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Abstract. We introduce techniques to analyze unitary operations rimgeof
guadratic form expansions form similar to a sum over paths in the computa-
tional basis when the phase contributed by each path isideddoy a quadratic
form overRR. We show how to relate such a form to an entangled resourog@ki
that of the one-way measurement model of quantum compuiising this, we
describe various conditions under which it is possible fiziehtly implement a
unitary operatiorl, either when provided a quadratic form expansion{foas
input, or by finding a quadratic form expansion férfrom other input data.

1 Introduction

In the one-way measurement model [1,2], quantum statesaarsformed using
single-qubit measurements on an entangled state, whictegaped from an
input state by performing controlled-operations on pairs of qubits, including
the input system and ancillas prepared in [the state. This model lends itself
to ways of analyzing quantum computation which do not ndlfueaise in the
circuit model,e.g.with respect to depth complexity|[3] and discrete structure
underlying unitary operations][6,8]. In this article, wegent another result of
this variety, by introducingjuadratic form expansions

Definition 1. LetV be a set of: elements, and, O C V' be (possibly intersect-
ing) subsets. For a binary string € {0, 1}V, let x; andxo be the restriction
of x to those bit-positions indexed by element$ ahd O, respectively. Then a
quadratic form expansiois a matrix-valued expression of the form

1 .
— iQ(x
U=75 > 9% xo)xl, (1)
xe{0,1}V
U:HPT — HPO, whereQ is a real-valued quadratic form or, andC € C.

Quadratic form expansions bear a formal similarity to aespntation of a prop-
agator of a quantum system in terms of a sum over paths. Fdtayufl given
as in [1), the outer produdko)(x;| essentially specifies a particular coeffi-
cient, in the row indexed by the substrilkg and the column indexed byo:
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the amplitude of the transition between these standard lstaies is propor-
tional to a sum of complex units specified Ry, xo, and the auxiliary variables
veV~(IUO).

Representations of unitary transformations as sums ouvéis ps a well-
developed subject in theoretical physics (see elgl [4aB1)t a representation
of unitaries as a sum over paths was used_in [9] to provide alsiproof of
BQP C PP@ However, there are also examples of quadratic form expassio
which arise without explicitly seeking to represent unéarin terms of path
integrals: the quantum Fourier Transform o can readily be expressed
in such a form, and quadratic form expansions for Cliffordugr operations
are implicit in the work of Dehaene and de Mobr[[17], as we dékcribe in
Sectior 3.8.

Given such an expression for a unitdfy we show how to obtain a decom-
position of U in terms of operations similar to those used in the one-wag-me
surement model. Using this connection, we demonstratenitgegs involving
quadratic form expansions to efficiently implement a ugitgperator, when the
coefficients of the quadratic form satisfies certain comgaelated to “general-
ized flows” (orgflowg [8] or Clifford group operations. In particular, we exHibi
anO(n?/logn) algorithm to obtain a reducemieasurement pattergan algo-
rithm in the one-way model) for Clifford group operationerir a description of
how they transform the Pauli group, based on the resulisf [1

2 Connection to the one-way model

2.1 Review of the one-way model

We can formulate the one-way measurement model as a waynsfdraning
quantum states in the following way. Given a statéon a set of qubitd (the
input systery) we embed in a larger systen¥’, where the qubits oV ~ I are
prepared in thé+) o |0) + |1) state. We then perform entangling operations on
the qubits ofl/, by performing controlled? (denoted\7) operations on some
sets of pairs of qubits. (These operations are symmetricaminute with each
other, and so we may characterize the entangling stage by@esgraphG
whose vertices are the qubits Bt we call this theentanglement grapbf the
procedure.) We then measure each of the qubiig of some sequence, except
for some set of qubit® C V (the output subsystenwhich will support a final
quantum state. We may represent the measurement resutdorgebitv by a

! Unitaries were expressed [n [9] in terms of paths whose ptasibutions are described by
cubic polynomials oveZ..; comments made in Section VI of that paper essentially iatie
quadratic form expansions with discretized coefficient& #féscribe how their techniques
provide a means of constructing quadratic form expansimma tircuits in AppendiXA.
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bit s, € {0, 1} which indexes the orthonormal basis states of the measateme
The measurement basis for each qubit may depend on thesreydtevious
measurements, but without loss of generality may be expdessterms of a
“default” basis which is used when all preceding measurésngrld the result
0. Depending on the measurement results, a final Pauli operaty be applied
to the qubits in the output subsysteﬁﬂ

In the original formulation of the one-way measurement nhottie mea-
surement bases were described by some axis of the Blochespyivey on the
XY plane, which is sufficient for universal quantum computativis also easy
to prove that restricting this to states which are an afigte’; Z from theX axis
is sufficient for approximately universal quantum compotafl12]. While it is
reasonable to extend beyond this for choices of measurdmasas([7], we will
only need to consider measurement bases fronXthelane.

