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RECONSTRUCTION ALGEBRAS OF TYPE D (I)

MICHAEL WEMYSS

ABSTRACT. This is the second in a series of papers which give an explicit description of
the reconstruction algebra as a quiver with relations; these algebras arise naturally as
geometric generalizations of preprojective algebras of extended Dynkin diagrams. This
paper deals with dihedral groups G = D, 4 for which all special CM modules have rank
one, and we show that all but four of the relations on such a reconstruction algebra
are given simply as the relations arising from a reconstruction algebra of type A. As a
corollary, the reconstruction algebra reduces the problem of explicitly understanding the
minimal resolution (=G-Hilb) to the same level of difficulty as the toric case.
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1. INTRODUCTION

It was discovered in [W07] that if G is a finite small cyclic subgroup of GL(2, C) then the
quiver of the endomorphism ring of the special CM Clz, ] modules (a ring built downstairs
on the singularity) determines and is determined by the dual graph of the minimal resolution
X — C? /G, labelled with self-intersection numbers. Since the dual graph of such a group
is always a Dynkin diagram of type A, we call the noncommutative ring in question the
reconstruction algebra of type A. The above is a correspondence purely on the level of the
underlying quivers; it was further discovered that if we add in the extra information of the
relations then in fact one can recover the whole space X (not just the dual graph) as a certain
GIT quotient, and also that the reconstruction algebra describes the derived category of X.

Following the work of Bridgeland [B02] and Van den Bergh [V04], these ideas were
pursued further in [W08] where the above statement on the level of quivers was proved for
all complex rational surface singularities. Two proofs of this fact were given, one non-explicit
proof for the general case and one explicit proof which only covers the quotient case. It is
perhaps important to emphasize two points. First, although it was shown that the number
of relations for the quiver can also be obtained from the intersection theory, the relations
themselves were not exhibited. Second, the non-explicit proof tells us nothing about the
special CM modules (for example what they are) and very little about their structure.

The main purpose of this paper is to provide the relations in the case of certain dihedral
groups D, 4 inside GL(2, C). The companion paper [W09] deals with the remaining dihedral
cases. Although this may be technical the relations are important; we shall see that it is
precisely the relations which allow us to compare the geometry of the minimal resolutions of
different singularities and thus view the minimal resolutions as being very similar to spaces
that we already understand. We could not make such claims if we do not know the relations.
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2 MICHAEL WEMYSS

It is worth emphasizing how small the reconstruction algebra is compared to the skew
group ring Clz, y|#D, 4. Although many statements can be made about the latter ring, the
problem has always been extracting the geometric information that it encodes. Here this
is precisely because it contains far too much irrelevant information; indeed we believe it is
entirely the wrong algebra to study. Note that the reconstruction algebra and the skew group
ring coincide if and only if the group is inside SL(2,C).

The basic philosophy underpinning the geometry of the reconstruction algebra is that
we should not view the minimal resolution of an affine rational surface as some sort of exotic
beast, rather we should instead view it as being made from spaces that we are already familiar
with. The larger the fundamental cycle Z; of the minimal resolution the more the geometry
should resemble the minimal resolutions arising from ADE quotients, since the reconstruction
algebra quiver and relations look and behave more like a preprojective algebra (see [W09, §5]
for this case). As Zy gets smaller and thus closer to being reduced (the case mainly considered
in this paper), the more toric the geometry becomes since the reconstruction algebra quiver
and relations begin to look and behave more like a reconstruction algebra of type A. Via the
work of Wunram it is Z¢ which dictates the rank of the special CM modules, and different
ranks induce slightly different algebra structures because polynomials factor in different ways.

The first step in this paper towards the goal of obtaining the relations is to fill in the
gap in the classification of the specials CM modules left in [IWO08]. Although the techniques
in loc. cit could plausibly be used for dihedral groups, the AR quiver splits into cases and
the combinatorics are difficult. Both factors make it hard to write down a general proof. The
method used here is still quite combinatorially complex but it is at least possible to write
down the proof. It also has the added philosophical benefit of not requiring any knowledge of
the McKay quiver, as instead (denoting R := C[z, y]”»4) we view the special CM R-modules
as R-summands of the polynomial ring [H78], and by considering an appropriate quiver we
argue by diagram chasing that the modules corresponding to the vertices must be minimally
two-generated. Furthermore we explicitly obtain their generators. In fact this method gives
all the rank one special CM modules for every D, 4, not just the case when Z; is reduced.

In the case when Zy is reduced, all special CM modules have rank one and so the special
CM modules obtained above are them all. Hence having explicitly obtained their generators,
we then use this information to label the arrows in the known quiver of the reconstruction
algebra in terms of polynomials involving z’s and %’s; our relations are then simply that
‘x and y commute’. From this we write down some obvious relations and then an easy
argument using the known number of relations tells us that these are them all. Since there
are choices for the generators of the special CM modules, in fact we obtain two different (but
isomorphic) presentations of the endomorphism ring, corresponding to two different choices
of such generators.

Once we have the quiver with relations we are able to describe the moduli spaces of
representations using explicit techniques, justifying some of the philosophy above. This is
actually very easy since the dimension vector we use consists entirely of 1’s and (almost all)
the relations for the reconstruction algebras in this paper are just the relations from the
reconstruction algebra of type A. Consequently the explicit extraction of the geometry is
really just the same as in [W07, §4].

We now describe the contents and structure of this paper in more detail: in Section 2 we
define the groups D, , and recall some of the known properties of the singularities C?/Dy, .
Furthermore we introduce and prove some combinatorics crucial to later arguments. The
combinatorics are intricate, and can be skipped on first reading. In Section 3 we exhibit the
special rank one CM modules for every group D, , regardless of Z¢; when Z; is reduced these
are all the special CM modules. Section 4 restricts to the case when Z; is reduced and in
such a case we define D, 4, the associated reconstruction algebra of type D, and show that
it is isomorphic to the endomorphism ring of the special CM modules. In Section 5 we use
this noncommutative algebra to exhibit explicitly the minimal resolution (which is equal to
D, o-Hilb via a result of Ishii [I02]) in co-ordinates. We produce an open affine cover in which
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every affine open is a smooth hypersurface in C3, with equations given in terms of simple
combinatorics.

Note that the discovery of the special CM modules and a similar open cover for dihedral
groups has been discovered independently by Nolla de Celis [N09a],[N09b] by using the McKay
quiver and combinatorics of G-Hilb. However the benefits of using the reconstruction algebra
over the McKay quiver is that it reduces the problem to the same level of difficulty as the
toric case; thus from the viewpoint of the reconstruction algebra the geometry in this paper
is not toric, but it may as well be.

Throughout, when working with quivers we shall write ab to mean a followed by b.
We work over the ground field C but any algebraically closed field of characteristic zero will
suffice.

Various parts of this work were carried out when the author was a PhD student in
Bristol, UK (funded by the EPSRC), when the author visited Nagoya University under the
Cecil King Travel Scholarship from the London Mathematical Society, and also when the
author was in receipt of a JSPS Postdoctoral Fellowship. The author would like to thank the
EPSRC, the Cecil King Foundation, the LMS and the JSPS, and also thank the University
of Nagoya for kind hospitality. Thanks are also due to Osamu Iyama, Martin Herschend and
Alvaro Nolla de Celis for useful discussions, and an anonymous referee for some extremely
helpful remarks and suggestions regarding the presentation of mathematics.

2. DIHEDRAL GROUPS AND COMBINATORICS

In this paper we follow the notation of Riemenschneider [R77].
Definition 2.1. For 1 < ¢ <n with (n,q) =1 define the group D,, 4 to be

D = (Y2q, T, Pa(n—q)) M —q=1mod?2
e (th2q, T<P4(n_q)> ifn—q=0 mod 2

with the matrices

_ £k 0 _ 0 €4 _ €k 0
we(T ) (89) w-(%0)

tth

where €, s a primitive root of unity.

The order of the group D, , is 4(n — ¢)gq. The procedure to obtain the invariants
C[x, y]P~ is also well known: first develop
n 1

:[a25"'aae—1]:a2_
n—q as —

_ 1
aa= TS

as a Jung-Hirzebruch continued fraction expansion. We fix this notation throughout the
paper, noting the strange numbering. Now define series c;, d; and t; for 2 < j < e by

62:1 03:0 C4:1 Cj = aj-1Cj—1 — Cj—2 for5§j§e
d2:0 d3:1 d4:a3—1 dj:aj,ldjfl—dj,2f0r5§j§e
tQ = a tg = ag — 1 t4 = a3(a2 — 1) -1 tj = aj_ltj_l —tj_g for 5 S] S &

where the values to the right of the line exist only when e > 3, i.e. when n > ¢+ 1, i.e. when
the group D,, 4 does not lie inside SL(2,C). Also define the series r; for 2 < j < e by

rj=(n-—q)t; —qlc;+d;) for2<j<e
Note by definition that r; = a;_17;_1 —rj_2 for all 5 < j < e. Throughout this paper we set
wy =ay v = a2+ (—1)%2y%0 vz = 22 4 (—1)271y2,

Theorem 2.2. [R77, Satz 2] The polynomials wf("_‘n and wI‘vg‘vgt for 2 <t < e generate
the ring Clz, y]Pra.
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The main ingredient in the proof is Noether’s bound on the degree of the generators in
characteristic zero; once this is used the proof reduces to combinatorics. In this paper we
shall need the following easy variant of the above: define

wy = (27 +y) (@ + (=1)"y?)
ws = (@ =y + (1))

(n—q)

Lemma 2.3. The polynomials wf and wI‘wg‘wg‘ for 2 < t < e generate the ring

Clz, y]Pra.

For D, 4, throughout this paper we fix the notation

n
_:[alv"'vaN]
q

as the Hirzebruch—Jung continued fraction expansion of %. By Riemenschneider duality (see
e.g. [KO01, 1.2] or [WO07, 2.1]) it is true that e — 2 =1 + sz.vzl(ai —2).

Definition 2.4. Define v < N to be the largest integer such that oy = ... =ay, =2, or 0 if
no such integer exists.

Now by [B68, 2.11] the dual graph of the minimal resolution of C?/D,, , is
—2

[ ] L] e L] [}
-2 —a —QaN-1 —QanN

where the a’s come from the Jung-Hirzebruch continued fraction expansion of % above.
Notice that the only possible fundamental cycles Z; for dihedral groups D, 4 are

1 1
or
111 ...11 12 ...21 ...1

where (since by definition v < N) the number of 2’s in the right-hand picture is precisely v.
Thus v records the number of 2’s in Z;.

Definition 2.5. [W88] Denote R = Clz,y|®». A CM R-module M is called special if
(M @ wg)/tors is CM, where wg is the canonical module of R.

There are now many equivalent characterizations of the special CM R-modules, for
example they are precisely the CM R-modules X for which Ext (X, R) = 0 [TW08, 2.7]. The
theory of special CM modules was first developed in the work of Wunram [W88], who proved
the following results:

Theorem 2.6. Let X = Spec R be a complete—local rational normal surface singularity, and
denote the minimal resolution by Y — Spec R.

(1) There is a 1-1 correspondence between the non-free indecomposable special CM R-modules
and the exceptional curves in the minimal resolution Y .

