

Edinburgh Research Explorer

General Reversibility

Citation for published version:
Danos, V, Krivine, J & Sobociski, P 2007, 'General Reversibility' Electronic Notes in Theoretical Computer
Science, vol. 175, no. 3, pp. 75-86. DOI: 10.1016/j.entcs.2006.07.036

Digital Object Identifier (DOI):
10.1016/j.entcs.2006.07.036

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

Publisher Rights Statement:
Open Access document

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2006.07.036
https://www.research.ed.ac.uk/portal/en/publications/general-reversibility(d5d0e9e5-bdfe-42f4-83c2-365fd6b4aa48).html

General Reversibility

Vincent Danos

CNRS & Université Paris 7

Jean Krivine

INRIA Rocquencourt & Université Paris 6

Pawe�l Sobociński1

Computer Laboratory, University of Cambridge

Abstract

The first and the second author introduced reversible CCS (RCCS) in order to model concurrent computa-
tions where certain actions are allowed to be reversed. Here we show that the core of the construction can
be analysed at an abstract level, yielding a theorem of pure category theory which underlies the previous
results. This opens the way to several new examples; in particular we demonstrate an application to Petri
nets.

Keywords: Reversible computation, CCS, reversible calculus of communicating systems (RCCS), Petri
net

1 Introduction

The reversible calculus of communicating systems (rccs) [1] is essentially Milner’s
ccs [9] with the caveat that some observable actions in the standard labelled tran-
sition system (lts) semantics are understood to be reversible. Technically, the the-
oretical development involved the engineering of explicit syntax for keeping track
of a computation history. Such a history, together with a ccs term, forms the
configuration of a given process. Appropriate new structural operational seman-
tics (sos) rules allowed the reversible components of a given state’s history to be
undone. Phillips and Ulidowski [10] proposed a different approach to keeping the
record of a computation’s history; instead of keeping an explicit representation of

1 Research partially supported by epsrc grant EP/D066565/1.

Electronic Notes in Theoretical Computer Science 175 (2007) 75–86

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.07.036

http://www.elsevier.com/locate/entcs

history together with an unevaluated term, they keep the structure of terms essen-
tially unaltered by making the sos rules static. Causality is kept track of by tagging
actions with so-called communication keys.

In [2], it was argued that a calculus such as rccs (or ccsk of [10]) is suited
for modelling transactions – ie computations where several agents interact in order
to agree on a common irreversible action; see [3] for example. Indeed, it seems
that guaranteeing the soundness of such transactions is easy enough since policies
are normally specified by requiring the local states of the participants to satisfy
certain criteria. On the other hand, completeness seems to be more difficult, since
the existence of a possible computation leading to all of the agents having the
required state does not guarantee that such a state will be reached – for instance,
the agents may deadlock while racing to obtain the necessary shared resources. If
we stipulate that the actions leading to transactions are reversible and enrich the
participants with histories, meaning that the intermediate actions can be undone,
the irreversible computations are “essentially” the transactions. More concretely,
it was shown in [2] that the lts where the labels are taken to be the transactions
and the lts of processes with histories and reversible actions, where the reversible
actions are equated with τs, are weakly bisimilar.

In this paper we show that the design of a calculus such as rccs involves an
underlying abstract construction of the history category from a category of computa-
tions. The fact that the computations agree essentially with the causal (irreversible)
computations in the original category is captured by an equivalence of categories.

The main contributions of this paper are:

(i) the observation that subcategories R of reversible and I of causal computa-
tions form a factorisation system 〈I,R〉 on the category of computations C
(cf §3);

(ii) given a factorisation system 〈I,R〉 on C, an explicit construction of the “cat-
egory of histories” h�(C,R) (cf Definition 4.3);

(iii) a proof that h�(C,R) essentially follows from a free construction; concretely
we prove that h�(C,R) is equivalent to a certain category of fractions (cf
Theorem 4.5);

(iv) an equivalence of categories h�(C,R) � I (cf Theorem 4.4) – this is the
main result of the paper and guarantees that in order to capture the causal
computations it is enough to keep the reversible parts of a computation along
as part of the state and allow these histories to be undone;

(v) a direct application of Theorem 4.4 to the categories of computations induced
by Petri nets;

(vi) an explanation of how Theorem 4.4 relates to the previous work [2] concerning
rccs. In particular, a weak bisimulation that relates the lts of transactions
to the lts of reversible histories where the reversible actions are treated as
internal (cf Theorem 5.3).