2.2 Phase map decompositions from quadratic form expansien

Consider a unitary/ given by a quadratic form expansion aslih (1), where the
quadratic form) is given by

Q(X) = Z OuvTuTy (2)
{uw}cV
for some angle$0.., },, - » and where the sum includes terms fior v. Note

that Q(x) can be expressed as an expectation vakd! |x), whereH is a
2-local diagonal operator:

Ho= % s maLemal] + Y., . @
{U,Uigv veV

Then we may decompogé as follows:

U o Y Ixodxle™ ol =| > Iyo)yl|e™ | Y )l

xe{0,1}V ye{0,1}V xe{0,1}V
x Ro el pr, (4)

where Py is a unitary embedding which introduces fresh ancillasekad by
v € I° = V . I) initialized to the|+) state, andRo is a map projecting onto
the |[+) state for all qubits irO® = V \ O (tracing those qubits out afterwards).

2 The reason for using the same variabies!, andO for these sets of (labels for) qubits as for
the sets in Definitioh]1 will become apparent in the next secti
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Equation [(4) is phase map decompositidi0] for U: that is, it expresses
U in terms of a process of postselecting observables, asv®llDecomposé!
into termsH, Hy, andHs, whereH consists of thé-local terms on the qubits
of O, H; consists of thd-local term on the remaining qubits, aif} contains
the remaining terms froni}(3). We then hale x Rp e'foeifl1eif2 pr Note
thate!’o ande’1 are simply single-qubi rotations applied to the elements
of O andO° respectively, where in each case the qubite those sets are ro-
tated by an anglé,, . Then, the composite maRp = Rpe'f" projects each
the state of each qubit € O° onto the vectot0) + e~ |1) for eachv € O°.
We then havd/ = eiflo Ry €2 P, which is a decomposition df into the
preparation of some number pf) states, followed by a diagonal unitary op-
erator consisting of two-qubit (fractional) controlleteperations, followed by
post-selection of states on the Bloch equatorifa OC€, and (unconditionally
applied) single-qubiZ rotations on the remaining qubits.df, € {0, 7} for all
distinctu, v € V and foru = v € O, the above describes precisely the action of
a measurement-based computation in which the qubi#sO® are measured in
the eigenbases of observables of the faf(—6,,,) = cos(0y,,) X —sin(f,,)Y,
in the special case where all measurements result in-theigenstate (which
we may label with the bis, = 0).

If we are able to extend the above into a complete measurestgithm,
with defined behavior when not all measurements yield a ipexitcome, we
obtain a measurement-based algorithm forwe discuss this problem in the
next section. Conversely, from every measurement basexlithip, we may
obtain a quadratic form expansion:

Theorem 1. Every unitary operator omn qubits may be expressed by a quadratic
form expansion with/| = |O| = n, and where the quadratic form has coeffi-
cientsé,, € {0,n} for all cross-termse,z, and —7 < 6,, < = for all terms
x2 . Furthermore, any unitary can be approximated to arbitrgmgcision by
such an expansion where we further requige € 5 Z.

Proof. From [11] (and using the notation of that article), the measient pat-
tern XS« M, *E,,, N, performs the unitary transformatiof(«) = %[} _C;?a]
for a € R, from the state space of a quhitto that of a “fresh” qubi. These
operations generateU(2), and generate a group denseSid(2) if we restrict
toa € 77, by [12].

For anyn qubit unitaryU, there exists a measurement pattern composed of
such patterns together with two-qubit controll&dbperations (which we denote
AZ) which implementd/. Let G be the entanglement graph of this pattern, and
I andO be the qubits defining the input space and output space (tasgg) of
the measurement pattern. BY [6], in this measurement pattez probability of
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every measurement resulting in thd eigenvalue (i.es, = 0 for all v € O°)
is non-zero. TherlJ « Rp e’ P; , where

H= Y w[mmu@mmv] Y e, . ®)

weE(G) veO*

By (4), this yields a quadratic form expansion tér with

Qkx) = Z TLyTy — Zavxg. (6)

weE(G) ve0°

For a quadratic form expansion approximatifig it is sufficient to consider
measurement patterns approximatliigising anglesy, € 7 Z. a

2.3 Measurement Pattern Interpolation

As we remarked above, the connection from quadratic fornaesions to phase
map decompositions may allow us to obtain an implementdtioty, provided
we can determine how to adapt measurements in case the m@asus for
qubitsv € O° do not all yield the resuls,, = 0.

In a measurement pattern performing measurements, the computation
may follow any of2" branches, corresponding to the different combinations of
measurement results. Let us call the branch in which evegsarement pro-
duces the resuk, = 0 the positive branctof the measurement pattﬁrWith-
out loss of generality, we may restrict our attention tograt where no clas-
sical feed-forward is required in the positive branch: thbe positive branch
of a measurement pattern is characterized bytwmetry(G, I, O) of the pat-
tern (whereG is the entanglement graph of the measurement algorithm, and
1,0 C V(Q) are the sets of qubits defining the input/output space of &te p
tern), and the angles = {«, }, .. defining the measurements to be performed.

To extend the description of the positive branch of a measent algorithm
into acompletemeasurement algorithm performing a unitary is the subjéct o
the following problem:

Measurement Pattern Interpolation (MPI). For input data(G, I, O, a), de-
scribing a unitary embeddinfj asthe positive brancbhf a measurement pattern
with geometry(G, I, O) and performing measuremerds determine if there a
measurement patter$ with geometry(G, I, O) which performs the transfor-
mationU.

