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Abstract

We consider the problem of counting the number of contingency tables with given row and column sums.
This problem is known to be #P-complete, even when there are only two rows (Random Structures
Algorithms 10(4) (1997) 487). In this paper we present the first fully polynomial randomized approximation
scheme for counting contingency tables when the number of rows is constant. A novel feature of our
algorithm is that it is a hybrid of an exact counting technique with an approximation algorithm, giving two
distinct phases. In the first, the columns are partitioned into ‘“‘small”” and ““large”. We show that the number
of contingency tables can be expressed as the weighted sum of a polynomial number of new instances of the
problem, where each instance consists of some new row sums and the original large column sums. In the
second phase, we show how to approximately count contingency tables when all the column sums are large.
In this case, we show that the solution lies in approximating the volume of a single convex body, a problem
which is known to be solvable in polynomial time (J. ACM 38 (1) (1991) 1).
© 2003 Elsevier Inc. All rights reserved.

Keywords: Contingency tables; Approximate counting; Randomized algorithms

1. Introduction

Suppose we are given two vectors of positive integers, r = (ry, ..., ) and ¢ = (¢y, ..., ¢;), such
that 377, ri =377 ¢ We say that an m xn matrix [X;;] of non-negative integers is a
contingency table with row sums r and column sums c if 2;7:1 X;; =r; for every row i and
ST X j = ¢j for every column j. We denote the set of all contingency tables by X, ..
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It is well-known that for any input satisfying >, r; = >77 | ¢;, there exists at least
one contingency table with row sums r and column sums ¢ (see, for example, [5]). It is easy to
construct one element of X, . using the “North-West corner” rule (see, for example, chapter 9
of [12]).

In this paper we consider the problem of approximately counting the set of all contingency
tables with specified row and column sums. We present the first fully polynomial randomized
approximation scheme (fpras) [17] for counting such tables when the number of rows is constant.
The definition of an fpras has been given elsewhere but we include it here to be precise. An fpras
for contingency tables is an algorithm that takes a list of row sums r and a list of column sums ¢ as
input, together with an error parameter ¢€ (0, 1). The algorithm must satisfy two conditions to be
an fpras. Firstly, it must output an approximate value that lies within (1+¢)|2, .|, with high
probability. Second, its running time must be polynomial in the size of the input and also in ¢~
Here we present an fpras for the case when m is constant.

Our algorithm also implies a polynomial time procedure for the closely related problem of
sampling such a table almost uniformly at random. See the surveys of Jerrum and Sinclair [14], or
Dyer and Greenhill [§], for more definitions and background about approximate counting and
sampling.

The counting problem is of considerable interest, both from the theoretical and practical
viewpoints. The thesis of Mount provides much useful information on this problem and its
relatives [20]. Dyer et al. [11] have shown that the problem of counting contingency tables is # P-
complete even if there are only two rows; therefore, we do not expect to be able to exactly count
the number of contingency tables in polynomial time, even for two-rowed tables. The existence of
an fpras for counting contingency tables has been an open question for several years. For
example, the 1997 survey by Jerrum and Sinclair [14] listed it as an important open problem in the
complexity of approximate counting.

Practically, contingency tables play an important role in statistics, where they are used to
tabulate the results of surveys. The analysis of such tables provides strong motivation for the
problem of efficiently sampling contingency tables with given row and column sums almost
uniformly at random. Diaconis and Efron [4] provide many details on the practical motivation for
the sampling problem.

Before presenting our algorithm, we summarize previous work on the problem of counting
contingency tables. The first polynomial-time algorithm for counting contingency tables was due
to Barvinok [1], who proved that the number of contingency tables can be counted exactly in
polynomial time, when the number of rows and columns is constant (see also [10]).

Most other early papers on the subject addressed the sampling problem. The paper of Diaconis
and Gangolli [5] seems to be the first to describe a Markov chain on the space of contingency
tables which converges to the uniform distribution. The convergence rate of this chain was
subsequently analyzed by Diaconis and Saloff-Coste [6] for the case when the number of rows and
columns is fixed and by Hernek [13] for the case when there are two rows. The analyses for both
cases showed that the chain mixed in pseudopolynomial time (the running time is polynomial in
the table sum). Chung et al. [2] gave a Markov chain for contingency tables that converges in
pseudopolynomial time for any row and column sums which are sufficiently large.

The first polynomial-time algorithm for approximately counting contingency tables with
unbounded dimension was the algorithm of Dyer et al. [11]. They (i) gave a sampling algorithm
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that converges in polynomial time for any input with row sums of size Q(n*m) and column sums
of size Q(nm?); (ii) showed how to use the sampling algorithm to approximately count the number
of contingency tables for inputs satisfying the same constraints. This result was later refined by
Morris [19], who showed that the result also holds when the row sums are Q(n3/?m log m) and the
column sums are Q(m*?nlogn). Dyer and Greenhill [9] gave a polynomial time algorithm for
counting contingency tables when the table has two rows. They first defined a Markov chain for
sampling from the set of contingency tables with the given row and column sums, and showed that
this chain converges in polynomial-time when the input has two rows. Then they showed how to
use their sampling algorithm to obtain an fpras for the corresponding counting problem. The
result we prove here is a generalization of Dyer and Greenhill’s (from two rows to m rows), but we
use an entirely different approach.

