents a phosphorylated state of B. Since activation has changed

the natural configuration of B, it won’t come back to its original form after de-

complexation. Activation is a permanent change of the natural configuration of a

protein and it therefore seems natural to use irreversible or unbacktrackable actions

to model it.

A

B

A

B

B

A

A

Initial solution Complexation Activation

Decomplexation

B

Active binding domain

Hidden binding domain *

Phosphate receptor

Kinase activity region

Fig. 4. Protein plasticity

3.2 Adapting CCS-R

All this requires a few adaptations to the system.

First, the simple CCS duality between names a and co-names ā has to be gen-

eralized to a binary complementation relation written C between binding sites, two

binding sites x and x′ being able to connect to each other if x C x′.

Second, we observe that sometimes biological protein-protein interactions require

a concurrent connexion on several sites, before allowing another reactant to connect

to the complex, as shown in Fig. 5.

To write C as (l1|l2|l3).l4 seems the obvious thing to do, but such an expression is

not part of the official syntax. Usually this kind of extension of the process syntax is

not considered, since one can always rely on the expansion law to cast the process C

in ordinary form. In our example, C would be expanded as l1.l2.l3.l4+l1.l3.l2.l4+. . .,

unfortunately, this introduces a fake causal dependency. 4 , 5

3 During a phosphorylation or de-phosphorylation, a phosphate is exchanged between the reactants result-
ing in covalent binding or unbinding. This may change the protein state permanently.
4 A similar argument is made in [2].
5 Another possibility is to define C as (νti)(l1.t1|l2.t2|l3.t3|t1.t2.t3.l4), but the tis have no biological con-
tents.
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BB B

B

A

C

A

C

Active binding domain

Inactive binding domain

C

A

Initial solution

complexation

complexation

activation

Fig. 5. A binds B then B binds C.

One can see this even with a much simpler example:

[a.0]1 | [b.0]2
1,r,a
−→ 〈r,a,0〉[0]1 | [b.0]2
2,s,b
−→ 〈r,a,0〉[0]1 | 〈s,b,0〉[0]2
1,r,a
←− [a.0]1 | 〈s,b,0〉[0]2

but after expanding [a]1 | [b]2 as a.b + b.a the trace above is not valid anymore. In

this specific sense, the expansion law is wrong when it comes to backtracking.

3.3 Multi-actions

So we do this differently by letting processes be guarded by multisets of actions, or

multi-actions. The ordinary case is when these multisets are just singletons. Multi-

actions can be performed and backtracked in any order. Multi-actions are given

by: 6

Multi-actions: μ ::= ε | (μ|a)

Tagged actions: γ ::= ε | ((r, a)|γ)

Framed-memories: M ::= �γ;P�.M Opened memory

| 〈γ;P 〉.M Closed memory

where ε stands for the empty multiset, r is an identifier and γ a multiset of pairs

(r, a) with a an action (not a multi-action !). One sees that memories can now

be opened or closed. Actions belonging to a same multi-action will be stored in

6 Our multi-actions have nothing to do with the patterns of Join-calculus [6,7], since they are synchronized
independently.
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the same frame of opened memory, at the top of the stack. Take note that since

multi-actions are multisets, actions a within a multi-action γ freely commute one

with another.

The (com) and (back) rules have to be modified accordingly:

(μ-com)

�γ;P�.M [(μ|a).Q]u
u,r,a
−→ �γ|(r,a);P�.M [μ.Q]u

(μ-back)

�γ|(r,a);P�.M [μ.Q]u
u,r,a
←− �γ;P�.M [(μ|a).Q]u

Frame opening and closing is dealt with by additional structural equations:

M [μ.P + Q]u ≡ �ε;Q�.M [μ.P ]u (open)

�γ;Q�.M [ε.P ]u ≡ 〈γ;Q〉.M [P ]u (close)

with the condition that M is itself closed in the (open) equation.

As said, CCS-R can be embedded in this extension, which we call CCS-Rμ, as

the fragment where γs and μs are always singletons. Again the new system is only

a decoration of CCS.