% This choice of terminology refers to all measurements jigjdhe +1 eigenvalues of their
respective observabléd (—0,.).
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This problem is open, and seems to be difficult in general. \&g attempt to
make the problem easier by considering a more restrictealgno

Generic Measurement Pattern Interpolation (GMPI). For an input geome-
try (G, I,0), determine if there exist measurement pattef{{a) parameter-
ized by a choicea of measurement angles, each with geoméftyl, O), such
that the patterri3(a) performs a unitary embedding for ail

GMPI addresses, in angle-independenhanner, the subject of the structure of
measurement patterns which perform unitary transformatié special case of
the GMPI which has been solved are those geometéied, O) which have a
“generalized flow” (orgflow), which are the yes instances of GMPI such that
the patternsi3(a) yield maximally random outcomes on all of their measure-
ments [8]. The following is the definition of gflows ih [13], foneasurements
restricted to thexY planjﬂ

Definition 2. Given a geometryG, I, O) for a measurement pattern, gilow
is a pair (g, <), whereg is a function fromO€ to subsets of® and< is a partial
order, such that the following conditions hold for allandv in the graphG:

veEglu) = u=<v, (7a)
v e€odd(g(u)) = u=xwv, (7b)
u € odd(g(u)), (7c)

whereodd(S) is the set of vertices adjacent to an odd number of elemertis of

Here,u < v essentially represents, for two qubitsandv, thatv is measured
no earlier thanu; a gflow then specifies an ordering in which the qubits are to
be measured (with the functignproviding a description of how to adapt later
measurements). Mhalla and Perdfix|[13] present an algonthich determines
if a geometry has a gflow in this sense in polynomial time, Whicturn yields
a polynomial time solution to the GMPI for that case. As a ltgsuny instance
of the MPI where the geometify7, I, O) has a gflow can be efficiently solved.

A different special case of the Measurement Pattern Inkatipa problem
which has been solved is that where the measurement anglessricted to
multiples of 5 (or slightly more generally, where the measurement obbtasa
are Pauli operations). In this case, as notedlin [7], no nmreasent adaptations
are necessary, and the corrections can be determined vidiathiézer formal-
ism [1€].

In the following section, we apply these solutions to sdec#ses of the
MPI to describe how to synthesize implementations for aampi/ given by a
quadratic form expansion.

4 The original definition of gflows if[8] also allows f&Z plane andXZ plane measurements,
which do not play a role either in our analysis orlin][13].
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3 Synthesis via measurement pattern interpolation

In order to apply the partial solutions to the MPI describ&dwe, it will be
useful to define the following:

Definition 3. For a quadratic form expansion

O Z *) |xo)(x;] where Q(x) = Z OuwTuTy ,  (8)
x€{0,1}V {uv}cV

the geometry induced by the quadratic foima triple (G, I,0), whereG is
a weightedgraph with vertex-set’, edge-sefuv | u # v andé,, # 0}, and
edge-weight$Vg (uv) = Oy, /7.

Because we can requirer < 6, < « for all u,v € V', we may without
loss of generality restrialr to have edge-weights1 < W (uv) < 1. We will
assume that this holds for the remainder of the article, pedlsof edges being
either ofunit weightor fractional weight

In this section, we consider the problem of synthesizingfacient imple-
mentation of unitarie$/ in terms of the geometry induced by a quadratic form
expansion forl/ by reduction to the solved cases of the Measurement Pattern
Interpolation problem discussed in the previous section.

3.1 Measurement pattern synthesis via gflows

Consider a geometryG, I, O) induced by a quadratic form expansion for a
unitary embeddind/, whereG has only edges of unit weight: thé&, I, O) is
also a geometry for a measurement pattern. To obtain a nesasat pattern for
U, it suffices to find a gflow fofG, I, O): in that case, by Theorem 2 6f [8], for
any choice of measurement angies- {a, },.c, Wwe may consider the pattern

I Ew

(.8, %)@
ueO° veodigﬁﬁ) veg(u) u~v

1T Nu] ©)

uel®

where the left-hand product may be ordered right-to-lefing linear extension
of the order<, and~ denotes the adjacency relation @f This pattern thus
steers the reduced state after every measurement to theviiiah would occur
if the result had been the¢1 eigenvalue. Every branch of the pattern then per-
forms the same operation as the positive branch, and so ttegrpamplements
a unitary operatiorlU/. To obtain a pattern in standard form (with corrections
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only on output qubits), it is sufficient to propagate the eotions to the left,
absorbing them into the measurement bases.

In [13], anO(n*) algorithm is provided to determine whether or not a ge-
ometry (G, I,0) has a gflow where every qubit is to be measured inXNe
plane (and obtain one in the case that one exists), wheréV'(G)|. The mea-
surement pattern of(9) can be constructed in ti{@?) by first producing a
pattern where corrections undo byproduct operations atieh measurement,
commuting these corrections to the end, and simplifying;résulting pattern
will have O(n) operations each with complexity(n). Thus:

Theorem 2. For a unitary embeddind/ given as a quadratic form expansion
with geometry(G, I, O) with unit edge-weights, there is ai(n?*) algorithm
which either determines thaty, I, O) has no gflow, or constructs a measure-
ment pattern consisting @#(n?) operation implementing’ (using measure-
ment angles of arbitrary precision), where= |V (G)|.