A novel feature of our algorithm, which is described in Section 2, is that it is a hybrid of an
exact counting algorithm and an approximation algorithm. It can be viewed as having two
phases. The input is a list containing a constant number of row sums, a list of column sums, and
an error parameter ¢>0. In the first phase of the algorithm (Step 1 below) we partition the
columns of the table into “‘small columns” and “large columns”. Every contingency table for the
given row and column sums can be split into two smaller tables—a table on the small columns
(with some list of partial row sums), and a table on the large columns (whose list of row sums is
the original list of row sums less the list of partial row sums). We show that the number of
different lists of partial row sums that may occur on the table of small columns is polynomial in
the number of columns and ¢!. By dynamic programming, we can count the number of
contingency tables on the small columns for any given list of partial row sums in polynomial time.
We then write the number of contingency tables for the original input as the weighted sum (each
weight is the count computed for some list of partial row sums) of a polynomial number of terms,
where each term is the number of contingency tables for some list of row sums and the large
columns.

In the second phase of the algorithm (Step 2), we approximately count contingency tables for
each of the new instances of the problem generated in the first phase. Consider any specific
instance. We know the number of rows is constant and all the columns are large. We partition the
rows using a different method to that used for the columns. We define a ““gap factor” which is
sufficiently large. Then we partition the rows into small rows and substantially larger rows—each
of the large rows must be larger than the product of any small row and the gap factor. Note
that the number of contingency tables for our given row and column sums can be written as
the sum, over all possible partial column sums for the small rows, of the number of contingency
tables for the given row and column sums which have these partial column sums. Our partition-
ing of the rows ensures that any partial column sums will be small in comparison to the
large column sums. In Sections 3 and 4 we show that in this case the number of contingency tables
with given partial column sums does not depend much on the specific partial column sums that
are considered. Therefore we can estimate the number of contingency tables by choosing a fixed
list of partial column sums, and calculating the product of the total number of tables for the
small rows (with any partial column sums) and the number of contingency tables for our
instance which have the fixed partial column sums. The total number of tables for the small rows
can be calculated using binomial coefficients. The second quantity we need to compute is a
single instance of the problem of counting contingency tables, where all the columns are large
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and all the rows are large. In Section 3 we show that, in this case, the number of contingency
tables is very close to the volume of a convex polytope. It is well-known that the volume of a
convex body can be estimated in polynomial-time (Dyer et al. [7]). We use the polynomial-time
algorithm of Kannan et al. [16], for approximating the volume of convex bodies, to estimate the
volume of this polytope.

For many combinatorial problems, the problem of approximately counting the number of
discrete structures satisfying a given property is closely related to the problem of sampling one
discrete structure with this property almost uniformly at random. In random sampling, we usually
want to construct a (fully) polynomial almost-uniform sampler (see, for example, [15,21]). It is well-
known that for a special class of problems known as self-reducible problems, the existence of a
polynomial-time algorithm for approximate counting implies the existence of a fully polynomial
almost-uniform sampler [15,21]. The contingency tables problem is unusual because it is not
known to satisfy the condition of self-reducibility (or a more general condition discussed by Dyer
and Greenhill [8]). However, in Section 5 we will show that our fpras can be used to obtain a
polynomial almost-uniform sampler for sampling almost uniformly at random from the space of
contingency tables with given row and column sums, when the number of rows is constant.

2. The algorithm

Before presenting the algorithm, we introduce some notation. First, for any lists r = (ry, ..., 1)
and ¢ = (cy, ..., ¢,) of positive integers, we say that a m X n integer matrix X is a contingency table
with row sums r and column sums c¢ iff

X;;=0 forallij,

n
Xij=r; for all i,
j=1

Xij=¢; forallj.
1

m

1

We let 2, . denote the set of all contingency tables with row sums r and column sums c. The
cardinality of this set, denoted |X, .|, is the number of contingency tables with the given row and
column sums. We always assume that . | r; is equal to 27:1 ¢; (otherwise X, . is empty) and
denote this total (also called the table sum) by N.

Throughout this paper we will assume that m>2 is a constant. We assume without loss of
generality that n>m.

Our algorithm takes a list r = (ry, ..., r,,) of row sums and a list ¢ = (cy, ..., ¢,) of column sums,
an error parameter ¢ satisfying 0<e¢<1 and a confidence parameter # satisfying 0 <y <1. The
algorithm runs in time polynomial in n,log N, ¢~! and logn~' and returns an estimate S,,. In
Sections 3 and 4, we will prove that |S, . — |2, .|| <¢|Z, .| with probability at least 1 — #.
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The following quantities will be useful in describing the algorithm:
pe =log,(20mm/¢),
p=2m—1)(p:+2)+1,
qg=(p—1)/2(m—1).

Note that ¢ is equal to p, + 2.
We will apply the following Observation (cf. [20, p. 63]):

Observation 1. Let r = (r1, ...,ry) and ¢ = (cy, ..., cy) be two lists of positive integers satisfying
S = 27:1 G-

Let 1 <k<n. Let S be the set of ordered partitions s of ij= | ¢j into m parts that satisfy s;<r; for
all 1<i<m. Then

‘Zr.c| - Z |Zs,(cl,...,ck)| X |2r—s,(ck+1,4..,c,,)’ (1)
seES

Let 1</ <m. Let T be the set of ordered partitions t oleil ri into n parts that satisfy t; < c; for all
1<j<n. Then

‘Zr.,c‘ = Z |2(r1 ..... r/),t| X ’Z(r/ﬂ ...,r,,l),cft‘~ (2)

teT

The following observation will also be useful.

Observation 2. Let m>=2 be an integer, and let M be another positive integer. Then the number of
ordered partitions of M into m parts is

<M+m—1

><2M’"1.
m—1

Our algorithm is based on Observation 1.