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8676

Structure of the paper
In §2 we recall the basic concepts of categories of fractions and factorisation

systems. In §3 we introduce several examples, including Petri nets, and show that
the sets of causal and reversible computations form factorisation systems. The
construction of the history category together with our main Theorem 4.4 is given in
§4. Finally, in §5 we explore the connections with labelled transition systems. The
paper assumes a basic acquaintance with the categorical notions of adjunctions and
symmetric monoidal (sm) categories.

2 Categories of fractions and factorisation systems

Categories of fractions
Given a category C and an arbitrary class of morphisms Σ, we denote by C[Σ−1]

the category of fractions obtained by “freely” adding formal inverses to the arrows
of Σ (see, for instance [5]).

The category of fractions is characterised by a universal

C

F
����

��
��

��
�

Φ �� C[Σ−1]

F ′

��
D

property: the existence of a functor Φ: C → C[Σ−1] which
sends each arrow in Σ to an isomorphism, and moreover,
given a category D and a functor F : C → D which takes
each arrow in Σ to an isomorphism, the existence of a unique
functor F ′ : C[Σ−1] → D such that F ′Φ = F .

Factorisation systems
Given a category C and two arrows f, g ∈ C we shall

A

f

��

p �� B

g

��
C

h

��

q
�� D

write f ⊥ g if f and g satisfy the following property: given
a commutative diagram with p, q arbitrary morphisms of C
there exists a unique morphism h : C → B such that gh = q

and hf = p, as illustrated. Notice that ⊥ is not symmetric.
Given an arbitrary set X of arrows of C there are two closure
operations which use ⊥:

X⊥ = { y in C | ∀x ∈ X . x ⊥ y } and X� = { y in C | ∀x ∈ X . y ⊥ x }.

If we let Iso(C) (Ar(C)) be the class of all isomorphisms (morphisms) of C then
it’s immediate that Iso(C)⊥ = Ar(C) = Iso(C)�.

The following are standard properties enjoyed by the closure operations:

Proposition 2.1

(i) X⊥�⊥ = X⊥;

(ii) X�⊥� = X�;

(iii) X ⊆ X ′ ⇒ X ′⊥ ⊆ X⊥

(iv) X ⊆ X ′ ⇒ X ′� ⊆ X�.

Following [4], we define a prefactorisation system as follows:

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–86 77

Definition 2.2 [Prefactorisation system] A prefactorisation system for a category
C consists of two classes I, R of arrows of C such that I⊥ = R and R� = I.

By the first two parts of Proposition 2.1 it is immediate that for any class of
arrows X of C,

〈X�,X�⊥〉
and

〈X⊥�,X⊥〉
are prefactorisation systems.

The following are some of the well-known properties of prefactorisation sys-
tems [4]:

Proposition 2.3 Suppose that 〈I,R〉 is a prefactorisation system on C. Then:

(i) Iso(C) ⊆ I, Iso(C) ⊆ R and I ∩ R = Iso(C);

(ii) I and R are closed under composition.

The conclusion of Proposition 2.3 implies that I and R are actually subcategories
of C since they contain the identities and are closed under composition. We shall
take advantage of this by often confusing I and R with the subcategories they form
the arrows of.

Definition 2.4 [Factorisation system] A prefactorisation system 〈I,R〉 on C is a
factorisation system if every arrow p in C can be written p = g ◦ f for some f in I
and g in R.

Example 2.5 Clearly 〈C, Iso(C)〉 and 〈Iso(C),C〉 are factorisation systems in any
category. Probably the most well-known factorisation system is of course 〈E ,M〉 in
the category of sets Set, where E is the class of surjections and M is the class of
injections.