3.2 Circuit synthesis via flows

A geometry(G, I, O) which has fractional edges lies, at first glance, outside of
the domain of the Measurement Interpolation Problems destabove. How-
ever, given a quadratic form expansion with such a geometymay still be
able to synthesize a circuit for a unitaty represented by that expansion by
consideringflows which correspond to gflows where the functipmaps each
vertexv € O° to a singleton set: we may sdy, <) is a flow if and only if
(97, <) is a gflow, wherey, (v) = {f(v)}.

Geometries which have flows are a solvable special case Gfittel, where
the resulting measurement patterns are very “circuit:ligpecifically, the pos-
itive branch of a measurement pattern whose geometry haw adio be repre-
sented by a circuit with the following characteristics [6]:

— edges of the formv f(v) for v € O° correspond to/(—a,,) gates on some
wire, separating two wire segments which we labahd f (v);

— edgesuwv € E(G) foru # f(v) andv # f(u) correspond t@\Z operations
acting on the wire segments labelleddgndv;

— wires whose initial segments are labelled by verticeg atcept arbitrary
input states, while those labelled by vertidés- img( f) take input/+).

In the above formulation, the edges of the fasrfi(v) can be interpreted as
implementing single-qubit teleportation, in which casallyfentangling unitary

5 These operations may involve measurement angles of aghjitrecision. A corresponding ap-
proximate measurement pattern may @& + n polylog(n/<)) operations by the Solovay-
Kitaev Theorem([14], where is the precision of the coefficients &f.
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is important in order to transfer the information of the “sm! qubit to the
“target” qubit upon measurement. However, consideringatheaysis of [[6], it
is not important that the edges of the second kind above e datangling
operations: using such edges to represent fractional gasver will also yield
unitary circuits. This motivates the following definition:

Definition 4. Suppos€G, I,0) is a geometry of a quadratic form expansion
for a unitary transformation/. We may say thatf, <) is a fractional-edge
flow for (G, I,0) if itis a flow for that geometry, and for allb € E(G) with
Wea(ab) < 1, we havef(a) # band f(b) # a.

If (G,I,0) has a fractional-edge flow, we may synthesize a circuit from a
gquadratic form expansion fdy using the description above, where edgés

of fractional weight correspond t6Z"Vc(@b) gates on the wire segments la-
belled bya andb rather than simple.Z gates. We will make use the following
easily verified Lemma to consider how to compose/decompoadrgtic form
expansions:

Lemma 1. LetU;, Us be matrices given by quadratic form expansions

1 0.
Uj = C. Z o) |x0,)(x1;] - (10)
7 xefo,1}Vi

In the following,C' = C;C, , and sums are oveff0, 1}V "2,

(i) Vi N Va=1 =0, thenlhU; = LY @00+ x5 ) (xp,|.

(i) If Vi andV; are disjoint, therl; @ Uy = &3 e @) +iQ200 |x ) (x|,
wherel =I; U I, andO = O; U O,. X

We prove the circuit construction given by inducting on toenber of edges
of fractional weight. For the base case,(d, I,0) has no fractional-weight
edges at all, we may synthesize a circuit olas above, as it corresponds to a
normal measurement pattern with a flow, and so falls undeanladysis of[[6].
We may then induct for geometries with fractional edge-Wwtsidgf we can show
we can decompose the geometry into ones with fewer fradtedge-weights.

For any arbitrary fractional edge € F(G) and each each € O, we may
definem(ab, ) to be the maximal vertex € V(G) in the ordering< subject to
z being in the orbit ofy under f (that is,z = f*(v) for some¢ > 0), such that
at least one o < a orv < b holds. Forasef C V(G), letG[S] represent the
subgraph of5 induced bysS (i.e. by deleting all vertices i not in S). Then,
define the following subgraphs 6f, and corresponding geometries:
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G,1,0) (G I,V2)  (GayVaVa)  (Ga, Vi, O)
Vo
=7-.><—\ =7->< o)
a| = al © a © éa
b b b b
>0 Y, >9 [ =
I 1 I Vo Vs Vo
Vs O

Fig. 1. lllustration of the decomposion of a quadratic form expansibout an
edgeabd, expressed in terms of geometri&s.is a set of maximal vertices under
the constraint of being bounded from above, by the verticaisdb, in a partial
order < associated with a fractional-edge flow. Arrows represeatatttion of
the corresponding fractional-edge flow functign,

— Let V; be the set of vertices:(ab, z) for eachz € O°: it is easy to show
thata, be Vs LetGy = G[‘/Q], and letGy = (Gg, Vs, Vg)

— Let V; be the set of vertices € V (G) such thatu < v for somev € V5; let
G1 = G[Vi] \ {uv ‘ U, v € Vg} ;and letG, = (G, I, Vh).

— Let V3 be the set of vertices € V (G) such thatu 3= v for somev € V5; let
G3 = GIVs] \ {uv|u,v € V}; and letGs = (G3,V2,0).