In Step 1 of the algorithm, we choose an appropriate value for k and calculate |, .
exactly for all seS.

In Step 2 we approximate |2, .,
for every seS.

In Step 3 we apply Eq. (1) to estimate X, . within (1 +¢) with high probability.

¢ within (1 £¢) of its true value with high probability,

2.1. Step 1

Assume that (cy, ..., ¢,) is sorted in non-decreasing order. Let k& be the index such that ¢;<n”
for all j<k and ¢;>n” for all j >k + 1.

Columns cy, ..., ¢, are the “small columns”™ of the table.

Columns ¢y, ..., c, are the “large columns”.
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.....

In this step of our algorithm, we will use dynamic programming to calculate |X ., . | for
every partition se€S. In fact, our algorithm will consider each column index /& (1<A<k) in
increasing order, and compute |, . | for every ordered partition s of Z/}'I:I ¢j into m parts.

We will let S, represent the set of ordered partitions of 2]17:1 ¢j into m parts, for 1<h<k.
If h =1, then |2 )| = 1 for every partition s of ¢| into m parts. Note that because c; <n”, then

by Observation 2, the number of ordered partitions we will consider is at most 2(n?)™.
If 2<h<k, then we apply Eq. (1) of Observation 1. Let seS;. For us, the values of the

parameters n, k and r of Eq. (1) are /i = h,kA =h — 1 and 7= s. Then by Eq. (1) we have

|2S7(€1 ----- )l — Z |Zl]7(cl7<--,ch—l)’ X ‘ZS*CI7Ch|
qEShfl
= Z |Zq,(61,..‘,6h-1)‘7 3)
qe€Sh-1,

¢i<s; for all i

since X, ., = 1 if 5; — ¢; >0 for all 1<i<m (the single “table” is given by X;; = s; — ¢; for all 7)
and 2, ., = 0 otherwise. Therefore we use the |Z, ., . ., )| values (constructed in the previous
phase of our algorithm) to obtain |, . .|

Note that because ¢;<n»” for all j<k, therefore

h
Z ¢ <hn® <n*!, 4)

J=1

for any 1<h<k. By Observation 2 and by Inequality (4), the number of ordered partitions of

2;1:1 ¢j into m parts is at most 2(n”*1)". Therefore | S, <2n*"?+1_ which is polynomial in n and

gl

Therefore for any particular <k, we perform O(n”?*1) operations to compute 125 ctrens
..... en | for
every ordered partition s of Z]]?ZI ¢j into m parts. Since k <n, this means that we compute the table
of |Zs ey, )| using O(n*"®*+V+1) arithmetic operations.

By definition, p + 1 =2(m — 1)(p; +2) + 2 = 2(m — 1)p, + 4m — 2. Therefore

2(m—1
np+l — (201’17}’!) ( )n4m72'

&

Therefore Step 1 uses

nl2mz
0 (.94_ (5)

arithmetic operations to compute the set of all |X ., . )| values for se€S.
We know that none of the integers we compute is greater than N, therefore each addition or
comparison performed during Step 1 can be carried out in O(nlog N) time.
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We also know [S|<2(n”™!')" and therefore |S| is
ném2
() .

2.2. Step 2

In this step we show how to approximate the value of |Z,_ ., .., Within a multiplicative
factor of (1+¢) of its true value in polynomial time, with high probability, for any given s€ S.

First let ' = 5/|S|, where n is the original failure probability given as input to the algorithm. By
(6) this implies ' = e /n®"d, where d is the constant inside the O in (6).

Sort the rows of r — s into non-decreasing order and rename this vector by 7.

Let n’ denote n — k, and rename the (cx41, ..., ¢,) vector by (i, ..., c),).

We will estimate |2, |.

Let N = Z]”/:l ¢; be the table sum on the large columns.

Now classify the rows of # as “small rows” or “large rows” as follows: If r; >n?, then we
classify all the rows as large rows. Otherwise ; <n?. Then let / be the smallest index such that
¥,,1>nr, (if such an / exists). The rows 1 to / are the “small rows” and the rows greater than /
are the “large rows”.

Define R=5"/_, 7’

We consider three cases.

Case 1: All the rows are large rows (r; >n?). In this case, the row sums 7’ and the column sums ¢’
satisfy the conditions of Theorem 3 (see Section 3). Therefore, by Theorem 3, the value of | X, | is
within (1+¢/15) of the volume of the convex polytope P(¥, ¢) defined in Section 3. We use the
polynomial-time algorithm of Kannan et al. [16] for approximating the volume of a convex body,
to approximate vol(P(r/, ¢’)) within a factor of (1+¢/5), with probability at least 1 — 5. Thus we
approximate |2 »| within (1+e¢) with probability at least 1 —#'.

Case 2: All the rows are small rows. We show this case cannot occur. Suppose this is a
possibility. Since all the rows are small rows, the table sum N is equal to R. This table sum is
bounded above by mn?". By definition of ¢,

ol
mn? = mn2(m-1)

_ a1/ 1))

~1
< mn? because m=2
<n’ because m<n.