(2) In the correspondence in (1), the rank of the indecomposable special CM R-module cor-
responding to a curve E; is equal to the coefficient of E; in the fundamental cycle Z.

(8) For the dihedral groups Dy, 4, there are precisely (N + 2 — v) non-free rank one special
CM modules, and v rank two special indecomposable CM modules.

Proof. (1) and (2). This is [W88, 1.2].
(3) By the above discussion on Z; for dihedral groups, this follows directly from (2). O

Note that for dihedral groups D, 4, the rank two indecomposable special CM modules
are known from [IW08, 6.2]; in fact the classification of the special CM modules for all finite
subgroups of GL(2,C) is complete with the exception of these (N + 2 — v) non-free rank one
special CM modules in the dihedral cases.
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To be more precise, Wunram defined the specials using CM modules on the ring C[[z, y]]¢
where such modules are of the form (p ®c C[[x,y]])®. In this paper we shall mainly be
working with the C[x, y]“-modules (p ®c C[z,y])%, i.e. we work in the non-complete case.
We are mainly interested in computing the endomorphism ring in the non-complete case, but
later we shall reduce this problem to the complete case since the associated graded ring of

Endc[[may]]c(eap special(p ®(C (C[[ZE, y]])G) is EndC[m,y]G (@p special(p ®(C (C[:E’ y])G)
To find these specials, and thus finish the classification, we need the combinatorial i-series
(as in type A) together with some other combinatorial series:

Definition 2.7. For any integers 1 < my < mo with (m1,ms) = 1 we can associate to the
continued fraction erpansion z—f = [B1,...,Bx] combinatorial series defined as follows:
1. The i-series, defined as

o =mg i1 =m1 i =101 — %2 for2<t< X+ 1
2. The j-series, defined as
jo=0 j1=1 ji=0B—1Jt—1 — Ji—2 for2 <t <X + 1.
3. The l-series, defined as

J
=2+ (B,—2) for1<j<X.
p=1

4. The b-series. Define by := 1, b, —1 := X, and further for all 1 <t <lx —2 (if such t
exists), define by to be the smallest integer 1 < by < X such that

bt
t<> (Bp—2).
p=1

Definition 2.8. Given a continued fraction expansion Z—f = [f1,...,Bx] we call the contin-
ued fraction expansion of m2n12m1 the dual continued fraction, and denote it by [B1, ..., Bx].

Throughout this section we shall be using the above combinatorial series for many dif-
ferent continued fraction inputs, thus to avoid confusion we now fix some notation.

Notation 2.9. ForD,, 4, throughout this paper we fix ni_q = [az,...,ac-1] and 2 = [aq, ..., an].
We shall denote the combinatorial data in Definition 2.7 associated to the continued fraction
eTpansion of% exclusively by using the fonts and letters (i,j,1,b). For all other continued
fraction inputs we shall denote the combinatorial data in Definition 2.7 by using different
fonts and letters.

We record some easy combinatorics.

Lemma 2.10. For any D, 4 with any v,
(i) a=v+2.
(il) ¢=iv41+v(n—gq).
(iil) ro=2(n—q) —ipy1.
(iv) rs=(n—q) —ipg1 =0y — 2ip41-
(V) To = 27"3 + iy+1.

Proof. (i) This is immediate by Riemenschneider duality.
(ii) Trivially this is true if ¥ = 0, so we can assume that v > 0. This being the case it is easy
to see that

(%) iw=t¢g—(t—1nforall l <t<v+1

since a; = ... = o, = 2. In particular i,41 = (v + 1)q — vn and so the result is trivial.
(iii) This follows from (i) and (ii) since

r2 = az(n—q) —q(cz +dz2) = (v +2)(n —q) — (i1 +v(n —q))(0+1) =2(n — q) — i1
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(iv) Immediate from (iii) since
r3 = (a2 = 1)(n—q) —qles +ds) = (a2 = 1)(n—q) —g =12 — (n — q).
(v) Immediate from (iii) and (iv) above. O

Lemma 2.11. Take some continued fraction expansion z—f = [81,...,Bx] and denote the

combinatorial data from Definition 2.7 by (I, J, L, B). To the dual continued fraction [31, ..., Bx]" =
[71,--.,7y] denote the combinatorial data by (1,J,L,B). Then

(i) Be=Li—1foralll <t<Lx-—1.
(il) ly=Ny1 4+ Ip, for all0 <t <Lx —1.
(i) Jeg1 — e =Jp, for all0 <t <Ly —1.
(iv) Jpp1—Jde=Ji,-1 forall1<t<Lx —1.

(v) Jg, =1+30 7 i, forall 1 <t <Ly —1.

Proof. (i) is an immediate consequence of Riemenschneider duality.

(ii) and (iil) are just a slight rephrasing of a result of Kidoh [K01, 1.3].

(iv) By duality, swapping bold and non-bold in (iii) gives Jiy1 — Jr = Jp, for all 0 < ¢ <
Lx — 1. The result then follows by (i).

(v) Follows immediately from (iv) since

B,—1
J][Bt —1= J][Bt —-J; = (J][Bt — J][Bt—l) + ...+ (\DQ — \Dl) = Z Ju_pfl.
p=1

]
The following is known, and can be found in [BR78, p.214].
Lemma 2.12. For D, , as above with niﬂ] = [ag,as,...,ac—1], then the r-series is simply
the i-series for the data [as + 1, a4, ...,ac—1]. More precisely, denoting the i-series of [as +
1,a4,...,0c-1] by Zo,Z1, ..., we have ry, = T_o for all 2 < k < e.
Proof. By definition niﬂ] = [ag,...,Gc-1] = ag—m and so ﬁ = [as,...,qc_1].

But combining Lemma 2.10(iii),(iv) we know that r3 = 19 — (n — ¢) and further since ry =
asz(n — q) — q (by definition) we have

T as(n —q) — n—q-+axn—q)—n

2= 2(n =) — g = a+ax(n = q) =lag+1,a4,...,0c_1]

r3  az(n—q)—q—(n—q) az(n—q) —n
The result now follows since r4 = (as+1)rs—ro and 1y = ap—17¢—1 —11—0 forall 5 <t <e. O

Note in particular this means that r._; = 1 and r. = 0.
Lemma 2.13. Consider D, 4. Then for all2 <t <e—2,
Ti41l = Tey2 + L.

Proof. Denote the i-series associated to the following data as follows:

L:[a25a3a"'aaefl] by Los 1y .-

n—q
[a3,a4,...,ae_1] by Zo,zl,...
[as +1,a4,...,ac-1] by Zy,Zi,...(as in Lemma 2.12)

Since Z“Zh =las+1,a4,...,ac-1] it is clear that for 0 < j <e
7. — o+ 01 ifj:O . 11+ Lo iszO
7 Zj lf_721 o Li+1 1fj21
Now by Lemma 2.12 for all 2 < k < e we have rp, = Z;_o. Thus for 2 <t < e — 2, by the
above and Lemma 2.11 applied to [51,...,8x] = [aa,...,an] we have

Tep1 = L1 =t = g1 + 0, = Lt + 0, = Teq2 + iy,
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Lemma 2.14. Consider D, 4, then for allv +1 <t <N
r, = it — it+1.
Proof. Proceed by induction. Consider first the base case t = v + 1. Notice it is always true
(by definition) that I, 41 = a,11. Now to prove the base case requires two subcases:
(i) If ap41 = 3 then by Lemma 2.10(iv)
Tl,,Jrl = roz,,+1 =73 = il/ - 2@'1/-{-1 = il/-‘rl - il/-‘r2
(ii) If ayq1 > 3 then Lemma 2.10(iv) and Lemma 2.13 we have
Tl,,+1 =T3— (lqul - 3)7:l/+1 == (Zl/ - 27:1/+1) - (av+1 - 3>iv+1 - 7:1/+1 - iv+2

and so we are done. This proves the base case t = v + 1. If v = N — 1 we are done hence
suppose v < N — 1, let ¢t be such that v+ 1 < ¢t < N and assume that the result is true for
smaller . To prove the induction step again requires two subcases:
(i) If o4 = 2, then I; = l;—1 and so by inductive hypothesis

Ty, =T, = G-l — G = G — 1.
(ii) If oy > 2 then by Lemma 2.13 and inductive hypothesis

T, =11y — (e = l—1)ie = (=1 — 1¢) — (o — 2)iy = B¢ — Gy41.

Definition 2.15. Consider D, 4. Define forv+1<k <N +1

k—1 k—1
Ak:1+zclt and T} = Zdlt

t=v+1 t=v+1

where the convention is that for k = v+ 1 the sum is empty and so equals zero.

The following is the key technical result of this section. Its main use can be seen visually
in Example 3.6, and it forms the basis of the combinatorial arguments used in Proposition 3.7
(and hence the remainder of the paper).

Lemma 2.16. Consider D, 4 for any v. Then for all2 <t <e—2
Ciyo = Ciy1 + Ay, and dipo = dipr + 1y,

Proof. (i) The ¢ statement. The trick is to interpret the ¢’s as the j-series associated to some
continued fraction, then use the results of Lemma 2.11.

We first prove that the lemma holds in the case ¢t = 2. Notice that Ay, = 1 since either
by = v+ 1 and so the sum is empty (and so by convention zero), or by > v + 1 in which case
lys1=...=1p,—1 = 3 and so the sum is ¢z + ...+ c3 = 0. Thus ¢4 = c3 + Ay, follows since
¢4 =1 and c3 := 0. Hence the result is true for t = 2 thus we may and restrict our attention
to the interval 3 <t <e — 2.

Denote the j-series of [a4, ..., ac—1] by j. It is clear from the definition of ¢ that

¢t = ji—g forall 3 <t <e.

To [ag,...,ac—1]Y denote the j-series by f§, the b-series by b and the l-series by L. By
Lemma 2.11(iii) applied to the data [31,...,x] = [a4,...,ac—1]

Ct4+2 — Ct4+1 :jt,1 *jt72 :_ﬁu)t72 for all 2§t§ e— 2.
On the other hand

be—1 be—1
Abt:1+ Z Clp:1+ Z jlp—3;
p=v+1 p=v+1
thus to prove the lemma we just need to show that
bi—1

by =1+ Z ji,—3 forall 3<t<e—2.
p=v+1
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Now by Riemenschneider duality

| aw, — 10148y, an] oy =3

\%
] _{ [O‘b272aal+b2a-'-7aN] ifo‘l/+1>3

[a/4a sy Qe—1
from which it is easy to see in either case that
by = 1 whereas by = b0 — (bo — 1) forall 1 <t <e—4

and Ls = l(p,—1)4s — 2 forall 1 <s < N — (by — 1). Hence

by—1 by—1 by_2—1
T+ > Gs=14> dims=14jL,1+4. +ire , n1=1+ Y Ji,-1=1Jb
p=v+1 p=ba p=1

for all 3 <t < e — 2 where the last equality holds by Lemma 2.11(v) applied to the data
[/315 v 7ﬂX] == [a45 v 5aefl]'

(ii) The d statement. The trick is again to interpret the d-series as the j-series of
something, but here it is a little bit more subtle.
Due to lack of suitable alternatives we recycle notation from the proof of (i): now denote

the j-series of [aa,,, —1,aa,, 141, --s0e—1] by j, and further for the dual continued fraction
[@ay.y —1,aa, 141, -, ae—1]" denote the j, b and I series by §, b and L respectively.
Now it is easy to see that d3 = ... = dqs,,, = 1 and further d; = j41)—q,,, for all

ay,+1 +1 <t <e. Hence the result is certainly true (by the convention of the empty sum
being zero) for the interval 2 < ¢ < «,4; — 1. Thus we are done in the case v = N — 1 and
also in the case e = 4. Thus we may assume that v < N — 1 and that e > 4, and concentrate
on the interval (ap41 —2)+1<t<e—2=(ay+1 —2)+ (1 + Z;V:VJrQ(ap —2)).