The following is a well-known property of factorisation systems:

Lemma 2.6 〈I,R〉-factorisation is unique up to isomorphism: if p : A → B in
C can be factorised p = g1f1 and also p = g2f2 where fi : A → Ci is in I and
gi : Ci → B is in R for i = 1, 2, then there exists a unique isomorphism h : C1 → C2

such that hf1 = f2 and g2h = g1

3 Reversibility

Following the theoretical exposition, we give a number of motivating examples of
factorisation systems. We shall consider categories of computations which decom-
pose into an underlying set of atomic actions, some of which are a priori specified as
reversible. Given a computation which consists of both types of actions, it should
be possible to break it up into a causal (non-reversible) component followed by a
maximal reversible component. If we denote the causal computations by I and the
reversible computations by R, it turns out that 〈I,R〉 usually forms a factorisation
system on the category of computations.

Example 3.1 [Single-threaded reversibility] Consider an alphabet Σ = I + R for
some sets I and R; we think of I as a set of irreversible atomic actions and R as a
set of reversible atomic actions. Let Σ∗ denote the free monoid over Σ considered
as a one-object category.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8678

Let R = R∗ and let I = R� = Σ∗I + ε – the set of all strings which end with an
irreversible action, together with the empty string. Then 〈I,R〉 is a factorisation
system on Σ∗.

Example 3.2 [Multi-threaded reversibility] Let C be the free sm category on a
graph G – ie one first forms the free category on G and then the free sm category
on the resulting category. We think of the vertices of G as representing the states
of a particular thread of computation, and the edges as possible actions. Then,
following this intuition, the arrows of C represent multithreaded computations of
finitely many non-communicating processes, with the tensor product ⊗ representing
parallel composition.

Suppose that the edges of G are partitioned into two sets, I and R. Let GR

denote the graph with the same nodes as G but with the edges restricted to the
members of R.

Let R be the free sm category on GR. Clearly R is a subcategory of C in a
canonical way. Let I = R�. It is easy to verify that I is the smallest subcategory
of C which contains the isomorphisms of C, arrows of the form iα with i ∈ I and
whose arrows are closed under ⊗. Then 〈I,R〉 is a factorisation system on C.

It is instructive to consider a more substantial example in order to illustrate the
theory. Here we shall consider Petri nets as sm categories in the tradition of [8].
Note, however, that we do not deal with strict symmetric monoidal categories. We
shall first need to recall the notion of a tensor scheme [6] and the associated notion
of a free sm category on a tensor scheme; indeed, as we shall see, tensor schemes
are very closely related to Petri nets. Note that tensor schemes can also be used in
order to construct ordinary (ie non-symmetric) free monoidal categories.

Definition 3.3 [Tensor scheme]A tensor scheme S consists of a set V of vertices,
a set E of edges, and functions s, t : E → V ∗, where V ∗ is the free monoid (the set
of finite words) on V . Every tensor scheme leads to a free sm category C – see [6]
for details. Intuitively, the objects of C can be seen as finite words (ie the product
in V ∗ is interpreted as ⊗ in C) in V and the arrows of C are generated freely from
the basic edges in E. Concretely, the arrows can be seen as certain equivalence
classes or as certain string diagrams; see [11]. Notice that the procedure described
in Example 3.2 can be seen as a special case of a tensor scheme (where all the edges
have one letter words as sources and targets).

Definition 3.4 [Petri net] A Petri net N with a set of states S and set of transitions
T is a graph s, t : T → S⊕ where S⊕ is the free commutative monoid on S. A Petri
category CN is the free sm category on N , considered as a tensor scheme. 2

The Petri category CN can be thought of as the category with arrows the (truly)
concurrent computations of a net N .

Example 3.5 [Petri net reversibility] Suppose that the set T of transitions N can
be partitioned T = I +R, where the set I contains the transitions which are deemed

2 One fixes a particular ordering of places for the source and the target of each transition, the order is
immaterial.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–86 79

x1

y

z1

z2

x2 z3

g1

g2

f1

f2

f3

2

Fig. 1. A simple Petri net, the filled transitions are irreversible.

irreversible and R the transitions deemed reversible. We obtain a factorisation
system 〈I,R〉 as in our previous examples.

Let R be the free sm category on NR, the Petri net with the same places as
N and with R as its set of transitions, considered as a tensor scheme; it is clearly
a subcategory of CN in a canonical way. Let I = R� – the arrows of I can be
described roughly as in Example 3.2. The pair 〈I,R〉 forms a factorisation system
on CN .