Therefore if all the rows were small rows, the table sum on the large columns would be at most #”.
However, since all the large columns were assumed to have ¢; >n”, N<n implies that there are no
large columns. This is a contradiction (if there are no large columns, then |X, .| would have been
computed exactly by Step 1, and Step 2 would not be carried out).
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Case 3: There are small rows and large rows. The quantity R plays a central role in the analysis
for this case. Before proceeding, note that R< 77, n¥, which is at most (m — 1)n?""~1 (since
¢ <m, we have at least one large row). Substituting for ¢ and then for p,

R<(m— D)n?=V72 = (m — 1)nm=Dp:+2), (7)
n”/R)n(p*l)/z — pm=1P+2) (8)

Now we show how to approximate |X, | for this case. By Eq. (2) of Observation 1, we write
|2r’,c’| = Z |Z(r'l.,..,r’/),Z’ X |2(r’(+1,...,r,’n),c’fr|v (9)

t

where the sum is taken over all partitions ¢ of the value R into a list of #’ non-negative integers.
From here on we will denote the large row sums (v}, ...,r,) by (ui, ..., u, ), and any list of
modified large column sums ¢’ — ¢ by (vy, ..., vy). By construction, every u; is at least n?. To obtain

a lower bound for the v; values, remember that by construction ¢; >n” for every 1<j<n'. Also we
know #; <R for every 1 <j<n'. Therefore every v; value is at least as big as #” — R, and by (8), this
is at least n”/2.

In Section 3, we will define a convex polytope P(u,v) in (m' — 1)(n’ — 1)-dimensional space for
any large row sums « and modified large column sums v. Let vol(P(u, v)) denote the volume of the
convex polytope P(u,v). We will prove the following theorems:

In Theorem 3 we will show that for any list u of large row sums and any list v of modified large
column sums, |Z,,| lies within (1+¢/15) of vol(P(u,v)) (see Section 3).

In Theorem 4 we will show that it you let u be a list of large row sums and let v and ¢ be two lists
of modified large column sums. Then vol(P(u,v))<(1 + ¢/15)vol(P(u, 7)) (see Section 4).

Now we show that Theorems 3 and 4 allow us to approximate all of the different |2, ,| values
(there could be exponentially many of these) in a single step. Define some fixed list of modified
column sums ¢ by choosing an arbitrary partition 7 of R, and defining & as ¢’ — 7. Let v be any
other list of modified column sums. By Theorem 3 we have

|20 < (1 4+ ¢/15)vol(P(u,v))
< (1 4¢/15)*vol(P(u, ©))
< (1 4¢/5)vol(P(u,?)),
where the second line follows by Theorem 4. Also by Theorems 3 and 4 we have
|2l = (1 —&/15)vol(P(u,v))
> (1 —¢/15)vol(P(u,0))/(1 +¢/15)
> (1 —¢/5)vol(P(u,?)).
By (9), the product of vol(P(u,7)) and 3, [¥(+ . ), approximates |2, ~| within (1+¢/5).

We calculate 3, |2 )| directly as follows: Since we are summing over all possible column
sums ¢, we are simply counting the number of / x #’ tables with the row sums (7}, ..., 7)) (and any

geeey
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column sums). This is equal to the product of the terms (4:,'5 171) over all i such that 1<i</ (the
term for i counts the number of ways of partitioning 7} into an ordered list of ' non-negative
integers).

We use the algorithm of Kannan et al. [16] to approximate vol(P(u, 7)) within a factor of
(1+e¢/5) with probability at least 1 — . Taking the product of this value and ), \Z(r/l,._’,,f/)’,\, we
will approximate |2 »| within a factor of (1+¢), with probability at least 1 —#’.

To bound the running time for Step 2 of the algorithm, we use the O* notation, where we ignore
logarithmic factors as well as constant factors.

The algorithm of Kannan et al. [16] approximates the volume of a convex body P in d
dimensions to within (1+¢) of its true value with high probability by sampling O*(d°/&*) random
d-dimensional points and for each of these points, performing an oracle call to test whether the
point lies in the convex body. The total number of random bits used to generate all the points that
are tested is O*(d®/¢?).

The convex polytopes that we construct (either in Cases 1 or 3) have dimension less than or
equal to nm. Also, for the convex polytopes P(u, ¢) that we consider (defined in Section 3), we can
test a point for membership of P(u, ¥) using O(mn) arithmetic operations. Therefore we can use
the algorithm of Kannan et al. [16] to approximate vol(P(u, ¢)) (or vol(P(+', ¢)), in Case 1) within
(14+¢/5) (with probability at least 1 — #’) using O*(n®/&?) arithmetic operations.

The number of arithmetic operations used to approximate |2, ., ... )| is dominated by the
number of arithmetic operations of the volume estimation algorithm. Also, we can assume that all
the arithmetic operations are carried out on numbers of size O*(N"), and therefore we can
assume that each arithmetic operation takes O*(n?) time. Therefore the time to estimate
|25 (cxir,....cn |, fOr any se S is

O (n®/e).

By (6), we will estimate |2, for O(n®" /&) different s S. The total running time to

estimate all these values is
6m>+8
o [t
82m2+2 :

2.3. Step 3

Cht15ee- -,cn)

Finally, in Step 3, we use (1) of Observation 1 to construct an estimate S, . of |X, .|, using the
exact values of |Z (., .. )| for s€ S (constructed in Step 1), and the estimates of [2,_ ., ... 0| for
s€ S (constructed in Step 2).

By definition of ' = 1n/|S|, we know that with probability at least (1 — ), all of the estimates
constructed in Step 2 lie within (1 +e¢) of their true values. Therefore

| Zrc| — SI',C’ <ée|Z) .

yeeny

with probability at least (1 — ).
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Combining the running times of Steps 1 and 2, the running time of our entire algorithm is
12m?
Ln
O <847> .