By Lemma 2.11(iii) applied to the data [f1,...,8x] = [@a,., — 1, Gapir415- -5 Ge1]

. . .
diy2 = dip1 = J(t43)—avr1 — Jt+2)—avts = Ibis—ay s

for all (a1 —2) +1 <t < (ong1 —2) + (1+ 3,0, 0(0p — 2)).
On the other hand

by —1 by—1
Do, = Y di,= > Jp-avitt
p=v+1 p=v+1

and so the result follows if we can show that
be—1

o . .
J][b(t+2)7ay+1 - § : J(p—apy1)+1
p=v+1

for all (a1 —2) +1 <t < (ong1 —2) + (1+ 0, o(0p — 2)), i

b(au+1*2)+f_1

(1) B, = R [
p=v+1
forall1 <t <1+ Z;VZV 4o(ap —2). Now by Riemenschneider duality
[@ayiy — 1@y t1s-osGea1]” = [ago, ..., an]
andsoly —1=1+ Z;V:UJFQ(QP —2). Further it is easy to see that by = 1, by = b(a, ., —2)4+ —

(v4+1)foralll <t < 1—|—Z£fzy+2(ap—2) and Ly = l(y41)44 — g1 +2forall1 <t < N —v.

This implies that the sum in (1) is simply
bi+v

Z Jp—avi)+1 = 31T Jo—avi)+1 T F I pv—av)+1 = L+ i1+ o+ Jg, -1
p=v+1
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and so by Lemma 2.11(v) applied to the data [f1,...,8x] = [@a,1 — 1, Gayyit15- - -5 Ge—1)

b(av+1*2)+t71 b,—1
Yo et =1+ D i1 = b,
p=v+1 p=1
forall1<t<lLly—-1=1+ z;v:wr?(ap — 2), as required. O

3. COMPUTATION OF THE RANK ONE SPECIALS

In this section we determine the rank one special CM modules for all D, 4, and obtain
their generators. Denoting R := C[z,y]"»¢, we do this by first viewing CM R-modules as
R-summands of the polynomial ring [H78]. We then factorize the generators of the invariant
ring R via a certain quiver, and argue by diagram chasing that the modules corresponding
to the vertices are two-generated. Thus in this section we view a certain quiver D; (see
Notation 3.5) as a convenient method of factorizing certain polynomials; in later sections the
quiver Dy forms part of the reconstruction algebra.

We begin with the following simple lemma.

Lemma 3.1. Let G be a small finite subgroup of GL(2,C). For one-dimensional repre-
sentations p,o, denote the corresponding rank one CM modules by S, and S,. Then as
Clz, y]“ -modules

HomC[z,y]G(Spa SU) = Sa'®p*-

Proof. Since the group G is small, it is well known that C[z,y]#G = Endc[, ¢ (Cz,y]) and
addClz,y] = CMC[z,y]“. Consequently

proj Clz, y|#G ~ CMCJz,y]¢
M — M€
is an equivalence of categories (for details see for example [Y90, 10.9]) and thus
Homgy, 4j6(S,,So) = Homgy y#a(Clz, y] @c p,Clz,y] @c o)
Homg ;) (Clz,y] ©c¢ p, Clz,y] ©c )¢
(Clz,y) @c (0@ p")E = Sogpr

I

O

Definition 3.2. For 1 <t < n — q define W to be the CM Clz,y]"7-module containing
(zy)".

We should make two remarks. First, the W; are well defined since (xy)! is a relative
invariant for the one-dimensional representation

n —q odd | n — q even
’L/)Qq — 1 1/}
2 — 1
T = (=1)f ! (n—q)+t

Grua) > g | TEO T a0

Second, the assumption ¢ < n — ¢ ensures that the W; are mutually non—isomorphic repre-
sentations. Now for any D, 4, by Lemma 2.10(iv) it is true that 4,41 < n — ¢ and so we aim
to prove that W; ., W; .,,...,W;, are special CM modules. Since they have rank one, we
just need to show that they are two-generated:

Lemma 3.3. [W88] Suppose that M is a rank one CM Cl[z,y]%-module which is minimally
2-generated. Then M s special.

Proof. Denote the minimal resolution of C?/G by 7 : X 2 /G, and the irreducible excep-

tional curves by {E;}ses. For asheaf .Z on X, we denote .Z" to be the sheaf Homgz(F,0%)
and we denote T(.%) to be the torsion subsheaf of .7, i.e. the kernel of the natural map
F — FVV. To ease notation, if M is a CM C[z,y]“-module, we denote M := 7* M /T (7* M).
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Now by [W88, 2.1] (see also [IW12, 3.5]) M is generated by rank M + Z;-c1 (M) elements.
This then implies that Z¢ - ¢1(M) = 1. But the fundamental cycle Zy = > ._; a; E; where
each a; > 1, and also ¢; (M) - E; > 0 for all i. Hence

1 = Zai(cl(./\/l) . Ez)

el

el

forces ¢1 (M) - E; = 0;; for some j € I (where ;5 is the Kronecker delta), and further a; = 1.

But since a; = 1, by Wunram [W88, 1.2] there exists a special CM module Mj, of rank
one, such that ¢1(M;) - E; = §;;. Since line bundles on X are uniquely determined by their
first Chern classes (see e.g. [V04, 3.4.3]) we conclude that M = M, from which taking
global sections yields M = Mj. 0

The next lemma is trivial but is used extensively.

Lemma 3.4. Consider a rank one CM C|x,y|-module T. Let fi,fo € T be such that
every element of T may be written as Af1 + Bfs for some polynomials A and B. Then T is
generated as an Clx,y]%-module by fi and fo.

Proof. Let a € T be written as a = Af, + Bfs. We just need to show that we can replace
A and B with polynomials inside C[xz,y]®, then the result obviously follows. Taking any
element g of the group G, since f1, fo € T we may act on a and then cancel the relative
invariant scalars, leaving a = (¢ - A)f1 + (¢ - B) fo. Thus summing over all group elements,

a=15(eec9 A+ 165(Csec 9 B O

For technical reasons we split the proof that W; , W, are special into two cases:

TR
Case 1: 0<v <N —1,s0 a1 > 3.

By definition and Lemma 3.1, certainly we have the following maps:

_(wy) w12 Z(zy) ' N-17IN__ —TY— R

Wi Wi,/+2 WiN—l W1

v+1
Now by Lemma 2.10(iii) 2(n — q) = 72 +i,41, so since (zy)*™~9 is an invariant we also have
amap (xy)™ : W;,,, — R. Since (ry)"wy is an invariant this in turn means

(i) there is a map wo : R — W, .

(ii) (since 2r3 +i,41 = ro) there is a map g := (zy)?"3wq : W;,,, — R.

But also (zy)" w;l‘wgl‘ is invariant, so by Lemma 2.14 we have, for each v +1 <t < N — 1,
a map

v41

cry iy . ;
Wit wi Wi, — Wi,

and also a map wglN wglN : Wiy — R. Thus we have justified all the maps in the following
picture:

"IN -1
—(zy) -

IS

1

—(@y) VL o 4

W -, IN—1 N-1-> I/
IN—1 "2 w3 iN

; cy a .
W1u+1 g Ly L > Wi

( )Tz/ j
o 2 Cin  dip
wy N w,
‘ Mh\[
R

In general there will be more maps. If o, 11 > 3 then for every 2 <t < a,+1 — 2 add an extra

— R labelled (zy)"t+2 wgt“wg“l. For all such ¢ it is true that b = v + 1 and so

vl
these maps go where they should since (zy)" 1wy ™

by Lemma 2.13.
Now if s is such that v + 1 < s < N with as > 2, then for every 1 <t < a3 — 2 add

Ctoitig_q  de—141,_ 4

an extra map W;, — R labelled (zy) -1 w, Wy . For all such ¢ it is true that

V42

map W;

dit1 - . . .
wy* is an invariant and ry41 = o+,
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bi—241, , = s and so by Lemma 2.13 r¢—144, , = re41, , + Ubynyr, , = Tt+l,_y T ls- Thus

. B Ctoitig_q  de—141,_4 . . .
these maps also go where they should since (2y)™*~'*s-1w, g *~! is an invariant.

Notation 3.5. We denote by D1 the above quiver with all the extra arrows (if these extra
arrows exist). We denote by Do the quiver obtained from Dy by making the substitution
wy — vy and ws — vz wherever wy and ws appear in the labels of the arrows in Di.

To ease notation in the proof of Proposition 3.7 below we denote the arrows in D; by

av+2v+l\ /aNN—l

Win s

Wi, ——cvirvir—— Wi, )

Note that cyq1 should read ‘clockwise from ¢ to ¢ + 17 and similarly as—; should read ‘an-
ticlockwise from ¢ to ¢ — 1’. Further we denote the extra arrows (if they exist) by ko, ks, . ..
labelled from left to right.

—

CN—1N——> W’L
N

Za

Example 3.6. Consider the group Ds¢ 15 of order 2460. Now using

56

=12,2,3,2,3,2,2
56—15 [ ) 537 537 ) ]
we can calculate
|2 3 4 56 7 8 9
r|67 26 11 7 3 2 1 0
cl1 0 1 3 5 12 19 26
d{o 1 1 2 3 7 11 15

and so in this example v = 0, and the quiver Dy is

° /—ai;\ ° /—ii\ .

where
11 ap3 = 1Y
22 _ Exy% v Co1 = W azs = (zy)?
° i 3w§w32, C12 = W2W3 a1 = (xy)“
ky = (zy) wiws Con — w3 a1 = (zy)®7
ks = (zy)*w3w3 023 _ w%9u3)11 10 v
ke = (xy)wi*w] T g = (zy)"2ws
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Below are the generators of the ring of invariants, and how to view them as paths in Di:

(zy)®*

(2y)5Tw,

(zy)*ws

)11

(zy waws

(zy) wiwg

3,19,,,3

(zy) wyws

(zy)*wiPw]

(zy)ws’ws!

26,15
w5 ws

The next proposition follows the above example closely; in fact the cycle pattern is the
same as in type A, but the proof here is a little more complicated than in type A since we
need to rely heavily on the combinatorics from Section 2. In what follows it is convenient to
write A;; for the composition of anticlockwise paths a from vertex ¢ to vertex j, and similarly
C;; as the composition of clockwise paths, where by Cj; (resp. A;;) we mean not the empty
path at vertex ¢ but the path from ¢ to i round each of the clockwise (resp. anticlockwise)
arrows precisely once. So, in Example 3.6 above, (ry)%? = Ay and w3%wi® = Cpp. We also
refer to the vertex W;, as vertex t, and the vertex R as .