This decomposes the geometry, I, O) into three geometries with fractional-
edge flows, as illustrated in Figure 1.

Let @, be a quadratic form of0, 1}V1 consisting of the terms,, z,, of Q for
u € Vp orv € Vi, but not both;Q, be a quadratic form ofo0, 1}V2 consisting
of the termse,x,, of Q for distinctu, v € V5; and similarly letQ)s be defined on
{0, 1}V3, and consist of the remaining terms@f ThenQ, Q2, andQs define
gquadratic form expansions for some operatiéis U,, andUs (respectively)
with geometriess;, G2, andgs (respectively).

— U, in particular will be a product of operationsz"V<(#) for distinctu, v €
V4, as it is a quadratic form expansion whose input and outmlit@s co-
incide. ThenUs can be represented as a circuit with a wire for each 5,
with fractional controlled? gates\z'"V<(“) for each edgew € E(G).

— Both G; andgs have fractional-edge flows, but fewer fractional edges than
(G, I,0). By induction,U; andUs are also unitary embeddings, and have
circuits with wire-segments connected B9, ) gates (wheré, are the co-
efficients of the terms? in each quadratic form) and possibly fractional
gates (as in the case f0b).

— In the circuits described above, the terminal wire-segsémtU; and (a
subset of) the initial wire-segments o have the same labels as the wires
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Fig. 2. The geometry for the quadratic form expansion of the QFTZ gy, and
the corresponding circuit due {0 [21]. In the geometry (@ l#it), input vertices
are labelled by circles, output vertices by lozenges, aadtibnal edges are
labelled with their edge-weights.

for Uy . The composite circuit fob/sUs Uy can then use these labels to arrive
at a unified labelling of its’ wire-segments.

Becausel (x,, ) + Q2(x,,) + @s(x,,) = Q(x) forall x € {0, 1}V by con-
struction, the composite operatiéih U, U; can differ fromU by at most a scalar
factor by Lemmall; so the circuit obtained implements theatmn U

In [13], anO(kn) algorithm is provided to determine whether or not a ge-
ometry (G, I, 0) has a flow, and obtain one if it exists, where= |V (G)| and
k = |0O|. For each edgewv, we may check whether one &g (uv) = 1 or
[u # f(v) andv # f(u)] holds: if all edges satisfy this constraint, the circuit
described above is well-defined. By iterating through thiaes of V' (G) in an
arbitrary linear extension ok, we may construct the circuit described above
can be constructed in tim@(m), and the size of the resulting circuit will also
beO(m), wherem = |E(G)|. By an extremal result [15], any geometry with a
flow hasm < kn: thus, the total running time of this algorithmd¥ kn).

In the caseI| = |O|, a flow functionf is unique if it exists, by [20]; so in
this case, if G, I, O) has a flow but there is an edgg (v) of fractional weight,
there is no fractional-weight flow fqiGG, I, O). We then have:

Theorem 3. For a unitary transformation/ given as a quadratic form expan-
sion with geometryG, I, O), there is anO(kn) algorithm which either deter-
mines tha(G, I, O) has no fractional-edge flow, or constructs a circuit consist
ing of O(kn) operation implementing/, wheren = |V (G)| andk = |O|.

® These operations may consist.bfa) gates and fractionalZ gates of arbitrary precision. A
corresponding circuit using a finite elementary gate set beayf sizeO(kn polylog(kn/c))
by the Solovay-Kitaev Theorern [14], whesés the precision of the coefficients &f.
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Example. The Fourier Transform oveé,- is given by the matrix formula

Fn = \/% 3 ez’”{g“h] [gz’“}/” ) (x|,  (11)

x,y€{0,1}"
which is a quadratic form expansion; its quadratic form camgiven by

n—1n—1-h 2(h+j)
Qxy) =D >, Ty - (12)

h=0 j=0

This has a fractional-edge flow for all Figure[2 illustrates this geometry for
n = 5, and the circuit (due td [21]) which may be synthesized fram i

3.3 Synthesizing measurement patterns for the Clifford grap

If a quadratic form expansion has a geometry whose edgeaa!imit weight,
and its’ other coefficients are multiples §f then it corresponds to the positive
branch of a measurement pattern which measures Xy Y observables. A
measurement pattern of this sort, if it performs a unitargrapon, performs a
Clifford group operation in particular.

An algorithm of Aaronson and Gottesman[19] can produceauitiof size
O(n?/logn) in classical deterministic timé(n?/logn) for a Clifford group
operationU acting onn qubits, from a description of how transforms Pauli
operators by conjugation. By converting the circuit into easurement-based
algorithm, and performing the graph transformations_of fa8emove auxiliary
gubits, we may obtain a pattern of at m@st qubit@ in time O(n*/logn).
Building on the results of [17], we show how to classicallyrguute such a
minimal pattern in timeD(n?/logn) by solving the MPI for a quadratic form
expansion foiJ.