3. Approximating |X, | by the volume of a convex body

In this section we prove the claim that the number of contingency tables with given row and
column sums can be closely approximated by the volume of a convex polytope, if the row and
column sums are large enough. We begin by introducing some notation. Let u = (uy, ..., u,,) be a
list of row sums and v = (vy, ..., v,) be a list of column sums. Let N’ be the table sum. Then %, , is
equivalent to the set of non-negative integer solutions for the following system of inequalities (see,
for example, [11]):

n'—1
ZX’]éul for ISZSI’H/—L (10)
J=1

1/

3
|

Xij<v, for 1<j<n’ —1, (11)

i=1

/

n'—1

Z Z X,-:,-ZN/—um/—vn/. (12)
i=1

J=1

3

In this setting we assume

!
1 .
Xiw =u;— > Xij fori<m’ — 1,

- .
Xowj = vj — Z'Lll X;, for j<n’' —1, and

Xy = 271:/;1 Z]n:l] Xij— (N = vy — tyy ).

In this section and the next one, we work in the (' — 1)(n’ — 1)-dimensional space and assume
that i ranges over 1<i<m’ — | and j ranges over 1<;j<n' — 1.

We define P(u, v) as the convex polytope consisting of the set of non-negative real solutions for
(10)—(12).

For any convex body P and any o >0, we define the dilation of P by « to be the set «P =
{aX: X eP}. It is well-known that for any d-dimensional convex body P, vol(«P) = o vol(P) (see
[18, Corollary 15, p. 101]).

Theorem 3. Let n be an integer and p and q be defined as in Section 2. Let u = (uy, ..., u,y) be a list
of row sums such that u;=n? for every i, and v = (vy, ...,vy) be a list of column sums such that
v;=nP /2 for every j (by construction m' <m and n' <n). Then

(1 - %)m(P(u, 0)) <[ sl < (1 +1i5)v01(P(u, o).

Proof. We assume without loss of generality that u,, is the largest row sum among the u;, and that
vy 1s the largest column sum among the v;. Therefore u,, >N'/m’' and vy, >N'/n'.
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The following interpretation of |, ,| will be useful: for each ZeZX,,, we define a hypercube
H(Z) such that Xe H(Z) iff 0<X;; — Z;j<1 for all 1<i<m’ —1 and 1<j<n’ — 1. Then every
point in P(u, v) is associated with at most one integer point Ze X, ,. Also, for every ZeZX,,, the
volume of the hypercube associated with Z, denoted vol(H(Z)), is exactly 1 (though some of the
hypercube H(Z) may lie outside P(u,v)).

In part (i) of this proof we will define two extra convex polytopes called P~ (u,v) and P*(u, v).
We will show that

P (wv)c | J H(Z) and | ] H(Z)=P'(u,v).

ZeX,, Zelyy
As vol(Uzcs,, H(Z)) = |2y, this shows
vol(P™ (u,v)) < | 20| < vol(PT (u, v)). (13)

In Part (i1) we will show that

<1 — %) vol(P(u, v)) <vol(P™ (u,0))

and
vol(P* (u,v)) < (1 + 1—85> vol(P(u,v)).

Putting this together with (13), we will have
& €
- < < —
(1 1 5>V01(P(u, 0)) <[ Tl < (1 +- 5>V01(P(u, 0)

as required.
(i). Let P~ (u,v) be the set of all real (m’ — 1)(n’ — 1)-dimensional points X with non-negative
entries that satisfy the following three sets of inequalities:

n—1
Xij<u; for I<i<m' —1, (14)
j=1
m'—1
Xij<v, for 1<j<n’ —1, (15)
i=1
m—1 n'—1
Xij=N —wpy — vy + (m' = 1)(n' = 1). (16)

i 1

1 j

It should be obvious that P~ (u,v) =P(u,v). We will show something stronger. Let X e P~ (u,v),
and let Z be the unique point with integer entries such that X e H(Z). We will show ZeP(u,v).
Then since Z is an integer point by definition, we will have ZeZ,, ,.

By definition of H(Z) and the fact that the X;; values are non-negative, we know Z; ;>0 for all
I<ism’ —1,1<j<n’ — 1.

Also, because Z; ;< X;; for all 1<i<m’ — 1, 1<j<n’ — 1, therefore (14) and (15) imply that Z
satisfies (10) and (11) for P(u,v).
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and combining this with (16), we have

m—1 n'—1

§ § Zi.jZNl_um’_Un’y
=

i=1
which is (12).
So ZeZ,,. Therefore P~ (u,v) = U, 5  H(Z).

Define P* (u, v) to be the set of all real (m’ — 1)(n' — 1)-dimensional points X with non-negative
entries that satisfy the following inequalities:

> Xiy<ui+ (W —1) for 1<i<m —1, (17)
j=1
m'—1
> X<y +(m' —1) for 1<j<n’ —1, (18)
i=1
m—1 n'—1

X,~_j>N’—um/ — Uy (19)

Clearly P(u,v) =P*(u,v). Now let Ze X, ,. Then Z is also in P(u, v) and satisfies (10)—(12). We will
show that H(Z) =P (u,v).

Let XeH(Z), so therefore X;;>Z;; for all 1<i<m’ — 1, 1<j<n' — 1. Therefore all of the
entries of X are non-negative.