Consider the concrete example of a net illustrated in Figure 1, where precisely
the unfilled transitions (g1 and g2) are taken to be reversible. Suppose that places
x1 and x2 initially contain one token each; intuitively, we can consider places x1

and x2 as agents which each have an option of committing to two transactions:
x1 can commit to either f1 or f2 while x2 can commit to f2 or f3. In terms of
CN this amounts to the fact that there are arrows f1 : x1 → z1, f3 : x2 → z3 and
f2.g1 ⊗ g2 : x1 ⊗ x2 → z2. Notice that if x1 chooses to perform g1 and x2 commits
to f3 then the computation begun by x1 is stuck unless the g1 transition can be
reversed and f1 chosen instead.

Consider the effect of adding new transitions g1� and g2� to act as the inverses
of g1 and g2 respectively. If we deem that reversed computations are the same as
doing nothing then the resulting Petri category is just CN [R−1]. However, this
setting is clearly unsuitable to model the expected behaviour of the net: consider
starting with a single token in x2 and performing the g2 transition. Since now g1�

is enabled, we can perform g1� and then f1, thus arriving at a behaviour which is
not in the specification – x2 being able to commit to action f1.

4 Histories

A key technical feature of rccs is that histories are kept as part of the state, which
allows reversible moves to be backtracked correctly. Here we repeat the construction
at a higher level of abstraction, assuming only the presence of a factorisation system.

Definition 4.1 [Category h(C,R) of histories] Suppose that 〈I,R〉 is a factorisa-
tion system on C. Let h(C,R) be the category with:

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8680

• objects: arrows g in R;
• arrows: commutative diagrams, as illustrated, where f

is in C and f ′ ∈ I.

P1

g1 ��

f ′
�� P2

g2��
Q1 f

�� Q2

Notice that given an object g1 : P1 → Q1 in h(C,R) and an arbitrary arrow
f : Q1 → Q2, there exists a unique up-to-isomorphism object g2 of h(C,R) and
arrow f ′ : P1 → P2 in I such that 〈f, f ′〉 : g1 → g2 is in h(C,R) – here g2 ◦ f ′ is
just the 〈I,R〉-factorisation of f ◦ g1. Notice that if f ∈ R, then using the fact that
arrows of R compose and uniqueness of factorisation (Lemma 2.6), we have that
f ′ ∈ Iso(C).

Recall from Proposition 2.3 that we can consider I to be a cat-

P1

��

f �� P2

��
P1 f

�� P2

egory. There is an obvious functor M : h(C,R) → I which takes
an object g1 : P1 → Q1 to P1 and the diagram above to the arrow
f ′ : P1 → P2. Returning to our intuitions, this functor takes a com-
putation to its causal (non-reversible) component. Using the final
remark of the previous paragraph, M sends arrows which have a
lower component in R to isomorphisms.

There is also a (full and faithful) functor N : I → h(C,R), which takes an
object P1 ∈ I to the identity on P1 (null history) and a morphism f : P1 → P2 to
the illustrated diagram.

Proposition 4.2 N is left adjoint to M .

Proof. Given g1 : P1 → Q1 ∈ h(C,R), consider the illustrated mor-

P1

��

�� P1

g1��
P1 g1

�� Q1

phism εg1 = 〈g1, id〉 : NM(g1) → g1. It is easy to verify that ε

defines a natural transformation NM ⇒ idh(C,R) – it is the counit
of the adjunction. The unit is trivial as MN = idI , and the triangle
identities are easily checked. �

Recall that our intuition is that the objects of h(C,R) represent
(reversible) histories. We shall now extend h(C,R) with “reversed” computations
with the effect that such histories can be undone.

Definition 4.3 [Category h�(C,R) of reversible histories] Suppose that 〈I,R〉 is a
factorisation system. Let Φ: C → C[R−1] be the canonical functor to the category
of fractions. Let h�(C,R) denote the category with:

• objects: arrows g in R;
• arrows: formal diagrams, as illustrated, with f ∈ I,

f� ∈ C[R−1], such that f�Φ(g1) = Φ(g2f) in C[R−1].