3.4 Back to the Example

Now we have all the material to give a satisfying representation of the situation

summarized in Fig. 5. Define:

A := (l1|l2|l3).0 B := lb.0 C := (l′1|l
′
2|l

′
3).l4.0

with for all i, li C l′i and lb C l4. Now we get the following computation trace:

S = [A]1 | [B]2 | [C]3
1,3,τ
−→ �(3,l1);0�[{l2, l3}.0]1 | [B]2 | �(1,l′

1
);0�[{l′2, l

′
3}.l4.0]3

1,3,τ
−→ �(3,l1)|(3,l3);0�[{l2}.0]1 | [B]2 | �(1,l′

1
)|(1,l′

3
);0�[{l′2}.l4.0]3

1,3,τ
−→ 〈(3,l1)|(3,l3)|(3,l2);0〉[0]1 | [B]2 | 〈(1,l′

1
)|(1,l′

3
)|(1,l′

2
);0〉[l4.0]3

and as expected, the connexion of li to l′i can be performed and backtracked in any

order. Specifically any tagged action in (1, l′1)|(1, l
′
3)|(1, l

′
2) can trigger a backward

transition. The final complexation is obtained with:

2,3,τ
−→ 〈(3,l1)|(3,l3)|(3,l2);0〉[0]1 | 〈(3,lb);0〉[0]2 | 〈(2,l4);0〉.〈(1,l′

1
)|(1,l′

3
)|(1,l′

2
);0〉[0]3
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4 CCS-R expressivity

More elaborate biological situations can be represented. Here we formalize a system

where the transcription of a protein is controlled by a competition between different

reactants. Backtracking and multi-actions are both needed.

Before the gene transcription starts, a complex protein machinery, denoted by

A, has to bind upstream of the gene on the DNA strand. In our example, there are

two inhibitors: I2 which is competing with A to bind to the same site on DNA,

and I1 which prevents the DNA strand from folding properly. The situation is

summarized in Fig. 6. Here is the representation in CCS-Rμ:

x y z

b’
A

b

I1

I1

x’ z’

b’ i’
DNA strand

i y

I2

y’

i’

Gene expressed
A

i’

b’
A

b

A

b

Gene not expressed

STATE 13

STATE 12
STATE 1

INITIAL STATE

x’ z’

b’ i’
I2 Gene not expressed

STATE 2

Begining of gene sequence

Fig. 6. Regulation of a gene expression

A := (x|y|z).b.EXP

DNA := [(x′|y′|z′).0]11 | [(b′.EXP′ + i′.0)]12

I1 := i.0

I2 := y.0

where EXP and EXP′ are constants handling the gene expression phase, and the

codomain relation C is such that (x, x′), (y, y′), etc. are in C. Supposing the initial

solution is:

S = [DNA]1 | [A]2 | [I1]3 | [I2]4,
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we have here a possible computation trace:

S
11,2,τ
−→ �(2,x′);0�[(y′|z′).0]11 | [b′.EXP ′ + i′.0]12

| �(1,x);0�[(y|z).b.EXP ]2

| [I1]3

| [I2]4

11,4,τ
−→ �(2,x′)|(4,y′);0�[z′.0]11 | [b′.EXP ′ + i′.0]12

| �(1,x);0�[(y|z).b.EXP ]2

| [I1]3

| 〈(1,y);0〉[0]4

11,2,τ
−→ 〈(2,x′)|(4,y′)|(2,z′);0〉[0]11 | [b′.EXP ′ + i′.0]12

| �(1,x)|(1,z);0�[y.b.EXP ]2

| [I1]3

| 〈(1,y);0〉[0]4

For the sake of clarity, linkings were not traced in this run, neither was the [ ]1
bracing DNA repeated along the run as it should.

At this stage A and I2 are both bound to DNA and one of them has to dis-

connect (recall the example in the introduction). Suppose that I2 let go first, then

computation may proceed in this way:

11,4,τ
←− �(2,x′)|(2,z′);0�[y′.0]11 | [b′.EXP ′ + i′.0]12

| �(1,x)|(1,z);0�[y.b.EXP ]2

| [I1]3

| 〈〉[y.0]4
11,2,τ
−→ 〈(2,x′)|(2,y′)|(2,z′);0〉[0]11 | [b′.EXP ′ + i′.0]12

| 〈(1,x)|(1,z)|(1,y);0〉[b.EXP ]2

| [I1]3

| 〈〉[y.0]4
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Here, transcription may start with
12,2,τ
−→ or be inhibited the other way:

12,3,τ
−→ 〈(2,x′)|(2,y′)|(2,z′);0〉[0]11 | 〈(3,i′);b′.EXP 〉[0]12

| 〈(1,x)|(1,z)|(1,y);0〉[b.EXP ]2

| 〈{(1,i)},0〉[0]3

| [y.0]4

Each transition corresponds to a biological event and in particular, backward steps

are faithfully representing unbinding.