Proposition 3.7. At every vertex in the quiver Dy, all invariant polynomials exist as a sum
of compositions of cycles at that vertex. Furthermore, if we remove any one arrow this is no
longer true. Both statements also hold for Ds.

Proof. We first prove the statements for D;. To simplify the exposition we consider cycles up
to rotation — for example by ‘Cpo at vertex ¢’ we mean Cy; (i.e. we rotate suitably so that
the cycle starts and finishes at the vertex we want). It is clear that we can see (zy)2("~% at
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every vertex as Agg. By Lemma 2.3 it suffices to justify why at every vertex there is also the
cycle (zy) twstwst for all 2 <t <e.

First, consider ¢t = 2, i.e. (zy)"2ws. At the vertex x and the vertex v + 1 we can see this
as Cop+1au+10- At all other vertices we can see (zy)"2ws as Ag,419 since by Lemma 2.10(v)
Ty =213 + 1y41.

Now consider t = 3, i.e. (zy)”w%"w?. At vertices by,..., N and x we can view this
invariant as Agp,ka since Aoy, ka = (zy)®2 TrwPwd® = (zy)BwPwd® by Lemma 2.13. Thus
if by = v+ 1 these are all the vertices, else by > v+ 1. In this case we can view (zy)™ws? w§?
at vertices v + 1 < s < by as ¢g5410s415 since for these s by definition [ = 3.

From here the pattern in the invariants is exactly the same way as in type A — consider
now (zy) ™ wstwi® with 4 <t < e—1. At the vertices b;_1,..., N and % can see this invariant
as Aoy, ki1 since Agp, ki1 = (zy) ™1 T wStwdt = (zy) twstwdt by Lemma 2.13. At
vertices v 4+ 1,...,b;_2 and * the invariant may be viewed as Cop, ,ki—2 since Cop, ,ki—o2 =

1+A di1+A .
(xy)”w;t PETRe TETT2 — () rrwStw§t by Lemma 2.16. Thus if by_o = by these are

all vertices, else b;_o < b;_1. In this case we can view the invariant at vertices by_o < s < b;_1
as Csst10s41s since for these s we have [; = t.

The last invariant (zy)™wS wis = wsewie can be seen at all vertices as Cpo. This is

because [y = e — 1 and so the cyg = wge’lwge’l. Consequently Cyg = wge**Ang‘e*l”N
which is wg® wge by Lemma 2.16 since b._o = b, —1 is defined to be N.

Since by Lemma 2.3 the collection (zy)2"~9), (zy) *ws wi* for all 2 < t < e generate
Cla, y]D"vq it follows that we can see, at each vertex, all invariants. If we remove any one
arrow from D; then by inspection of the above proof this is no longer true. To obtain the final
statement regarding Do, note that in the above proof if we make the substitution wsy +— vo
and ws — vs throughout and appeal to Theorem 2.2 instead of Lemma 2.3, nothing in the
proof is affected. O

The above may be a simple observation, but it allows us to diagram chase over D; to
deduce that W; ., Wi, are 2-generated and thus (by Lemma 3.3) are special:

PR

Theorem 3.8. For D, with 0 < v < N—-1and all1 <t <v+1, W, is generated as
a Clz,y]P» module by (zy)* and wQA‘w};‘, and so is special. Alternatively we can take as
generators (xy)™ and v5t VL.
Proof. We restrict ourselves to proving the generators (zy)* and wQAtwgt by using D1; the
other generators follow immediately from the proof below by making the substitutions wsy +—
ve and ws +— vz throughout and working with Dy instead.

We first verify the case W;,, then proceed by induction on decreasing t. To prove the
Wi, case, let f € Wi, , and split into 2 subcases:
Subcase 1: oy = 2. Consider wy™ wgle. It is an invariant, so we can view it as a sum of
cycles at the vertex W;, . These must all leave the vertex, so since there are only 2 arrows
out we can write

iy, iy o Ciy o diy IN—1—IN
wy N wy N f = wy N ws Y poN + (2y) PN-1,N

where po v is a sum of paths from R to W;, and py_1,n is a sum of paths from W;, , to

d;

Wiy - Note that tj—1 — iy = 1 since ay = 2. Viewing everything as polynomials w;lN ws ¥

.. . d .
must divide py_1,n5 and so after cancelling the wglN wglN term we may write
f=pon + (zy)A

for some polynomial A. By inspection of the quiver D; there are only two paths from R to
Wi, that don’t involve cycles, so after moving all cycles to the end of the path (which we
can do since there are all invariants at all vertices) we may write po v as

pon = (2y)"™~ By + (wy ™ wy ™) By
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for some polynomials By and By. Thus since r;,, = 1 we see that
f = (zy)(B1 + A) + (w3 wy™) By
thus by Lemma 3.4 it follows that W, is generated by zy = (2y)*~ and wQAngN, and so is

special.
Subcase 2: an > 2. In this subcase there is an extra arrow from W;, to R labelled by

Ciy_y iy
(xy) HN-1wy, Y rws V'L Further by Lemma 2.14 and Lemma 2.13
IN_1—IN = Tin_1 = T+iy_, T Z.b71+lN,1

thus since b_14;,_, = N and iy = 1 it follows that 714, _, = (ix—1 —in)— 1. Consequently

. ; CioV—1 Cn_1 diny_q o, . . . .
the polynomial (zy)~-1=i8) =1y, N =19y, "N =1 f is an invariant and so we can view it as a sum

of cycles at the vertex W;, . They all must leave the vertex, so we may write

. . d
(in—1—in)—1,, CIN—1 IN—1 p
Woy w3 f=

(zy)
) ) . ) d
(my)zN,lszAl + (:L,y)(zN,lsz)—lwglelw3lN71p07N + ’LUQAt’LUgtBl

where po, v is a sum of paths from R to W;,, 4; is a sum of paths from W;, , to W;,, and
B is some polynomial; we can do this since all the other arrows leaving W;, are divisible by

Ay 1

wy'ws" by Lemma 2.16. Viewing everything as polynomials, (zy)~-1=)=1 must divide

, d
B and further w;lN ’lwglN ' must divide Ay, thus after cancelling these terms we see

[ = (zy)As+pon + wQAfwngz

for some polynomials A, and Bs. By inspection of the quiver Dy there are only two paths
from R to W;, that don’t involve cycles (one is zy = (xy)"'~, the other is wg ¥ wi ™), so after
moving all cycles to the end of the path (which we can do since there are all invariants at all

vertices) we may write po n as
o = (2y)"'x Cr + (wy ™ wy™)Co
for some polynomials C; and Cy. Thus since r;,, = 1 we see that
f=(@y)(C1 + A2) + (w3 wy™)(Bz + Cb)

and so by Lemma 3.4 it follows that W;, is generated by zy = (2y)*~ and wQAngN, hence
is special.

For the induction step suppose we are considering W;, with v +1 < ¢ < N and we have
established the result for W; Let f € W;, and consider w;l‘wgl‘ few;
hypothesis we may write

By inductive

t+1° t+1°

A

e, diy g i t+1, Tiga
wy'tws't f = (zy)"* 1 A + wy Trwy T By

for some invariant polynomials A;, B;. Viewing everything as polynomials we see that

wg” wglt divides A; and so after cancelling this factor

f = (zy)*+ Ay + ng‘w};‘Bl
for some polynomial As. Since B is invariant u}2A twgtBl € Wi,, hence since f € W;, we get
; o S di, . . . .
(zy)*+1 Ay € W;,. This is turn implies that Agws'* w,'t is an invariant, and so we can view
it as a sum of cycles at vertex W;,,,. From here we split into 2 subcases:
Subcase 1: a1 = 2. Then there are only two arrows out of W;, ,, thus

ey diy iy —1 Clypr iy
Agwy T wst = (xy)" T Dy Hwy T wg T pryo i

where p; 111 is a sum of paths from W;, to W;
Wi
as polynomials wg“ wg“ divides p;+41 and so after cancelling this factor

Ay = (zy)"* "' Dy + pryoisa

v and pyio 411 is a sum of paths from W;, ., to

.1+ But since ay1 = 2 it follows that ¢;,,, = ¢, and d;,,, = d;,, thus viewing everything
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for some polynomial D;. Now any path from W;, ., to W,
map (zy)+~+2 or go via R and end through the composition of maps wQAt“wgt“, thus

we may write piyo ¢41 as

must either factor through the

Qg1 —1 Appr T
Pri2r1 = (2y)" T T B +wy T wg T By

for some polynomials F7 and Es. But iy — i441 = G141 — Gr42 since agy1 = 2, hence

Ay = (zy)"* 1 (Dy + Ey) + wht wh ! By,

Consequently

f

(zy) i+ ((wy) '~ (Dy + By) + wy oy ™ By) + wstwy By

= (zy)" FL + wywy' Fy

for some polynomials F; and F,. Hence by Lemma 3.4 it follows that W;, is generated by
(zy)% and wswy", thus is special.
Subcase 2: ayy1 > 2. Here we may write

ey diy is—iy iy —2i ey diy Appr, e
Agwy wzt = (zy)" T P g1 + (2y) T wy fws o Fwy Tlwsy TGy

where p; ;41 is a sum of paths from W;, to W;,,,, po,t+1 is a sum of paths from R to W;
and (7 is some polynomial; we can do this since by Lemma 2.16 all other paths out of W;

t+1

t+1
when viewed as polynomials are divisible by w2A "+1w§t“. We are also using the fact that

T141, = 9 — 24441, which is true by Lemma 2.14 and Lemma 2.13. By inspection of D; we
may write
Po,i+1 = (zy)" 1 Hy + wQA"“wgtH H,

for some polynomials Hy, Hy and so

Ay wglt = (2y)" " (Prag1 +ws' wglt Hy) + szlegtﬂ(Gl + (zy)" " Hy)
— (ij)“*“+1 J, + wQA”lwg”lKl
say. Thus wgl‘wgl‘ must divide J; and so after cancelling this factor we get
Ay = (xy)t T+ Iy + wQA‘wg"Kl
for some polynomial J;. Consequently
fo= (ay) () T e 4wyt wy K 4wy twy ' By
= (wy)"Jo+ wptwy' (By + (xy)"*+ K1)

and so by Lemma 3.4 it follows that W;, is generated by (zy)“ and w2A ‘wg ¢ thus is special.
This establishes the induction step, so the result now follows. O

Case 2: v=N — 1.

Theorem 3.9. For D, , with v =N —1, W;,, = W, is generated as a C|[x,y]P"¢ module by
xy and ws, thus is special. Alternatively we can take as generators xy and vs.

Proof. We prove the statement regarding xy and ws; the other statement follows immediately
since either v = N — 1 is odd and so vy = wa, or its even in which case (since ¢ = 4,41 +
v(n—q) =14+ v(n—q) by Lemma 2.10(ii)) vy = wy — 2(zy)((zy)>"~9) 3 with ((xy)2"~9)%
an invariant.