P1
f ��

g1 ��

P2

g2��
Q1 f�

�� Q2

There is an evident functor Ψ: h(C,R) → h�(C,R) which maps the lower com-

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–86 81

h(C,R)
M

��
�

Ψ ��
h�(C,R)

M���IN

		 N�

∼

Fig. 2. Histories and causal computations.

ponent of a history morphism from C to C[R−1] via Φ:

P1

g1 ��

f ′
�� P2

g2��
Q1 f

�� Q2

�−→
P1

g1 ��

f ′
�� P2

g2��
Q1 Φf

�� Q2

Let M� : h�(C,R) → I be the functor which takes an arrow of h�(C,R) to its upper
component. Clearly M�Ψ = M .

Theorem 4.4 M� is an equivalence of categories.

Proof. Let N� = ΨN : I → h�(C,R) (see Fig 2) – clearly M�N� = idI , we shall
show that there exists a natural isomorphism N�M� ⇒ idh�(C,R).

Indeed, since Ψ is the identity on objects, we have N�M�g =

P

��

�� P
g
��

P Φg
�� Q

ΨNMΨg = NMg, and thus it suffices to show that Φε is a natu-
ral isomorphism, where ε is the counit of the adjunction N � M .
We illustrate Ψεg, clearly it is an invertible morphism of h�(C,R).
Naturality is straightforward.

�

Recall from Example 2.5 that 〈C, Iso(C)〉 and 〈Iso(C),C〉 are trivial factorisa-
tion systems in any category C. The conclusion of Theorem 4.4 implies immediately
that h∗(C, Iso(C)) � C and h∗(C,C) � Iso(C).

We shall now show that h�(C,R) essentially follows from a free construction.
Let R′ = { 〈g, ϕ〉 ∈ Ar(h(C,R)) | g ∈ R}, the set of those arrows of h(C,R) where
the lower component is in R (cf paragraph following Definition 4.1).

Theorem 4.5 There is an equivalence of categories h�(C,R) � h(C,R)[R′−1].

Proof. Let X = h(C,R)[R′−1]. Since we know that h�(C,R) � I, it is enough to
show that also X � I. Let Φ′ : h(C,R) → X be the canonical quotienting functor.
Since M : h(C,R) → I sends every member of R′ to an isomorphism, we have a
unique functor M ′ : X → I such that M ′Φ′ = M . Let N ′ = Φ′N : I → X. Then
M ′N ′ = M ′Φ′N = MN = idI .

Let ε : NM → idh(C,R) be the counit of the adjunction N � M . Clearly Φ′ sends
each component of ε to an isomorphism in X. Since Φ′ is the identity on objects, we
have that for each object g ∈ X, Φ′εg : N ′M ′g → g is an isomorphism. It remains
to check that Φ′ε defines a natural transformation N ′M ′ → idX. To do this we need
to check that the commutativity of an arbitrary square, as illustrated, where h is
in X.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8682

It is well-known that arrows in X are equivalence classes of zig-zags in h(C,R)
where each of the reverse arrows is in R′. Using the functoriality of N ′M ′ and the
fact that ε is a natural transformation, we can “fill in” the diagram below at each
point, and since h = (Φ′γn)−1Φ′αn . . . (Φ′γ1)−1Φ′α1, naturality easily follows by a
straightforward diagram chase.

N ′M ′g
Φ′NMα1��

Φ′εg

��

N ′M ′g1

Φ′εg1
��

N ′M ′s1
Φ′NMγ1��

Φ′εs1
��

Φ′NMα2�� . . . Φ′NMαn �� M ′N ′gn

Φ′εgn
��

N ′M ′g′
Φ′NMγn��

Φ′εg′
��

g
Φ′α1

�� g1 s1
Φ′γ1

��
Φ′α2

�� . . .
Φ′αn

�� gn g′
Φ′γn

��

�

Considering Examples 3.1, 3.2 and 3.5, The-

N ′M ′g N ′M ′h ��

Φ′εg

��

N ′M ′g′

Φ′εg′
��

g
h

�� g′

orem 4.4 states that to understand the struc-
ture of causal computations it is enough to re-
member the maximal reversible component of a
given computation and allow these histories to
be backtracked.