5 Discussion and future work

So far, we have considered systems in which one could assume that reactants were

free to “move” in the solution to connect to any complementary interface. Specu-

lating about what can be done when this perfect mix assumption doesn’t hold is

now the topic. In this case we have a problem best explained with an example.

We choose the beginning of the RTK-MAPK cascade already modeled in [17] and

illustrated in Fig. 7.

The graphic representation of the system indicates that the EGF receptor EGFR

cannot activate itself though it has both a kinase activity region KAR and a phos-

phate receptor site k. If we take as initial solution:

S = [EGF]1 | [EGF]2 | [EGFR]3 | [EGFR]4 | [SHC]5 | [SHC]6

together with the following process definitions:

EGF := a.0 | b′.0

EGFR := KAR | b′.k.EGFR�

EGFR� := s.0

KAR := k̄.KAR

SHC := s′.d.0

and the following list of complementary sites C = {(a, a), (b, b′), (s, s′), (k, k̄)}, we see

that the normal CCS-R representation is wrong here, since it allows self-phosphorylation
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a
EGF b’

SHC

s’

d

EGF

SHC

s’

d

EGF EGF

EGF EGF

b b

a

b’

kk

s s

__

Cell membrane

EGFR EGFR

s s
Cross activation

EGFR EGFR

EGFR EGFR

SHC

d

SHC

d

Phosphate receptor

Hidden binding domain

Active binding domain

Kinase activity region

Fig. 7. RTK/MAPK cascade: initial solution

of EGFR:

S
11,21,τ
−→ 〈(21,a);0〉[0]11 | [b.0]12

| 〈(11,a);0〉[0]21 | [b.0]22

| [EGFR]3 | [EGFR]4 | [SHC]5 | [SHC]6

12,32,τ
−→ 〈(21,a);0〉[0]11 | 〈(32,b);0〉[0]12

| 〈(11,a);0〉[0]21 | [b.0]22

| [KAR]31 | 〈(12,b′);0〉[k.EGFR�]32

| [EGFR]4 | [SHC]5 | [SHC]6

31,32,τ
−→ 〈(21,a);0〉[0]11 | 〈(32,b);0〉[0]12

| 〈(11,a);0〉[0]21 | [b.0]22

| [KAR]31 | 〈(12,b′);0〉[EGFR�]32

| [EGFR]4 | [SHC]5 | [SHC]6

Of course we can modify our encoding of the system, by distinguishing two different

kinds of EGFR, the left one and the right one. This prevents self-activation but

to the price of breaking the symmetry between the two receptors. Or else, we can

easily code this by falling back to a value-passing mechanism. Should one give in

to such an extension of the basic language ? We don’t have a good answer at the
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moment.

6 Conclusion

We have constructed an extension of CCS that incorporates backtracking with a

relatively low syntactic cost. Some further amendments motivated by the desire to

represent biological systems in the neatest way have been introduced. In partic-

ular, we had to remedy the “fake dependencies” problem since we have seen that

expansion laws are wrong in a reversible system. This has led us to introduce multi-

actions. (One can probably go further and give a complete treatment of the full

sequential composition P ;Q of which multi-actions are a particular instance). We

also discovered an interesting way of representing state-changes through unback-

trackable actions.

However, CCS-R has shortcomings, as explained in the concluding section, and

cannot properly express situations where active complementary sites cannot always

bind one another. It is not clear at the moment if there is a clean answer to this

problem.

On the foundational level, a question remains to be answered, namely whether

reversibility can be encoded in a principled way in π-calculus. Preliminary inves-

tigations suggest that the answer is positive but this remains to be verified. One

interest of a nice and definite answer here would be to give a measure (an upper

bound really) on how much modeling effort is discounted when working in a system

where backtracking is built-in and not something one has to code for.

A variant of CCS comparable to CCS-R was never considered before as far as

we know. This is perhaps for want of any motivation. Trying to fit some biological

trait in a formal picture is indeed a great source of inspiration. Once this is done

one may perhaps forget the original motivation, at least for a moment and look

for other kinds of applications. In our own case, the representation of decentralized

transactional mechanisms comes to mind, but work is needed here to see if something

interesting can be done and we leave this for further investigation.
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