If any = 2 then the group is in SL(2,C) and so the result is well known, hence we can
assume that any > 2. It is clear that we have the following maps from R to W;,, and from
Wiy to R:

LY.
W2

R '%(zy)71+rzw§2w§27 WiN

(zy)™2



16 MICHAEL WEMYSS

Note (zy) "2 wPws? = (zy)~1T"2wy and also by Lemma 2.10 —1 + rp = 2r3 — 2 which is
greater than zero since ay > 2 forces r3 > 1. Now if ay > 3, for every t with 4 <t < ay+1
add an extra arrow from Wi to R labelled

;1+thgt — ( )OLNJrl*t t—3

(xy) tw xy Wy Cws

where the equality holds since 7, = any + 1 —t by Lemma 2.13 whilst ¢; =t —3 and d; = 1
by Lemma 2.16. The extra maps go where they should since (zy)™ ws' wg‘ is an invariant for
all 4 <t <e=ayny+1 and we have a map wy from R to W;, . It is easy to see that at both
vertices we have all invariants. Let f € W, and consider the invariant wg™ “2ws f. Now the
two original arrows from W, to R both have factor xy and further all the extra arrows from
Wi, to R have factor xy, except wy™N ws. Consequently viewing w$™ ?wsf as cycles at
the vertex W;, we can write

an—2

wiN 2wz f = wiN 2wz A + (vy)B

where A is a sum of paths from R to W;, and B is some polynomial. But there are only two
arrows from R to W;, (namely zy and wy) and so writing A in terms of them

wg‘N—2w3f = ng_lngl + (zy)(B + ng_2w3A2)

for some polynomials A, A>. Thus wg‘N_ng must divide B + wg‘N_ngAg and so after

cancelling these terms we get

[ =wsA1 + (2y)Bs
for some polynomial By. Hence by Lemma 3.4 it follows that W7 = W, is generated by zy
and w9, and so is special. O

We now search for the remaining rank one specials.

Definition 3.10. Define W; to be the CM C|x, y]°»a-module containing x9 + y9, and W_
to be the CM module containing 9 — y9.

These are well defined since 9 £+ y9 is a relative invariant for the one-dimensional rep-
resentations
n — q odd | n — q even
’L/ng —  F1
T el
q
P2a(n—q) 62(n—q)
Note also that W, and W_ correspond to non-isomorphic representations, and that they are
also distinct from the W; defined earlier.

’lﬂgq — Fl
TP4(n—q) = EZgi(n—q)

Lemma 3.11. For any D, , with any v, W is generated by the two elements (xy)" % (x? —
y?), 294y whilst W_ is generated by the two elements (xy)"~9(x?+y?),2? —y?. Hence both
are special.

Proof. Let f € W,. We first claim that wy = (29 +y9)(x? 4+ (=1)"y?) € W;,,,. Ifv =N -1,
then this follows since wo generates W, , = Wi, = Wy by Theorem 3.9; if 0 <v < N — 1
it follows by inspection of Dy. It follows that (z? + (—1)"y?)f € W;, . But by combining
Theorem 3.8 and Theorem 3.9, for any v we know that W, is generated by (zy)™+! and

v+1
wQA”“wg”+1 =wy = (x? + y9)(x? 4 (—1)"y?) and so we may write

(@ + (“1"Y)f = )"+ €1+ (@1 + 5" +(~1)y")Ca

for some invariant polynomials C7,Cy. This means 29 4+ (—1)"y? must divide C; and so by
inspection of the list of generators of the invariant ring (Lemma 2.3) we may write

Cy = (zy)" (27 —y?) (2 + (=1)"y") D1 + (7 + y?) (2 + (=1)"y?) D2
for some polynomials Dy, Dy, thus

f = (zy)s T+ (27 — y) Dy + (27 + y?)(Cy + (zy)™+* Dy).
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Now by Lemma 2.10, r3 +4,+1 =n — g and so
f=(zy)""U(z? — y?)Dy + (29 + y?)(Co + (zy)™+1 Dy),

hence by Lemma 3.4 it follows that W, is generated by (xy)" 9(z? — y?) and 27 + y?, thus
is special. The argument for W_ is symmetrical. 0

Summarizing what we have proved:

Theorem 3.12. For any D, 4, the following CM modules are special and further they are
2-generated as C[x,y]Pma-modules by the following elements:

Wo | af+y? (ay)" (2t —y?) | 27 +y? (ay) (2 —yT)
Woo | ot =yt (ay)" (2 ) | 2t -yt (wy)" (2 +y?)
Wiu+1 (:L-y)%u+1 wWa :Aw2Au+1w§u+1 (:Cy)fu*’l Vg :AU2Au+1,U§u+1
Wi,/+2 (:Cy)l,,+2 'LU2 u+2w§u+2 (zy)’b,/+2 ,02 u+2v§u+2
Wiv | (zy)'™ wy ™ wy ™ (y)™ vy N g™

where the left column is one such choice of generators, and the right-hand column is another
choice. Further there are no other non-free rank one specials.

Proof. Combine Lemma 3.11, Theorem 3.8 and Theorem 3.9. Since they are distinct and we
have N + 2 — v of them, by Theorem 2.6(3) these are them all. O

We can go further and assign to each of the above specials the corresponding vertex in
the minimal resolution. The v > 0 version of the following lemma can be found in [W09).

Lemma 3.13. Consider D, , with v = 0. Then the special CM modules above correspond to
the dual graph of the minimal resolution in the following way

°‘,2 w_

o — . . W, — Wi, — ... — Wiy, — Wiy

—Q —QON-—-1 —QN

Proof. The assumption v = 0 translates into the condition a; > 3. Here the fundamental
cycle Zy is reduced from which, denoting the exceptional curves by {E;}icr, we can easily
calculate

[} [ ]
I 3
[ ] L] [ ] e [ ] [ ] L] [ ] [ ] e [ ] L]
1 —34+a1 —2+as —24any-1 —1l+an 1 —1 0 0 1
(=Zj - Ei)ic1 (Zx — Zf) - Ei)ie1

where the canonical cycle Z is the rational cycle defined by the condition Zr - E; = —K ¢+ E;
for all i € I. Now denoting R = C[z,y|”4 if we consider the quiver of Endr(R & W, @
W_ o, W;,) we must be able to see the generators of the specials as compositions of
irreducible maps out of R. But by [W08, Corollary 3.1] using the above intersection theory
calculation it follows that we must see the generators of the specials using only compositions
(containing no cycles) of the maps

\ e

Inspecting the list of generators of the specials, it is clear that zy € W, cannot factor
through any of the other specials, thus we must have this as an arrow in the quiver and so
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consequently W, must correspond to one of the vertices above to which R connects. The
same analysis holds for (+) := 294 y? € W, and (—) := 29 —y? € W_ and so these too must
correspond to vertices to which R connects. Now both (+)? and (—)? belong to W;,, and it
is clear that they factor as R ﬂ> Wi ﬂ> W;, and R ﬂ> w_ Q W, respectively. By
inspection of the generators of the specials, both the maps W E)—> W;, and W_ Q) Wi,
are irreducible, hence W;, must be a common neighbour to both W, and W_. This forces
the positions of W, W_ and W;, in the dual graph as in the statement, and also forces
the position of W;,, since it must occupy the final vertex which is connected to R. Now the

polynomial (xy)% factors as

—(my)yri2 ~(zy) N-1TIN — T

Wi, Wi, Win_y Wiy R,

forcing the remaining positions. 0

4. THE RECONSTRUCTION ALGEBRA

In this section we define the reconstruction algebra D,, , with parameter v = 0; when
v > 0 a corresponding definition can be found in [W09]. In fact we give two different
presentations of this algebra, and prove both are isomorphic to the endomorphism ring of the
sum of the special CM modules.

Consider, for N € N with N > 2 and for positive integers a; > 3 and «; > 2 for all
2 <i < N, the labelled Dynkin diagram of type D:

[e5% —QN-—-1 —QanN

We call the left-hand vertex the + vertex, the top vertex the — vertex and the vertex cor-
responding to «; the i*" vertex. To the labelled Dynkin diagram above we add an extended
vertex (called x) and ‘double-up’ as follows:

L]
cflxl,
a—o a \L/ a a —
Tt— ¥/ o —021— NN-—1
C+1—> @ Cl12—=> @ ® —CN—-IN—> @

Now if Zilil(ozi —2) > 2, we add extra arrows to the above picture in the following way:

e If oy > 3, then add an extra oy — 3 arrows from the 15 vertex to *.
o If o; > 2 with ¢ > 2, then add an extra «; — 2 arrows from the " vertex to *.

Label the new arrows (if they exist) by ko, ..., kZN,l(ai—% starting from the 15! vertex and
working to the right. Name this new quiver Q.



RECONSTRUCTION ALGEBRAS OF TYPE D (I) 19

Example 4.1. Consider Dqg 5 then 1—58 = [4,3,2] and so the quiver Q is

E

NI

Example 4.2. Consider D53 11 then % = [5,4, 3] and so the quiver @ is

Now for every Dy, o with v = 0 denote ky := ayo and ki s~y (4, _9) = CNo-

Definition 4.3. For all1 <r <1+ vazl(ai — 2) define B, to be the number (or +) of the
vertex associated to the tail of the arrow k..

Notice for all 2 < r <1+ Zilil(ai —2) it is true that B, = b, where b,. is the b-series of
% defined in Section 2. However By # by since by = v+ 1 = 1 whilst By = + by the definition
of kl.

Now define uy = 1 and further for 1 < ¢ < N denote

u; :=max{j:2<j<e—2with b; =i}
v, :=min{j: 2 < j <e—2 with b; =i}

if such things exist (i.e. vertex ¢ has an extra arrow leaving it). Also define W; := 4 and for
every 2 <1 < N consider the set

S; = {vertex j: 1 <j < i and j has an extra arrow leaving it}.
For 2 <4 < N define
W, { + if §; is empty

the maximal number in S; else

and so W; is defined for all 1 < ¢ < N. The idea behind it is that W, records the closest
vertex to the left of vertex ¢ which has a k leaving it; since we have defined k; := a4 this is
always possible to find. Now define, for all 1 <1i < N, V; = uw,. Thus V; records the number
of the largest k to the left of the vertex i, where since ky := ay¢ and uy = 1 it always exists.

We now define the reconstruction algebra as a presentation by generators and relations.
In what follows, we give two presentations — one which we call the ‘symmetric presentation’,
and one which we call the ‘moduli presentation’.