Returning to the discussion concerning the
net of Figure 1, the missing ingredient was clearly the explicit keeping track of
the history of the current computation – ie instead of working in CN [R−1] we
work in the history category h�(CN ,R). (cf Definition 4.3). Our main result,
Theorem 4.4, establishes that the categories h�(CN ,R) and I are equivalent, which
confirms that the computations of nets with histories are essentially the same as the
causal computations of the original net. Of course, the main result is clearly more
general than this particular example, for instance it underlies the previous work on
rccs [1, 2].

Indeed, it is interesting to compare the concrete implementation of a reversible
process algebra, like rccs, with the abstract construction we present in this paper.
Roughly, the definition of rccs in [1] can be summed up as the development of a
correct syntactic presentation of the category of reversible histories h�(C,R), where
C is the category of computations of ccs.

5 Free categories as transition systems

The categories of Examples 3.2 and 3.5 can be thought of as a transition systems as
well as categories; indeed, since the categories are generated freely, their arrows can
be seen as (equivalence classes of) traces in the transition systems. Here we shall
elucidate the consequences of our main Theorem 4.4 for the underlying transition
systems, obtaining a direct generalisation of the main result of [2]. Notice however
that the results of §4 are more general, since the underlying categories are not
assumed to be free; indeed, the only assumption is the presence of a factorisation
system.

Let S = 〈V,E〉 be a tensor scheme with edges E partitioned into sets of irre-
versible actions I and reversible actions R. Let C be a freely generated sm category

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–86 83

over S. Let R be the subcategory of C generated by SR = 〈V,R〉. Let I = R�.
Then 〈I,R〉 is a factorisation system. 3

Definition 5.1 Let TS(C) be defined as follows:

• states are isomorphism classes of objects of C;
• transitions are labelled with elements of E and arise as follows

P1 ⊗ P2
α⊗P2−−−→ P ′

1 ⊗ P2 in C, α ∈ E

[P1 ⊗ P2] α � [P ′
1 ⊗ P2]

Using the fact that C is freely generated, any non-invertible arrow of C generates
a finite set of traces in TS(C). We shall refer to each possible trace of an arbitrary
morphism f in C as a serialisation of f .

A trace σ is said to be causal if it is a serialisation of an arrow f in I. A trace
σ is an i-transaction if it is causal and contains precisely one action i ∈ I (and
arbitrarily many actions from R). Let CTS(C) be the lts with the same states as
TS(C), but with transitions

[P] σ � [P ′] in TS(C), σ an i-transaction

[P] i � [P ′] in CTS(C)

Thus CTS(C) is the lts of transactions. Correspondingly, we shall now define
the history lts, where states are enriched with a history, and the transitions are
those of TS(C) as well as new transitions which allow backtracking.

Definition 5.2 Let RTS(C) be defined as follows:

• states: isomorphism classes of objects h(C,R) (structural isomorphisms);
• transitions labelled with elements of E ∪R∗ where R� = { r� | r ∈ R }. They are

derived from morphisms in h�(C,R), as illustrated below:

P1

g1
��

f �� P2

��
g2��

Q1 ⊗ Q2
α⊗Q2 �� Q′

1 ⊗ Q2

, α ∈ E

⎡
⎢⎣

P1

g1 ��
Q1 ⊗ Q2

⎤
⎥⎦ α �

⎡
⎢⎣

P2

g2��
Q′

1 ⊗ Q2

⎤
⎥⎦

P1

g1
��

f �� P2

��
g2��

Q1 ⊗ Q2
r−1⊗Q2 �� Q′

1 ⊗ Q2

, r ∈ R

⎡
⎢⎣

P1

g1 ��
Q1 ⊗ Q2

⎤
⎥⎦ r� �

⎡
⎢⎣

P2

g2��
Q′

1 ⊗ Q2

⎤
⎥⎦

It is clear from the construction of h�(C,R) that any morphism in h�(C,R) induces
a set of serialisations (traces) in RTS(C).