By (12) and by X;;>Z;;, we have 7" 377! Xiy=N' — thyy — vy, which is (19).
By definition of H(Z),

n'—1 n'—1
S (S ) ro-n
= =1

and combining this with (10), we obtain (17). By a similar argument, X satisfies (18).
Therefore (U, 5 H(Z)=P"(u,0).
Therefore we have shown that
P (s |J H(Z)

Zel,,

and

U H(Z)=Pt(u,v),

and therefore we have proved (13), as required.
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(i1). We define 6 = ¢/20m'n’. Note that n?: = ¢/20mn, which is at most 6. Thus n=>1/9.

For this section of the proof, it will be useful to move the origin to a point lying inside P(u, v).
Let p' be the real (m' — 1)(n' — 1)-dimensional point defined by p;; =4 u;v;/N'. We move the
origin of P(u,v) to p’ as follows: substituting Y + p’ for X in (10)—(12), we find that the point X
lies in P(u,v) iff the point ¥ = X — p/ satisfies ¥;;> — wv;/ N’ for all 1<i<m’ — 1, 1<j<n’ — 1
and also satisfies the following system of inequalities:

/

3
—_

Uiy

Yi,; < N for 1<i<m’ —1, (20)
J=1
m'—1 Ut U
Y;; < 'J’\'ﬂj for 1<j<n’ —1, (21)
i=1
m—1 n'—1
Yi> — ”}‘\;f (22)

1

1

L

Let P'(u,v) be the set of real (m' — 1)(n’ — 1)-dimensional points Y that satisfy (20)—(22) and
satisfy Y;;> —wuv;/N' for all 1<i<m’ — 1, 1<j<n’ — 1. Clearly

vol(P'(u,v)) = vol(P(u, v)).

We now move the origin for the polytopes P~ (u, v) and P*(u,v), using the same point p’. We
define two more transformed convex polytopes Q (u,v) and Q" (u,v), where

vol(P™ (u,v)) = vol(Q™ (u,v))
and
vol(P™ (u,v)) = vol(Q* (u,v)).

Q (u,v) is the set of points Y satisfying Y;;> — w;v;/N' for all 1<i<m’ —1, 1<j<n’ — 1 and
satisfying

n—1
Yugul—v"/ for 1<i<m’ —1, (23)
. N’
j=1
m—1 Ut U
Y <—2 for 1<j<n’ — 1, (24)
i=1 N
m—1 n'—1 U D
m' Un’
Yij> — = (o = D 1), (25)

Q™ (u,v) is the set of points Y satisfying Y;;> — w;v;/N' for all 1<i<m’ — 1, 1<j<n’ — 1 and
satisfying

n'—1
S vy < 1) for t<inl — 1 @9
j=1
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> Yy STl =) for 1<l 1 27)
m'—1 n'—1 U Vo
Yij=> - N’ (28)

We prove (1 —38)P'(u,v)=Q (u,v). Let Ye(1 —0)P'(u,v), so Y/(1 —5)eP' (u,v). We show
that Y satisfies the lower bounds for Q™ (u,v) and Inequalities (23)—(25).

Lower bounds: The lower bounds for P'(u,v) ensure that Y;;> — (1 —d)u;v;/N' for all
I1<i<m’ —1, 1<j<n’ — 1; therefore Y;;> — u;v;/N' holds trivially.

Inequality (23): By (20), Z" ! Y; ;i <(1 — 0)ujvy/N’, which is less than u;v,, /N'.

Inequality (24): Follows by an similar argument.

Inequality (25): By (22), we have

m—1 n'—1

U Uy Uy Uy
§ Yijz — = +o0——

By definition, S, v,y /N' = v,y /m’ = 6nP~" /2 (using n>m=m'). Therefore by definition of p and by
n’=>1/6, we find

Upy Uy >5 np71 _ 5 nz(mfl)(]’z:‘kz)

0 >
N’ 2 2

> (m' —1)(n = 1),

where the second last step follows by m>2 and n”* >1/6, and the last step follows by m — 1>1
and n=m>2. Then

m—1 n'—1

DY Yz - — D — 1),
i=1

j=1

which is (25).

Now we show Q* (u,v) = (1 + 6)P'(u,v). Let Y € Q™ (u,v). We show that Y /(1 + 6) satisfies the
lower bounds for P'(u,v) and Inequalities (20)—(22).

Lower bounds: By definition of Q¥ (u,v), we know Y;;> —uu;/N' for all 1<i<m’ —1,
1<j<n’ — 1. Then Y;;=> — (1 + d)u;v;/N' holds trivially, so Y/(1 + J) satisfies the lower bounds
for P'(u,v).

Inequality (20): By (26),

!

N
—_

U;iUy
Yf’j<%+ (l’l/ — 1)
1

~.
Il
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Define &' = (' — 1)N'/u;v,y, so we have
U;Uy
> Yiys(+d) 7

Then by N’ /v, <n' and u;>n?, we have §' <1/n?2. By definition ¢ — 2 = p,, so we have &' <4.
Therefore Y /(1 + 9) satisfies (20).
Inequality (21): By (27),

Uy U;
Z YUS N/] Wl - 1)

Define 6" = (m’ — 1)N' /uyyv;, and write
/
-1
m Uy V)

> Y,-J<(1+5”)7

i=1

Applying N’ /u,y <m' and v;>n”/2, and using our assumptions that m'<m and m<n, we have
0" <2/nP~2. By definition of p and by n‘pﬂ <, we have 6" <9, and Y/(1 +9) satisfies (21).
Inequality (22): By (28), Z;il Z Yii= — tyyvy/N'. But —ity0 /N'> — (1 4 6) v /N',
so Y /(1 + 9) satisfies (22).
Now we have (1 —8)P'(u,v)=Q ™ (u,v) and Q" (u,v) = (1 + 6)P'(u,v), and this gives

vol((1 = 6)P'(u, v)) <vol(Q™ (u,v))
and
vol(Q™ (u,v)) < vol((1 + 6)P'(u,v)).
Also
vol((1 — 8)P'(u,v)) = (1 — &)™ D =Dyol(P (u, v)),

vol((1 4 8)P'(u, v)) = (1 + &) D =Dyol(P' (u, v)).