Definition 4.4. For 2 = [oq,...,an] withv =0 (i.e. aq > 3) define D,, 4, the reconstruc-

tion algebra of type D, to be the path algebra of the quiver Q defined above subject to the
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relations
1 Co4C41 — Co—C—1 = 4Ap
2. Co4+Aa4+0 = Co—A—g
3 a_ogCp— = C_10a71—
4. A14C41 = A1-C—1

together with the relations defined algorithmically as:

Step 0: A40C0+ = C4101+

Step 1: ]f a1 = 3 C12G021 = A14C41
]f ay >3 koA = a14C41, Aok = Co+a4-0
kiCor = kir1Ao1, Corky = Agrki1 V2 <t <wuy
ku, Co1 = c12a21

Step i If ;i =2 Ciit10i41i = Qii—1Ci—1i
If i > 2 ky,Aoi = aii—1¢i—1i, Aoiku; = Cosy, kv,
k:Coi = kiy1A0i, Coiks = Aoikir1 Vv <t <y
kui Coi = Ciit1it1i

Step N: If an =2 cnoaon = ann—-1¢N-1N, Cosy, kvy = aoncno
If an > 2 kyyaon = ann-1cN-1N,aoNkvy = Copy, kvy
kiCon = kyy1aon, Conke = aonkiy1 V oy <t <un
where Aot := agn - - - ary1¢ for every 1 <t < N. The C’s are defined as follows: we define
Cot = cot, and Co := Cpic12 ... ct—1¢ for all 1 <t < N. The only thing that remains to be
defined is Cy1, and it is this which changes according to the presentation, namely

Coo e CO+Ct1 in moduli presentation
L7 S(coscqr +comc_1) in symmetric presentation

Remark 4.5. We should explain why we give two presentations. The symmetric case is
pleasing since it treats the two (—2) horns equally, so that the algebra produced is independent
of how we view the dual graph (see Lemma 4.13). On the other hand the moduli presentation
treats one of the (—2) horns (namely +) to be ‘better’ as relations go through that vertex
and not the — vertex. The moduli presentation makes the explicit geometry easier to write
down in Section 5, and is also satisfactory from the viewpoint of Remark 4.6 below. We show
in Theorem 4.11 that the two presentations yield isomorphic algebras, but note that the
explicit isomorphism is difficult to write down. For the moment denote D,, ; for the moduli
presentation and D;, o for the symmetric presentation, as a priori they may be different.

Remark 4.6. In the moduli presentation (i.e. Cp1 = coqc40) the algorithmic relations are
precisely the same as those for the reconstruction algebra of type A associated to the data

—2 —(a1—1) —ag —QaN-1 —an
° L] [ ]
Consequently the moduli presentation of the reconstruction algebra of type D for v = 0 is

simply a reconstruction algebra of type A, together with an extra piece stuck on to compensate
for the dihedral horns.

Remark 4.7. Since Cy4 := co4, the two presentations are exactly the same if and only if
a1 =3 and ag = ... = ay = 2. This corresponds to the ‘base case’ of [W08, Lemma 3.3].
Note also that the use of B (instead of the b-series b) in the above definition is not a typo
since W = + is certainly possible (e.g. in the family Dosyq 5) in which case Vi = uq = 1;
consequently By, = By = +, which is different to b = 1. Thus using the b-series b can take
us to the wrong vertex.
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Remark 4.8. Double care must be taken to get the algorithmic relations here from the ones
in [WO07]. First, loc. cit labels the extra arrows k in the other direction, and second it also
begins labelling with a k; instead of ko (which we use here). The fact that the direction of
the labelling of the k’s has changed is awkward but it doesn’t matter due to the duality for
reconstruction algebras of type A (see [W07, 2.10]).

Example 4.9. For the group D13 5, the symmetric presentation of the reconstruction algebra
is the quiver in Example 4.1 subject to the relations

Co+C41 — Co—C—1 = 4(ap3a32a21)
Co4+Aa4+0 = Co—A—g
a_gCop— = C—-10a71—
A14C41 = A1-C—1
a4+0C04 = €101+

a14+C+1 = k2((103&32&21) (1103&32@21)]?2 = Co+0a+0
kz(%(00+0+1 +co_c_1)) = c12a21
aziciz = ks(agsasz) (aosas2)ks = (3(coscq1 + co—c—1))kz
k3(%(copcq1 + co—c1)ciz) = cazase
asacos = cs0(ao3) (aos)cso = (3 (corcy1 + co—c1)cra)ks

Example 4.10. For the group Dss 11, the moduli presentation of the reconstruction algebra
is the quiver in Example 4.2 subject to the relations

Co4+C+1 — Co—C—1 = 4apzaszaan
Co+Aa4+0 = Co—A—g
a_pgChp— = C-10a71—
A14C41 = A1-C—1
a40C0+ = C+101+
a1+cy1 = ka(aozasz2a21)  (apzaseast)ks = cotaio
ko(corcq1) = ks(aosaseaz) (apzaszasi)ks = (coxct1)ka
k3(00+c+1) = C120a21
azici2 = ka(aozasz) (ao3asz)ks = (cotcy1)ks
ki(coqcyicia) = ks(aozasz) (aozasz)ks = (coyciiciz)ka
ks(corcqic12) = cagase
asaca3 = ke(aos) (ao3)ke = (coycii1ci2)ks
ke(coqcyi1c12ca3) = c30(ao3) (ao3)cso = (coycqiciacas)ks

The following is the main theorem of this paper.

Theorem 4.11. For a group D, , with parameter v = 0 (i.e. reduced fundamental cycle),
denote R = Clz,y|P and let T), , = R® W, & W_ @, W;, be the sum of the special CM

modules. Then
Dy = Endg(Ty ) = D), .

Proof. We prove both statements at the same time, by making different choices for the
generators of the specials. Using the intersection theory in the proof of Lemma 3.13 it follows
immediately from [WO08, Corollary 3.1] that the quiver of the endomorphism ring of the
specials is precisely that of the quiver @) defined above. We first find representatives for the
known number of arrows:

As before denote 27 4+ y? = (+) and z? — y? = (—). We must reach the generators of
the specials as paths out of R (i.e. x). We know from the proof of Lemma 3.13 we may
choose co = (+), c41 = (+), co- = (=), co1 = (=), aon = zy and apy1r = (vy)™ =
(xy)—"+1 (for all 1 < ¢t < N) as representatives. Now the generator (xy)" %(4) of W_
must be reached through W;,. Since (zy)"~%(+) = (agy - .. az21)(xy)"~24(+) we may choose
a;— = (zy)"24(+) = (xy)"(+). By symmetry we may choose a1, = (zy)"(—).

Now consider the generator wQA Zw? of W;,. We already have the generator wa = coyc41
from R to W;,, so it is clear that we may choose c12 = w;lz leQ . If we consider the generator v
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of W;, instead (which we have as 1 (co+c+1 +cp—c—1)) and want to obtain the generator ’U2A2 vy

of W;,, instead choose c12 = 1)2 1)3 . Continuing like this we can choose ¢4+ = w2 wg“ for
all 1 <t < N.
. cy dl de_ .
We now claim that we may choose cyg = wy ¥ wy ™ = wy* 'ws® " To see this, first

note that wy*~ lwge’l doesn’t factor through ayy—_1 (the only possible map to the non-trivial

specials). Second, note that ws ™ lwge’l can’t factor as some map from W;, to R multiplied

. . Ce_ de_
by a non-scalar invariant else the invariant generator agncyo = (xy)"e ws* 1w3e ' factors

into two non-scalar invariants, contradicting the embedding dimension. A similar argument
shows that we may choose ato = (zy)™(—) and a_¢ = (zy)" (+).

Hence we have labelled all arrows in @ by polynomials, except ks, ..., ke.—3 (if the k
arrows exist). How to do this is obvious by the quiver D; in Section 3: if the k’s exist
we can choose k; labelled by k; = (xy)”“wgt“wg‘“. The argument that these choices
don’t factor through other specials via maps of strictly positive lower degrees (and so can
be chosen as representatives) is similar to the above — for example if «; > 4 consider
(xy)”wgg'wgs. First, it does not factor through maps we have already chosen, since if it
does we may write (zy)" *w$w$® = a1_f + a11g + c12h = (zy)>F + wcllwgllh. But by
looking at xy powers, we know (xy)™ divides h and so after cancelling factors we may write
wPwg = (xy)™> T F + wcllwgll hy. After cancelling w?wd® (which F must be divisible by)
1=wy' @ g“ "B+ (zy)"3~ "+ F’ which is impossible since the right-hand side cannot have
degree zero terms. Second, (:cy)’”‘*wgg'wg3 does not factor as a map W;; — R followed by a
non-scalar invariant since again this would contradict the embedding dimension. Hence we

may choose ko = (:I:y)”w gg in this case. Continue like this: if a; > 5 we want to choose

ks = (zy)5ws wg“. If it factors through maps we have already chosen then we may write
ks = a1—f+a14g+kaj+ci2h = (xy)™ F + c12h, so just repeating the argument above shows
that this is impossible.

By the above, we have justified that we may choose the following as representatives of

all the irreducible maps between the special CM modules

b

1
a’p a1 \L/ as1 ANN-1
T~ ™~ & ~
co— [ ] C+1%— L] Cl12—=> @ ® —CN—-1N—=> @

c—

coy =ct1 = +y" a4 = a0 = (zy) (27 —y7)
co- =ca=a—y? ar-=a-o=(zy)?(z" +y7)
d . .
eno = wy'™N wy'N aoy = (zy)"'n = (zy)'V TN = 2y
_ Gl Ay
Ctthl =Wy "Wy = forall 1 <t< N
a1 = (zy)"e = (zy)"

and further in the above picture we also have, if Y0 (a; — 2) > 2, for every 2 < ¢ <
Zi]\il(ai — 2) the extra arrows k; labelled by k; = (zy)”“wgt“wgt“. The symmetric
presentation choices are identical, except everywhere we replace wy by ve and ws by vs.
Denote the relations in Definition 4.4 by &’. For the relations part of the proof, below
we are really working in the completed case (so we can use [W08, Corollary 3.1] and [BIRS,
3.4]) and we prove that the completion of the endomorphism ring of the specials is given as
the completion of CQ (denoted CQ) modulo the closure of the ideal (S’) (denoted (S')). The
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non-completed version of the theorem then follows by simply taking the associated graded
ring of both sides of the isomorphism.

Now denote the kernel of the surjection CcQ — Endeiz, )6 (Tn,q) = A by I, denote
the radical of CQ by J and further for ¢ € {*,+,—,1,..., N} denote by S; the simple
corresponding to the vertex ¢ of ). In Lemma 4.12 below we show that the elements of S’
are linearly independent in I/(IJ+ JI). Thus we may extend S’ to a basis S of I/(IJ+ JI).
Now by [BIRS, 3.4(a)] I = (S) and further by [BIRS, 3.4(b)]

dimcExt% (S, Sy) = #(e,CQe) NS

for all a,b € {*,+,—,1,...,N}. But on the other hand using the intersection theory in the
proof of Lemma 3.13 it follows immediately from [WO08, Corollary 3.1] that

dimCExtA(S_,_, Sy) =1

dlm(cExtA(S_, S.) =1

dlm(cExtA(S“ Si) = a—1

dimcExt} (8., S,) = 1+ (o —2)
dimcExt3 (84, 51) = 1

for all 1 < i < N, and further all other Ext®’s between the simples are zero. By inspection
of both the above information and the relations &’ we notice that

dimcExt3 (Sq, Sp) = #(eaCQe,) NS’
for all a,b € {x,+,—,1,..., N}. Hence
#(eaCQep) NS = #(e,CQey) N S’

for all a,b € {x,+,—,1,..., N}, proving that the number of elements in S and & are the
same. Hence &’ = S and so I = (§'), as required. O

Lemma 4.12. With notation from the above proof, the members of S’ are linearly indepen-
dent in I/(IJ+ JI).