Theorem 5.3 Consider a free sm category C generated from a tensor scheme S =
〈V,E〉 with E = I + R, together with an induced factorisation system 〈I,R〉 where

3 We leave it as future work to determine sufficient conditions on a subcategory which ensure that R =
R�⊥.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8684

R is the subcategory of C freely generated by SR = 〈V,R〉. Let CTS(C) be the lts of
transactions (cf Definition 5.1) and RTS(C) be the reversible lts (cf Definition 5.2)
where the reversible actions are considered to be silent. Then CTS(C) ≈ RTS(C).

Proof. We shall show that the (object part of the) functor M� : h�(C,R) → I is
actually a functional weak bisimulation.

Recall that M�(P
g−→ Q) = P . Clearly M� is well-defined as

P

g
��

f �� P ′

g′
��

Q
α⊗X

�� Q′

P
g

��

�� P
(†)

��

fi �� P ′

��
Q g∗

�� P fi

�� P ′

a function from states of RTS(C) to states of CTS(C). Suppose
that there is a transition

[P
g−→ Q] α � [P ′ g′−→ Q′].

Then either α ∈ R, in which case the transition is silent – we
have P ′ ∼= P so we can counter with the empty trace.

If α /∈ R then we have the first diagram where f is in I. Since
we are in a free category, any serialisation of f must contain α as
a unique action from I. Thus f leads to a trace in TS(C) which
is an α-transaction – ie we have a labelled transition [P] α � [P ′] in CTS(C).

Now consider an arbitrary transition [P] i � [P ′]. Let P
fi−→ P ′ be the cor-

responding arrow in I. Then in particular we have the square (†) in h∗(C,R), as
illustrated in the second diagram. Let g∗ be the inverse to g in C[R−1]. Clearly i is
the only irreversible action in any serialisation (in RTS(C)) of the combined second
diagram, so we have a weak transition [p

g−→ q] � ∗ i � [p′ → p′]. �

6 Conclusion

The main contribution of this paper is the development of the underlying abstract
concepts which become apparent when designing “reversed” versions of known for-
malisms, such as Petri nets or ccs. In particular, we show that the problem reduces
to developing the particular syntactic representations (such as the concrete syntac-
tic representation of histories in rccs) of the reversible history category h∗(C,R).
The fact that the resulting computations capture the intended causal behaviour can
then be seen as a consequence of our Theorem 4.4, which is formalism independent.
We hope that this conceptual clarification will be of use to designers of reversible
formalisms.

Another contribution is the observation that breaking up a computation into
irreversible-reversible components naturally leads to a factorisation system on the
category of computations. As part of future work, we plan to study such factori-
sation systems in more detail. We also plan to explore connections with previous
work on factorisation systems in rewriting theory [7].

References

[1] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings of Concur’04, volume
3170 of LNCS, pages 292–307. Springer, 2004.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–86 85

[2] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of Concur’05, volume 3653 of LNCS,
pages 398–412. Springer, 2005.

[3] V. Danos, J. Krivine, and F. Tarissan. Self-assembling trees. In SOS’06, ENTCS. Elsevier, July 2006.
To appear.

[4] P. J. Freyd and G. M. Kelly. Categories of continuous functors, i. Journal of Pure and Applied Algebra,
2:169–191, 1972.

[5] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Springer-Verlag, 1967.

[6] A. Joyal and R. Street. The geometry of tensor calculus, i. Advances in Mathematics, 88:55–112, 1991.

[7] P.-A. Melliès. A factorisation theorem in rewriting theory. In Proceedings of CTCS ’97, volume 1290
of LNCS, pages 49–68. Springer, 1997.

[8] J. Meseguer and U. Montanari. Petri nets are monoids. Information and computation, 88:105–155,
1990.

[9] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.

[10] I. Phillips and I. Ulidowski. Reversing algebraic process calculi. In Proceedings of FoSSaCS ’06, volume
3921 of LNCS, pages 246–260. Springer, 2006.

[11] R. Street. Higher categories, strings, cubes and simplex equations. Applied Categorical Structures,
3:29–77, 1995.

V. Danos et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 75–8686

	Introduction
	Categories of fractions and factorisation systems
	Reversibility
	Histories
	Free categories as transition systems
	Conclusion
	References