But (1 —8)" V"D 1 — (m = 1)(n' — 1)8), and by the definition of &, this is at least (1 —
¢/20). Therefore

(1 - i>vo1(P'(u v)) <vol(Q~ (u, v)).

15
Then by vol(P'(u,v)) = vol(P(u,v)) and vol(Q™ (u,v)) = vol(P~™ (u,v)), we have
(1 - %) vol(P(u, v)) <vol(P~ (4, v)). (29)

Also (1 + &)™ D=1 <8/20 (ysing (1 + x/n)"<e*), and since <1, this is at most (1 +¢/15).
Therefore

vol(QT (u,v)) < (1 + 1—85) vol(P'(u,v)),
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and by vol(P'(u,v)) = vol(P(u,v)) and vol(Q" (u,v)) = vol(P" (u,v)),
vol(P* (u,0)) < (144 5>vol(P(u, 0). (30)
Combining (30) and (29) with (13), we have our result. [

4. Approximating the volume of a convex body by another convex body

In this section we prove the second claim made in Case 3 of Step 2 of our algorithm. We will use
notation from Sections 2 and 3 and some of the ideas from Section 3.

Theorem 4. Let (uy, ..., uy ) and (vy, ..., vy) be lists of row and column sums such that m'<m — 1,
n' <n, u;=n? for all i and v;=n’ /2 for all j. Suppose that (v, ..., Uy) is another list of column sums
satisfying 06;=n" /2 for all j, and also satisfying |v; — U;| <R for all j. Then

vol(P(u, v)) < (1 v %)VOI(P(u, 5)).

Proof. Again, let 6 = ¢/20m'n’

Assume without loss of generality that v,/ is the largest column sum among the v;.

Let p’ be the real (m’ — 1)(n’ — 1)-dimensional point defined by p; ; =4 u;v;/N'. We will use the
same trick that we used in part (ii) of Theorem 3, and consider the convex polytope P'(u,v)
centered at this point.

Remember that vol(P'(u, v)) = vol(P(u, v)).

We now construct P'(u, 6) by taking the identical point p’ that we used for P'(u,v) and letting
Y eP'(u,0) iff Y + p' € P(u, ¥) (remember that this center point p/ is defined in terms of the u; and v;
values, rather than the u; and &; values). Then we consider (1 4 6)P’(u, ). Then Y is an element of
(14 0)P'(u,0) iff Y;;= — (1 + d)uv;/N’ for all i,j and

n/

._.

U;Uyy

Y <(1+9) Zl\f’ for 1<i<m’ — 1, (31)
j=1
m'—1 o D
Yy <(1+0)((6—v) +72L) for 1<j<n’ — 1, (32)
i=1
m—1 n'—1 ot Dot
Y= (1 +0) (( —Gy) — ;V,) (33)

i

1 j=1

We will show P'(u,v) = (1 + §)P'(u, 6). Within this proof we will show that the quantity (v, —
by) — Uty /N’ (lower bound on 37! Z" ' Y,; for P'(u,?)) is negative and that each of the
(6; — vj) + uyv;/N' values (upper bounds on Ei:/fl Y;; for P'(u,v)) is positive.

Let Y be any element of P'(u, v), so Y satisfies (20)~(22) and Y; ;> — uv;/N'. We prove Y e (1 +

8)P'(u,¥) by checking that it satisfies the four types of constraints for (1 + 6)P'(u, ©): Inequalities
(31)—~(33), and the lower bounds on the entries of Y.
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Lower bounds: We know Y;;> —uv;/N' for all 1<i<m’ — 1, 1<j<n’ — 1. Then Y;;> — (1 +
0)u;v;/N', as required.

Inequality (31): By (20) we know Z -y, j<uvy/N', and by 6>0, this trivially implies (31).

Inequality (32): Consider the quantity (1 +0)(0; — vj) + Oupyv;/N'. We know that ; — v;> — R
and that

Ui/ N' Zv;/m' =n” /2.
Therefore (1 + 9)(; — v;) + ouyyv;/N' is at least as big as on” /2m’ — 2R. By (8) and by n”>1/0,
on’ /2m' — 2R = R(on” /2m'R — 2)

> R(6nP~V/2 )om! — 2)

= R(on"=V0F2) 1oy’ — 2)
> R(on"n* ™=V )2m’ — 2)
> R(m*™ Y /2w - 2)
>0,

where the last step follows by n>m>2 and m’ <m — 1. By (21), we know Z',”:/II Y;; is bounded
above by u,,v;/N'. Therefore we have

Upy Uj

N/

ZY,Jgu’”U’ + (14 0)(3 —v) + 0

=(1+ 5)((@' —u)+ u;t:]>

so (32) is satisfied.
Inequality  (33):  Consider (14 90)(vy — Uy) — Othyyv,y/N'.  Using vy — 6y <R and
Upy Uy /N Z 0, /m' =0 /2, we have