Obtaining a quadratic form expansion. For the sake of completeness, we
outline the relevant results of [17]. Define the followingaton for bit-flip and
phase-flip operators on a qubiout of a collection{1, ... ,n}:

P = X, Py = Zy. (13)

Letdiag(M) € ZJ" represent the vector of the diagonal elements of any square
boolean matrix\/; and letd(M) = diag (M " [ L] M) € Z3" for a2n x 2n

"In [7], Clifford operations om qubits are described as having minimal patterns for are de-
scribed as requiring at mo2t qubits; however, this only holds up to local Clifford opéoat
on the output qubits.
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matrix M overZ,. Then, we may represent anqubit unitaryU by a2n x 2n
boolean matrixC' and a vectoh € {0,1}*", whose coefficients are jointly
given by

URUT = idt(c)( — 1)ht ® [ZJ,C("H)tXJCjt (14)

Jj=1

for eachl < ¢ < 2n. (Note that the factor oi**(©) is only necessary to ensure
that the image of’, is Hermitian, and does not serve as a constraint on the value
of C' as a matrix.) We will call an ordered pdi€’, h) a Leuven tableador a
Clifford group element if it satisfies [(14

Provided a Leuven tabledd, h) for a Clifford group operatiod/, [17] pro-
vides a matrix formula fof/ which we may obtain fof/, as follows. Decom-
poseC as a block matrixC' = [E £ ] with n x n blocks, and then find
invertible matricesRy, Ry over Z, such thatR;'GRy = [ ¢ ] for some
r < n (usinge.g.the decomposition algorithm df [22] to obtaiy and R, in
terms of elementary row operations). Then, define the nestric

T

P B R] . (15)

E21 E22

r—1
Ell

= RERy, R, = Ry, Ry =
0 1,

whereF1; is taken to be a block of sizg — ) x (n — 7). We may then obtain
the block matrices

Tn—r E12 F11 Fi2

Eo1 E2a Fo1 Fao Rl 0 Rl 0
- |: ) 71] C|: ) 71:| ’ (16)
0 0 Hy His 0 R; 0 R,

0 1, Ho21 Hao

and use these to construct thex n boolean matrices

I+ E9Hyy Erg 0 Hj
Mbr = T P Mbc - . (17)
Next, define
dy, = diag(My,), dy. = diag(My.),

18
Ly, = lower (Mbr + dbrdg;) ,  Lp. = lower (Mbc + dbcdl;rc) , (18)

8 Note that the block matri>EC’T h] is similar to adestabilizer tableaas defined in[[19].
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wherelower (M) is the strictly lower-triangular part of a square mathik(with
all other coefficients set t). Finally, definefZ, = [§ { | andII;- = 1,, — II,
for the sake of brevity, and %t

¢ = [1, 0] + diag ([R5 " 1] Lo [R5'TE] ), (19)

h,e = [0 Ry |h + R, diag (RQT [Lbc + I, My,

- <HTL + HrMbc> Ly, (Url + MbcHr) }R2> : €9

Then Theorem 6 of_ [17] states that the unitary operafibfior the Clifford
operation characterized B¢, h) is given by the matrix formula

U = 1 Z [ ( _ 1)(X;~Lb7-xbr +x, %e + %] LpcXpe + h;—cxbc) %
V2 elotye . . (21)
xexr€{0,1}" (_i)(deXbr +dbCXbc) ‘Rlxbr><R2_1Xbc + t| :| )

wherex;, = [’ ] andx,, = [X] aren bit boolean vectors.

The formula in[(211) shows strong similarities to a quadrion expansion.
In particular, consider disjoint sets of indiceg V,., andV,, with |V,| = n —r
and|V,|=|V|=r.LetV =V, UV, UV, I =V, UV,andO =V, U V,,
and define the following notation for € {0,1}" :

e ][l co s ] - [ o

Xc " X XV,
(22)
Qx) = W(XngTXO + XSHTX] + XITLbCXI + xIThbchchxI>
(23)
- g(xgdbrd;ﬂXO +x/ dbcdecXI) -
Then, [21) is equivalent to
1 .

U= —= > % Rixo)(Ry'x;+t|, (24)

xe{0,1}V

which is essentially a quadratic form expansion sandwidietd/een two net-
works of controlled-not and gates. To obtain a simple quadratic form expan-
sion, we would like to perform a change of variablessghandxo; but this
cannot be done asandO intersect afl},, and the changes of variables do not

% The vector formulas given here forand h,. may be obtained by repeated application of
Theorem 2 of{[1]7].
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Vo=InNO W Vi Vo Va Vi
° o) o fo o{eo
(@] | :
e - ®
o o o
I 0] 1 o’ 1 o’

Fig. 3. lllustration of geometries arising from quadratic form arpions yield-
ing the same matrix. On the left is a geometry whose inputscarplut inter-
sect; on the right is a geometry from an equivalent quadfatim expansion,
constructed so that the input and output indices are disjoin

necessarily respect the partitioning loAnd O with respect to this intersection.
However, we may add auxiliary variables in order to produtexansion with
disjoint input and output indices. Note that