Proof. First, it is easy to verify that all the members in &’ are satisfied by the chosen repre-
sentatives of the arrows and so belong to I. To see this, note that the first four relations follow
immediately by inspection (independent of presentation), as does the Step 0 relation. For the
moduli presentation the remaining algorithmic relations are simply the pattern between the
invariants and cycles in D1 from Proposition 3.7, which is the same as the pattern in type A.
The symmetric pattern is just a small modification of this, namely the pattern between the
invariants and cycles in the Dy version of Proposition 3.7. Thus in either presentation S’ C I.

We grade the arrows in ) by the degree of the polynomial representing that arrow above.
In what follows we say that a word w in the path algebra CQ satisfies condition (A) if

(i) Tt does not contain some proper subword which is a cycle.
(ii) Tt does not contain some proper subword which is a path from * to 1.

As stated in the proof of the above theorem, we know from the intersection theory and [W08,
Corollary 3.1] that the ideal I is generated by one relation from x to 1, whereas all other
generators are cycles. Consequently if a word w satisfies (A) then w ¢ I.J + JI. Tt is also
clear that Co4+C4+1 — Cp—C—1 — 41401 ¢ IJ+ JlI.

Now since all members of S” are either cycles at some vertex or paths from * to 1, to
prove that the members of S’ are linearly independent in I/(IJ + JI) we just need to show
that

1. the elements of &’ which are paths from « to 1 are linearly independent in e, (I/(IJ+

JI))61

2. for all t € {*,+,—,1,...,N}, the elements of S’ that are cycles at ¢ are linearly

independent in e, (I/(IJ + JI))e,



24 MICHAEL WEMYSS

The first condition is easy, since the only relation in &’ from x to 1 is corca1 —co—c—1 =
4Ap1, and we have already noted that it does not belong to I.J 4 J I, thus it is non-zero and so
linearly independent in e, (I/(IJ + JI))e;. Note also that there are only three paths of min-
imal grade from * to 1, namely {coic41,co—c—1, Ao1}, and by inspection of the polynomials
they represent we do not have any other relation from x to 1 of this grade.

For the second condition, we must check ¢ case by case:

Case t = +. Here the only relation in 8’ from + to + is aocot+ = cy1a14+ (the Step 0 relation)
so it is linearly independent provided it is non-zero, i.e. ayocotr —cy1a1+ ¢ IJ+JI. But since
a4oco+ satisfies condition (A) we know that ayoco ¢ IJ + JI. Thus if ayocor — cr1a14 €
1J + JI we may write

a40Co4+ = Cy1014+ + U

in the free algebra CQ for some u € I.J 4+ JI. But the term atoco+ does not appear in the
right-hand side, a contradiction.

Case t = —. The only relation in &’ from — to — is a_gco— = c—1a1— (the third relation). A
symmetrical argument to the above shows that it is linearly independent.

Caset = 1. If a3 = 3 then the only members of &’ from 1 to 1 are ¢12a21 = ajcy; (the Step
1 relation) and aq14cy1 = a1—c—1 (the fourth relation). Suppose that

Ai(ci2a91 — arqcq1) + Aaarycyr —ar—c1) =0
in ey (I/(IJ+ JI))e;. Then we may write
A1€12a21 + Ao@i4Cp1 = Mai4cp1 + Aoai—c_1 +u

in the free algebra (CQ for some w € IJ + JI. But cjoa9; satisfies (A) so doesn’t appear
anywhere in the right-hand side, forcing Ay = 0. But now since A\; = 0 and further a;icyq
satisfies (A), it cannot appear on the right hand side, forcing As = 0. This proves the assertion
when a3 = 3 and hence we may assume that «; > 3, in which case the only relations in S’
from 1 to 1 are

a1—C_1 = a14C41

ky Ao = a14Ct1

kiCor = kip1 Ao V2 <t <y

kul Co1 = c120a21.

(i.e. the fourth relation and some of the Step 1 relations). Now suppose that

uy—1
A(a1—c—1 — arycq1) + Ao(ar4cq1 — kaAor) + Z Ap+1(kp+1401 — kpCor)
p=2
+ Ao, —1(ci2a21 — ky; Co1) =0
ine (I/(IJ+ JI))e; then
up—1
Atai—c_1 + Aoarycqr + Z Apr1kpr1dor + Aas—1c12021
p=2
’U.lfl
= AMaiycqpr + Aoka Aoy + Z Apr1kpCot + Aoy —1ku, Co1 +u
p=2

in the free algebra CQ for some u € I.J +JI. Now ay_c_; satisfies (A) and so cannot appear
on the right-hand side; consequently Ay = 0. This combined with the fact that ajycqq
satisfies (A) implies that Ao = 0. Similarly c¢i12a2; satisfies (A) and so can’t appear on the
right hand side, so Ao, -1 = 0. This leaves

uy—1 uy—1

(2) > Appikprido = > Aps1kpCor + u

p=2 p=2
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in the free algebra CQ and so
Ay kuy Ao1 = terms starting with k of strictly smaller index

mod IJ + JI. But since k,, Ag1 does not have any subwords which are cycles, the only way
we can change it mod I.J + JI is to bracket as ky, (Ao1) and use the relation in I from « to
1. Doing this we get ky, Ag1 = ikzul (cot+cy1 — co—c—1). This still does not start with a k of
strictly lower index, so we must again use relations in I.J+ JI to change the terms. But again
the words contain no subwords which are cycles, which means we must either change cy4.c41
or ¢o—c_1. But there is only one relation between coicy1, co—c_1and Ap; so no matter what
we do we arrive back as

1
ku1A01 = Zku1(00+0+1 - C07071) = ku1A01

mod IJ + JI. Thus mod I.J + JI it is impossible to transform k,, Ag; into an expression
involving k terms with strictly lower index, and so we must have A\, = 0. With this in mind
we may re-arrange (2) to get

Auy—1ku, —1Ao1 = terms starting with k of strictly smaller index

mod I.J + JI and so repeating the above argument gives A,,—1 = 0. Continuing in this
fashion we deduce all \’s are zero, as required.

Case t for 1 <t < N. If a; = 2 then the only relation in &’ from ¢ to ¢ is ay_1¢1—1¢ =
cit+1a¢4+1¢ (the Step t relation). This is linearly independent in e;(I/(IJ + JI))e; using the
same argument as in the case t = +. Hence we may assume «; > 2 in which case the only
relations in &’ from ¢ to t are

ko, Aot = Qi—1C1—1¢
kpCot = kpr1Aoe Yo <p< E
kreCot = Ctt+1at41¢

uy —1 ift=N
cNN+1 = cno and ay1n = agn if at any place the subscripts become too large. Now if

(i.e. some of the Step ¢ relations) where E := and also we mean

E—v,—1

A (Ko, Aot —age—1¢0-10) + Z Ap+2(kptv. Cot — kptv,+140t) + A, —1(kECot — Crr1a141¢) = 0

p=0

ine(I/(IJ+ JI))es then

E—v,—1
AM@g—1¢t—1¢ + Z Apt2kpto +1A40¢ + Aoy —1Ct410e411 =
p=0
E—v;—1
Atko, Aot + Z Ap+2Eptv, Cot + Aa,—1kECor +u
p=0

in the free algebra (CQ for some u € IJ + JI. But now all terms on the left hand side satisfy
(A) and so none of them can appear on the right hand side, forcing \y = ... = A,,—1 =0 as
required.

Case t = x. The only relations left in S’ are those from * to *, which is the second relation
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together with the remaining relations from the algorithm. These are precisely

Co+0a40 = Co—A—0

Aoprka = cota4o
Ifay >3 { Cork: = Aok V2 <t <uy
Apiky, = Cogy, kv,
ffa;>2 { Coiks = Apikeyr Vv <t <y
If ay =2 aoneno = Cosy, kvy
aonkoy = Cogy kv,
If 2 N VN N
N = { aonkiy1 = Conke V oy <t <upny
Hence if &1 = 3, ags = ... = ay = 2 then there are no extra arrows k£ and so the only relations

at x are cora49 = co—a—g and agncyg = co4+a4. These are linearly independent by using
the same argument as in the case t = 1 with a; = 3. Thus we may assume that some extra
k arrows exist, in which case the proof is similar to the case t = 1 with a; > 3. O

The input to define the reconstruction algebra is a certain labelled Dynkin diagram of
type D, where the two ‘horns’ are both (—2) curves. These are geometrically indistinguishable
in the sense that their positions in the dual graph can be swapped and the input for the
reconstruction algebra does not change. Thus the reconstruction algebra should be invariant
under this change of labels, which leads us to the following.

Lemma 4.13. For A € C* denote D}, ,(\) to be the algebra obtained from the symmetric
presentation D;z,q by replacing the number 4 in the first relation by \. Similarly define
D,, o(N). Then for all A € C*

D;,q()\) o D;,q >~ Dy = Dyy(N).

In particular the algebra obtained from D;,q by everywhere swapping + and — is isomorphic
to D!, ..
.q

Proof. We prove that D], (\) = D;, ,; the proof that D, 4(A\) = D, 4 is identical. All we
must do is change the choices of the labels of the arrows made for D;, , in the proof of
Theorem 4.11, such that the relation (1".) cotc41 — co—c—1 = AAg1 together with all the
other original relations (except relation 1) hold. Since the only changes we shall make to the
choices of arrows in the proof of Theorem 4.11 is by multiplying them by a non-zero scalar
(for an arrow p, denote by k), this non-zero scalar), the argument of Theorem 4.11 again goes
through to show that D;, (\) = Endg(Ty,4) and so in particular D;, (A) = D;, .

Choose Key, = Kayy = Keoo = Ka_g = Keyy = Kayy = Kooy = Koy = 1, Kagy = % and
Kayn_i = -+- = Kay, = 1. Then certainly relations 1’, 2, 3 and 4 hold, as does the Step 0
relation. What remains is to choose Key,, ..., Ken_1ns Keno (and the sy for the k arrows if
they exist) and to verify the remaining relations.

Consider the b-series of Z. If by > 1 then choosing ke,, = ... = Ke,, ,,, = 1 it is clear
that the step 1 to the step ba — 1 relations hold. Thus in all cases we can consider the bs
relations, knowing the previous step relations hold.

Now if ap, = 2 then by = N and there are no k arrows, so by choosing k., = % it is
clear that the Step N relations hold so we are done. Hence we can assume that ap, > 2, in
which case choosing ki, = %, e Ry, = (%)ubzfl %)u@q the step by relations
hold.

Thus inductively we consider the Step ¢ relations with K¢y, ..., ke, ,, and ka,..., ky,
already chosen such that all relations up to and including Step ¢ —1 are satisfied. If a1 = 2
choose ke, ,, = ke,_,, then the Step t relations hold. Else choose ki, = ke, 1, (3),- - s Fu, =
Fery (3) @74 ke = Ke,_y, () 7v)F1 then the Step ¢ relations hold. This concludes
the induction step, hence the result follows.

s Repyby 11 = (
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The final statement is now immediate since by inspection of the symmetric presentation
the algebra obtained by everywhere swapping + and — is just D], ,(—4). O

5. THE MODULI SPACE OF REPRESENTATIONS

In this section we use quiver GIT on the reconstruction algebra D, , to obtain the
minimal resolution of C?/D,, , and so obtain the slightly stronger statement that the special
representations not only give the dual graph, but also the whole space. The surprising thing
here is that although the spaces involved are not toric, the proofs follow almost immediately
from the toric case.