(14 0)(vw — by) — Sttyvyy /N'< 2R — 61 /20
<

2
0
because (8) and n”*>1/6 imply that 2R — on”/2m’ is negative. By (22), the double sum
S E'.l:ll Y;; is bounded below by —u,,v,/N’. Therefore

m—1 n'—1 Uy Uy

um’vn n
Z Yl] (1+5)(v,,/—vn/)—57
i=1

j=1

= (1+6) (0 — 5) - 21)

so (33) is satisfied.
Then P'(u,v) = (1 + 5)P’(u ﬁ) and therefore

vol(P'(u,v)) < (1 + 8) ™ =V =Vyol (P (u, 6)).
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By the same argument given at the end of Theorem 3, we obtain
vol(P'(u, ) < (1 v %)VOI(P’(u, 5),
or equivalently,

vol(P(u, v)) < (1 n lis) vol(P(u,8)). O

5. Generating a contingency table almost uniformly at random

An almost-uniform sampler for contingency tables is an algorithm that takes a list of row sums r,
a list of column sums ¢ and an error parameter c€(0, 1), and returns an element X €, . with
probability o(X), such that

o o) =12 e

XeZ,,
The sampler is a polynomial almost-uniform sampler (paus) if it runs in time polynomial in the
number of rows and columns, the table sum, and ¢~'. The sampler is a fully polynomial almost-
uniform sampler (fpaus) if the dependence on the error parameter is polynomial in (loge~1!).

The error term » y .y |o(X)— 1Z,.|7"| is the variation distance between the output
distribution of our sampler and the uniform distribution on 2, .

We now describe how to convert our fpras into a paus for the set of contingency tables with row
sums r and column sums ¢, when the number of rows is constant. If ¢<1, we show how to
generate a point with probabilities within 1+¢ of the uniform distribution on the set of
contingency tables. We are currently unable to improve this to an fpaus, since the contingency
table problem is not self-reducible, as required by the methods of [15], nor does it apparently even
satisfy the weaker condition of [8]. This is a somewhat surprising technical difficulty, given that it
has recently been shown that a fpaus does in fact exist for this problem [3].

Let ¢ = ¢/5. We first perform Step 1 from Section 2 and partition the columns into small
columns and large columns.

S is the set of ordered partitions s of Zjlle ¢; into m parts such that s;<7; for all 1<i<m.

For any 1<h<k, S is the set of ordered partitions g of Z]h: | ¢ into m parts.

The dynamic programming algorithm constructs |2, .| for all seS. It also constructs
|24 (c1,...cn)|» for every ge Sj, and 1<h<k.

Carrying out Step 2 of our original algorithm, we obtain an approximation to S,_
every se S, leading to an approximation of S, ..

Cht1yeeesCn)? for
Let s be any ordered partition of 2;‘:1 ¢; into m parts such that s;<r; for all 1<i<m. Then

Eq. (1) of Observation 1 implies that if we choose a contingency table X according to the uniform
distribution on X, ., the probability p(s) that X has the partial row sums s is

p(s)

Ck+1«,~~7cn) ‘

— ’257((:[,...,(,‘1‘,)’ X ’2773‘7(
el
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Define 4(s) by

X S}'—s,( 7
Sr,c

|Z‘Y7(L.l 11111 L'k)

pls) =

Since we have an fpras, we can ensure that |p(s)/p(s) — 1|<e for all se .S, with arbitrarily high
probability. Therefore if we can

(i) choose seS according to the probabilities j(s),
(ii) choose an element of X, . . within 1+e¢ of the uniform probability,
(iii) choose an element of X, ¢,) uniformly within 1+e¢ of the uniform probability,

Cht1y---y

we will generate from a distribution ¢ with probabilities within (1+¢)’ of the uniform

distribution. Therefore the probabilities of our distribution ¢ will all lie within (1 +4e¢) of |2,,,C|_1
(using the fact that ¢ = ¢/5<1/95).

Clearly (i) can be accomplished, since we have explicitly computed the numerators and
denominator of all the §(s) values.

We now show that we can generate a sample uniformly at random from 2. ) We
construct the values for the Ath column of X in decreasing order. Suppose we have already
constructed columns 4 + 2, ..., k of the table and that s is the current partial row sum for the first
h+1 rows. From Eq.(3), we choose g¢eS;, (0<¢;<s;, ie[m]) with probability
1Zg.ctrenl /| Zscr,...cn) |, and set column £ to (s — ¢). We iterate this until all the entries in the
small columns have been assigned.

We now complete the # small rows. These are chosen independently to be any ordered partition
of r; into n’ parts (i€ [/]). This can be done as follows. Choose a sample of size (n' — 1) uniformly
without replacement from [r; +n’' — 1], and sort to give ky <kz--- <ky_;. Let ko =0, kyy =1} +n'.
Then the elements of the partition are (k; — k;—; — 1) (je[n']).

The departure from uniform of the points in the small rows and columns will be very small. (It
arises only from the precision of our random number generation.) We can certainly ensure that all
probabilities are within 1+¢ of their target values.

We now subtract the partial column totals over the small columns from the large column totals.
We now have to generate an integer point uniformly in a polytope of the form given in (10)—(12).
Since all row and column totals are sufficiently large, we can do this by the method given in [11].
Hence we can obtain a sample point with probabilities within 1 +¢& of the uniform distribution on
this set.

Finally, to show that the variation distance between the uniform distribution and our output
distribution ¢ is bounded, note that by (i), (i) and (iii) we have ||, .|~ — ¢(X)|<4¢|Z,..|" for all
X e, .. Therefore, the variation distance satisfies

DIzl o)< D el X T =4e<e,

XeZ,. XeZ,,

as required.
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