1 3+x2T:
Lo = ), dnmlmalml = 5 D0 (F)7WI fw) (] (25)
xe€{0,1}? xe{0,1}3
whered, , is the Kronecker delta. Lét, andV}, be disjoint copies ot}, and
setV" =V U Vo U Vy andO’ =V, U V,.. Writing x, andx;, for the restriction
ofx € {0,1}"" to V, andVj,, we then define

o= [P xo = [¥]enn. o

C T
Q' (x5, Xa, X01) = w(xg,Lbrxo/ + x5 Ilx; + x] Lyexr + hchxI>
+ 7TX}—|:]176_T:|XCL + ﬂxg,[l’gf]xa
T
- §(d;xo, + decx[) . (@7

Note that the difference between the expression§)f@andq is essentially that
all instances okp have been replaced witty: (which is independent fromy),
and the presence of the terms involvirg. (This manipulation is illustrated in
Figure[3 as a transformation of geometries.) We therefove ha

Z e'R) |R1xo><R2_1x1 + t‘
xe{0,1}V
= Z 5Xb,xb/ eiQ’(xI,O,xO/) |R1XO/><R2_1X[ + t‘

X1, X!

= ! Z eiQ’(xI,xa,xO/) |R1XO/><R2_1X[ + t‘ . (28)

on—r
XG{O,I}VI
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Substituting the final expression 6f{28) info24) and periag the appropriate
change of variables, we have

27 iy _
U = \gn— Z ezQ (R2(x1+t),xa, R} 1xO/) |XO/><X[| ) (29)
XG{O,I}V/

Note that the quadratic form of the expansion[in] (29) has aniglesf,,,,
which are multiples o, with 6, € {0, 7} for u # v. This then represents the
positive branch of a one-way measurement pattern on theefeptd’, I, 0’)
of the quadratic form expansion [0fI29, using olyor Y basis measurements,
and having onlyr — r auxiliary vertices.

Interpolating the measurement pattern. We can augment this to a measure-
ment pattern by applying the techniques of the stabilizenfdism [16] to the
stabilizer code generated by the operathr&®) = X, [[,.,, Zw for v € I¢
(where again- is the adjacency relation df), as follows. To obtain the final
correction, we do classical pre-processing simulatingetredution of thestate
spacewhen we perform one measurement at a time. For each measibitd. g
there is an associated correction which we may perform immediately after
the measurement if we obtain the resyyJt= 1. We store for each qubit two
boolean formulag, and~,, representing th& andZ components of the ac-
cumulated corrections to be performedwriWhenv is measured, the pending
X corrections will affect the result of any measurement, and the pendi#g
corrections will affect the result of an¥ or Y measurement, in each case by
exchanging the significance of the two measurement outddinhsst prior to
the (simulated) measurement®f letd, = ~, if v is to be measured with ak
observable, and, = (3, + v, if v is to be measured with¥ observable. Thus,
upon measuring, the following operations are accumulated into the coivast
which must be performed:

— For every qubitw whereo, acts with anX or Y operation, we must add
Sy + 0y 10 Bu;

— For every qubitw whereo, acts with aY” or Z operation, we must add
Sy + 0y 10 Y-

This accounts for the accumulated corrections due to thesumement oty and
every preceding measurement which affects it. By simujatireasurement for
all of the qubits inO° in this way, we obtain boolean formulae for the correc-
tions onO in terms of the results of the measurements: the correctidret

0 This can be described in termssignal shifting as described i [11].
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performed for somev € O is XP» Z7  for 3,, and~,, constructed after all of
the (simulated) measurements. To obtdjnand~,, for all w € O in this way
takes timeO(n?).

Itis easy to show that the resulting measurement patterreucible by the
techniques of [18], by the following argument. Létdenote the set of auxiliary
vertices corresponding to the bit positionsxgf note that in the measurement
pattern, these are all to be measured with the obsenbland are adjacent
only to the input/output variables; and Xo To eliminate a vertew € A
using the methods of [18] on the geometry induced by the @tiadiorm ex-
pansion, we would have to identify an output variabjec O adjacent tar,
and apply the graph transformation in [18, Proposition histwould result in
a geometry wheré, has the former neighbors ofin G (and in particular is
not adjacent to any more removable vertices), and whereaa@iford (which
is not a Pauli operator) must be appliedbtpafter the entangling procedure.
Becauseh, is not adjacent to any other auxiliary qubit after this tfansa-
tion, the local Clifford cannot be undone or made into a Papéirator by e.g.
another vertex removal; then, except by extending the ctetipnal model to
allow for corrections which are local Clifford operatioqmerforming the local
Clifford can only be done by introducing an auxiliary qulit tather, a new
output qubit followingby, making the latter an auxiliary qubit). Thus:

Theorem 4. For an n-qubit Clifford group operatiorl/ given in the form of a
Leuven tableau, there is ai(n?3/log n) algorithm which produces a minimal
one-way measurement pattern {ér

The ability to obtain a quadratic form expansion represgnti reduced
measurement pattern yields a more efficient algorithm to titally reduced
Clifford patterns than from using existing techniques ttagbone via the cir-
cuit model. The quadratic form of (P9) can be found from a lerutableau
(C,h) in time O(n3/ logn), which is dominated by the time required to com-
pute R; and R,. To contrast, an approximately optimal quantum circuitdor
Clifford group operationi(e. consisting ofO(n?/logn) gates) can be found
from a Leuven tableau in timé@(n3/log n) by transforming it into a destabi-
lizer tableau, and then applying the algorithm[ofl[19]. Téem a measurement
pattern from such a circuit by composing the patterns fohegte, removing
vertices opportunistically (with each removal taking timén?)), requires time
O(n*/logn). Thus, making use of quadratic form expansions providesitlis w
a faster algorithm to obtain reduced measurement pattemglifford group
operations.