As in type A, fix for the rest of this paper the moduli presentation of the reconstruction
algebra, the dimension vector a = (1,1,...,1) and the generic stability condition § = (—(N+
2),1,...,1). Notice that a representation M of dimension vector « is f-stable if and only if
it is generated from vertex %, i.e. for every vertex in the representation M there is a non-zero
path in M from x to that vertex.

Throughout this section we use the moduli presentation convention that Cy1 = coycq1
whereas Co; = Coic12...¢—1y for any 2 <t < N. For D,, , with Z; reduced, we claim (and
prove in Lemma 5.2) that the moduli space is covered by the following N 4 3 open sets:

Uo Con #0,c0- #0 (a1—,cNo, aoN)
U,
K Con—t #0,c0— #0, Aon—t+1 #0 (Q1—, CN—¢tN—t4+1ON—t+1N—t)
1<t<N—1
Un cot # 0,c0- # 0,401 #0 (a1—,a14,c41)
Ut cor #0,A01 #0,a1- #0 (co—,a14,a_o)
U- co— # 0,401 #0,a14 #0 (cot,a1—,a40)

where in the above we have stated for reference the result of Lemma 5.3, which gives the
position of where (if we change basis so that the specified non-zero arrows are actually the
identity) the co-ordinates can be read off the quiver. In fact in Lemma 5.3 we prove a little
more; we show, also reading off the quiver, that these open sets are given abstractly by the
following smooth hypersurfaces in C3:

Uy a(l — 4pZEant” (S, 000y — poi oo

(0<t<N-1)
Un alc—4) = be
Uy b(a’c +4) = ac
U_ b(a’c —4) = ac
Note that there is a choice of coordinates in Uy since for the third coordinate ¢ we could
instead choose d = 55—+ = % since they differ by 4. Picking this alternative co-ordinate

changes the defining equation to ad = b(4 — d). Although trivial, it makes the gluing of the
affine pieces slightly easier: we shall see in Theorem 5.4 that the gluing data between the
open pieces is precisely
Ui 3 (a,b,¢) < (a,c7, c™V=tb) € Uy
for 0 <t < N — 2, whereas for t = N — 1 the gluing data is
Un_13 (a,b,¢) & (ca,c™ b, c7) € Uy.

The choice of coordinate in Uy gives the final two glues

Un > (a,b,d) <> (a71,b,a%d) € Uy

Un 3 (a,b,¢) < (b71,a,b%c) € U_

and note that these two do not change from example to example.
We now proceed to prove these statements. To prove that the open sets mentioned above
do indeed form an open cover of the moduli space it is convenient to denote Cy; = cp_c_1,
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to denote COt = C‘Olclg ...ci—1¢ for all 2 < ¢ < N, and further also to define the following
open sets:

Vo! CON#O,60+750
Vi .
Con—t # 0,co4 # 0, Aony—t41 # 0
1<t<N-1

Lemma 5.1. For every 0 < k < N — 1, the open set Vi, is contained inside the union of Uy
and Un.

Proof. Suppose M belongs to Vi, then necessarily
0 # co—c—1 = corcy1 — 4401

If ¢y1 =0 then Ag; # 0 and so M is in Uy. If ¢y1 # 0 then M is in Uy. ]

Lemma 5.2. The open sets Uy, ..., Un,Us,U_ completely cover the moduli space.

Proof. Suppose M is a stable module; we must show that M belongs to one of the open sets
in the statement. Note first that if cg; = cog— = 0 then the relation corc11 — co—c—1 = 4Ap
forces Ag; = 0, which is impossible since M must be generated as a module from vertex x.
Hence we can assume that either coy # 0 or ¢o— # 0.

Case 1: Both coy # 0 and co— # 0. Now if apy = 0 then the only way a nonzero path can
reach vertex N is if either ¢y 1Ciny # 0 or ¢_1C1ny # 0. In the first case M belongs to U,
whereas in the second case M belongs to V| thus by Lemma 5.1 either Uy or Uy. Hence we
may assume agy # 0. Now if ayy_1 = 0 then by a similar argument M is either in U; or
V1, hence by Lemma 5.1 either Uy or Uy. Thus we can assume that also ayny_1 # 0 and so
Apn—1 # 0. Continuing in this manner either M is in Uy_; or we can assume that Ag; # 0,
in which case M is in Uy.

Case 2: co+ # 0 but co— = 0. Then certainly a;_ # 0 since we have to reach vertex — with a
non-zero path. Now if Ag; = 0 then by the non-monomial relation it follows that coicy1 =0
and so we cannot reach vertex 1 by a non-zero path. This cannot happen, hence Ag; # 0
and so we are in Uy.

Case 3: co— # 0 but co = 0. In this case we are in U_ by the symmetric argument to Case
2. O

Lemma 5.3. Each open set Uy,...,Un,Uy,U_ is a smooth hypersurface in C3. More pre-
cisely the equation of these open sets as a hypersurface in C3 with co-ordinates a,b,c are
given as follows:

o<t<n-1) Ui a(l— ApEa i (L 07y = it O

Un a(c—4) = bc
Uy b(a’c +4) = ac
U_ b(a’c —4) = ac

Proof. (i) In Uy change basis so that all the specified non-zero arrows equal the identity. By
Remark 4.6 the calculation of [W07, 4.2] shows every arrow (except for the moment ¢o— = 1,
a_o, ¢_1, a1—) is determined by a monomial in ¢y and agn, and the algorithmic relations
play no further role. Define

nar = the power of coy in ajt 93 = the power of ang in a4
(1<i<N) 77(()1) = the power of con in a;q1 9(()1) = the power of ang in a;q1;
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N G N (@)
where by an41n we mean aoy. From this it is clear that Aoy = ¢f3~" o a%o’;l 0

are left with the variables cyq, aon, a_g, a1— and c_; subject to the four relations

. Now we

a+o = a—o

a_og = C_1071-—

a4+ = a1-C—1
1— C_1 = 41401

and so really there are only three variables cyq, apn and a;— subject to the one relation
0,1,(1 — 41401) = a40-

Hence it suffices to show how to put a1 and Ag; in terms of ¢y and agy. But by the above
this becomes

N () N () + o
a1 (1 — dexi= ™ g2i=1 %00y = Mo gl

(ii) The proof of the case Uy for 1 < ¢ < N — 1 is identical to the above — after setting the
specified non-zero elements to be the identity we are down to the three variables ¢y _tn—¢41,

an—t+1N—¢ and a;— with only one relation
a1—(1 —4A01) = aso
so again it suffices to show how to put a4¢ and Ap; in terms of ey_tn—++1 and ay—ry1n—t.
Define
n; = the power of con in a4 0,7 = the power of ayg in a4
(1<i<N) nt(i) = the power of con in a;y1; Gt(i) = the power of ang in a;y1;
then it is clear that the equation is simply

DORIEIEENED Dr LN o
a1-(1 = ey SN 1 ON SN —t) = NN+ 1ON e 1Nt
(iii) For Uy set the specified non-zero arrows to be 1 then by Remark 4.6 and the calculation
[WO07, 4.2] every arrow (except for the moment c¢o— = 1, a_g, c_1, a1—) is determined by a
monomial in ¢y1 and aq4, and the algorithmic relations play no further role. Thus we are
down to c41, a1+, a—g, a;— and c_; subject to the four relations

ayo = Aa-—0
a_og = C_1071-—
al4Cy+1 = Aa1—-C—1
Cy1 —C—1 = 4.

But these reduce to the three variables aj_, a1+ and c41 subject to the relation

a14C41 = (Il,(CJrl — 4)
Note that since ¢4 — ¢—1 = 4 we actually have a choice of coordinate between c4; and c_q;
making the other choice changes the equation in the obvious way.
(iv) For Uy : after setting the specified non-zero arrows to be 1, by Remark 4.6 and the calcu-
lation [W07, 4.2] every arrow (except for the moment co_, a—g, c—1, a1— = 1) is determined

by a monomial in ¢;4; and ai4+ and the algorithmic relations play no further role. Thus we
are down to c41, a1+, co—, a—g and c_; subject to the four relations

aro = Co-A-0
a_pChp— = C_-1
a14C+1 = C—1
Ct+1 — Cop—C—1 = 4

But now these reduce to the three variables cp—, a1+ and a_g subject to the relation
a_oco— = a1 (4+ a,ocgf)

(v) U- follows from Uy by a symmetrical argument. O
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Theorem 5.4. Consider D, , with v = 0. With the given dimension vector and stability as
above, the moduli of representations of the corresponding reconstruction algebra is precisely
the minimal resolution of C? /Dy, 4.

Proof. The open cover is smooth and irreducible, thus we can restrict our attention to the
exceptional locus.

First, it’s easy to see that the only gluing data needed are the glues mentioned in the in-
troduction to this section — for example if a stable module M belongs to Uy with coordinates
(obtained after setting the specified non-zero arrows to be the identity) just (a1—, cno, aon)
then clearly for it to belong to Uy requires agny # 0. Now by just looking at the conditions of
the non-zero arrows determining the other open sets, it’s clear that if Uy glues to any other of
the open sets it necessarily also has to satisfy agny # 0, thus necessarily this glue is through
U;. Continuing in this fashion we see that the IV + 2 stated glues are all that are necessary.

Now it is also easy to see that the open pieces glue (in coordinates) in precisely the way
mentioned in the introduction to this section — this follows directly from type A and in fact
we can see this from the proof of the last lemma: to see why, for 0 <t < N —2

Uy 3 (a,b,¢) < (a, ¢, c™V=tb) € Upy

is true, notice that given (a, b, ¢) € U; then by the proof of the above lemma the scalar in the
position of ax_¢n_¢_1 is be®¥-t~1 50 changing basis at vertex N —t by dividing every arrow
into vertex ¢t by ¢ whilst multiplying every arrow out by c¢ yields the result. The remaining
three glues are also done by inspection.

Thus by inspecting our open cover and gluing data we see precisely the dual graph of
the minimal resolution. In fact, one must check that in each open affine, the P!’s from the
gluing data form precisely the locus which is contracted, but this is an easy calculation for
which we suppress the details.

To check that the self-intersection numbers are correct, we use adjunction: for example
for the curve C in the glue between Uy (co-ordinates a,b, ¢ subject to f = (a(c — 4) — bc))
and U_ (co-ordinates a, b, c subject to £ = (b(a’c — 4) — ac)) given by

Un 3 (a,b,¢) < (b1, a,b%c) = (a,b,c) € U_

we have
dande dande db ') Adb*c) dbAde  dbAde
0f/0b  a2c—4 c—4 - c—4  0f/0a
and so K¢ -C = 0, thus by adjunction C? = —2. Continuing in this fashion we see that none
of the exceptional curves are (—1)-curves, thus our resolution is minimal. O
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