11 There are no square term$ for v € A or cross-terme, z, for u,v € A before the change
of variables in[(ZB)), and the change of variables itselfsduat introduce any.
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4 Conclusions and Open Problems

We have introduced quadratic form expansions, and devekgghniques which
suggest that they may be useful for synthesizing efficieplémentations for
unitary operations. We described conditions under whighieémentations may
be efficiently found for unitaries specified by quadraticniioexpansions; and
we showed how quadratic form expansions leads to more effiaigorithms
for obtaining reduced patterns for Clifford operationsha bne way measure-
ment model.

In the introduction, we mentioned that quadratic form exgi@ms are sim-
ilar in form to a sum-over-paths representation of unitapgrations, which
is a well-developed subject in theoretical physics. Thisesmthe question of
whether the techniques developed here are useful e.g.\felaeng algorithms
to simulate physical systems. It is not known whether theesblcases of the
Measurement Pattern Interpolation problem corresponttoral (in the more
literal sense) unitaries expressed as sums over pathguegion, and how to
extend the solved cases of the MPI to include propagatoistieresting physi-
cal systems, remain open.
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A Quadratic form expansions as sums over paths

Let (G,I,0) be the geometry of a quadratic form expansion, as defined on
pagelY. In the special case whéf, I, O) has a fractional-edge flow as de-
fined in Sectiol 3]2, the quadratic form expansion corredp@xactly to a sum
over paths as described inl [9], for the elementary gate séf,of’, and/AZ?,
wheret € R (i.e. admitting arbitraryZ rotations and fractional controlled-
gates). In order to demonstrate the sense in which quadaatit expansions
are sums over paths in this case, and because it represerasaaably simple
algorithm for converting quantum circuits into quadraticrh expansions, we
now present an alternate proof of Theoreim 1 based on theitge®of [9].
That any quadratic form expansion with geometry with a fomatl-edge flow
can be constructed in this way follows by reversing the aantibn below.

Proof of Theorem[d. Consider a quantum circuit implementig exactly,
using the operationsl/, AZ?, andZ!. Enumerate the wires of the circuit from

to k, and for each wird < j < k, introduce gpath labelz; for the input end

of the wire, corresponding to an input bif € {0,1}. We set/ = {1,...,k}.
Divide each wire intosegmentsbounded on each end by either a Hadamard
gate, the input terminal of the wire, or the output terminge label the wire
segments with path variables: for the segments at the inwetapply the labels
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z; for j € I, and we introduce new path variables to label the remainiing w
segments. Computational paths in the circuit are then thestby setting all
of the the path variables, - - - x,, collectively to some particular binary string
in {0,1}". The phase contribution of each paths, governing how theyfere
to produce an output state for any given input state, is destiby a function
¢(x) depending the gates of the circuit as follows:

(i) For every Hadamard gate on a single wire, with a path variaplabelling
the segment preceding the Hadamard and a path variglebelling the
segment following the Hadamard, we add a ternm; .

(i) Foreveryr\Z! operation between two wires, with a path variabjdabelling
the segment of one wire ang labelling the segment of the other wire in
which theAZ! operation is performed, we add a tetm,z; .

(iii) For everyZ' operation on a wire segment labelled with a path variable
we add a terrrm?. (Because the path variablg ranges ovef0, 1}, the
extra power o has no effect.)

In particular, the functionp(x) is a quadratic form, where without loss of gen-
erality the coefficients may be constrained+d < ¢ < 1. The phase of a given
path, described by a bit-stringe {0,1}", is then given by —1)9(¥) = ¢im#(x),
Each path also has an associated amplitudz 6f2, wherer = n — k is the
number of Hadamard gates in the cir¢tit.

Let O be the set of indiceg such that some wire is labelled by the path-
variablez; at its’ output end. Then, the initial points of computatibpaths
are described by bit-vectoes € {0, 1}1 , and the terminal points of paths are
described by € {0, 1}0 . The coefficientd/y, , can then be given as the sum
of the contributions of all paths beginning-at = a and ending akp = b:

1 .
Upa = gme(x) (30)
* \/2_T XE%}”

Xr=a
xo=Db

which is an expression of the coefficientslofas a quadratic form expansion.
To obtain a proof of Theorefd 1, it is sufficient to note thathwiit loss of
generality we may restrict ourselves to usirg gates only fort = 1 to imple-
mentU exactly; and that to implement to arbitrary precision, it suffices to use
Z'! gates where is restricted to multiples oi O

12 Although it is quite reasonable to consideto be simply a polynomial oveR, in terms of the
descriptions used in Section VI of|[9], one may consigen be a polynomial over the ring
R/2Z. If we restrict tot € 7.Z, we may simplify this to the finite rings by multiplying all
of the coefficients by, and using it to describe powers ¢fi rather than of-1.
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