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ABSTRACT: Our aims were to: identify loci underlying 
variation in faecal egg count (FEC) both within and across 
sheep populations; evaluate the accuracy of genomic EBVs 
(GEBV) for FEC within and across populations; and 
explore non-additive genetic variation (i.e. epistasis and 
heterozygote advantage) for FEC. Data were available on 
752 Scottish Blackface lambs, 2,371 Sarda-Lacaune 
backcross ewes, 1,000 Martinik Blackbelly-Romane 
backcross lambs and 64 Texel lambs. Phenotypes were FEC 
for Nematodirus and/or Strongyles at different ages. Several 
genomic regions of interest were identified, both within and 
across populations. Moreover, GEBV had moderate to good 
within-population predictive accuracy, whereas across-
population predictions had accuracies close to zero. 
Epistasis analysis identified two pairwise SNP interactions 
significant at the suggestive level for Strongyles, and the 
heterozygote advantage analysis identified some SNPs 
reaching suggestive significance. Therefore, results suggest 
the presence a missing heritability undetectable via 
conventional GWAS, which warrants further exploration. 
Keywords: nematode resistance; genetic architecture; 
sheep 
 

Introduction 
 

Gastrointestinal nematode infections are one of the 
main health issues in grazing ruminants and have a great 
impact on sheep industries. Selection for nematode 
resistance has mainly been based on the use of indicator 
traits, such as faecal egg count (FEC) (e.g. Bishop and Stear 
(2001)). However, collecting and quantifying such indicator 
traits is a costly and time-consuming process and usually 
requires the animal to undergo parasitic challenge. 
Therefore, it would be advantageous to select directly for 
parasite resistance without the requirement for challenge. 

 
To date, several studies have reported quantitative 

trait loci (QTL) for nematode resistance in sheep (e.g., 
Crawford et al. (2006); Davies et al. (2006); Sallé et al. 
(2012)). However, little overall consensus has emerged 
from these studies, probably because of the genetic 
complexity of the trait and the fact that these studies are 
very diverse, involving a variety of sheep breeds, nematode 
species and experimental approaches. Moreover, it has been 
shown that standard additive genetic studies generally fail 
to explain most of the known genetic variation influencing 
complex diseases (e.g., Manolio et al. (2009); Kemper et al. 
(2011)), suggesting the presence of a missing heritability 
undetectable via conventional GWAS. 

 
One of the objectives of the 3SR project 

(http://www.3srbreeding.eu/) was to develop selectable 
genetic markers for resistance to nematodes in sheep. This 

put us in the fortunate position of having direct access to 
datasets comprising different populations, each of which 
has nematode resistance phenotypes as well as genotypes 
from the Illumina® Ovine 50SNP BeadChip (50k SNP 
chip). In particular, we aimed at: i) identifying loci 
underlying variation in FEC both within population 
(Scottish Blackface, SBF) and across populations in a joint-
analysis (using the data from SBF, Sarda x Lacaune 
backcross (SAR) and Martinik Black-Belly x Romane 
backcross (MBR)); ii) evaluating the potential of genomic 
selection to predict genomic EBVs (GEBV) for nematode 
resistance traits both within and across populations; and iii) 
exploring non-additive genetic variation (i.e., epistasis and 
heterozygote advantage) in the SBF population. 

 
Materials and Methods 

 
Populations and phenotype data. Different 

populations were available for the study: 752 lambs from a 
SBF population, 2,371 ewes from a SAR population, 1,000 
lambs from a MBR population, and 64 lambs from a British 
Texel (BT) population. Phenotypes available were FEC for 
Nematodirus and/or Strongyles at different ages, and their 
average animal effects across repeated measurements, 
depending on the population. More details on the data 
structure and on the phenotypes are given in Riggio et al. 
(2013, 2014a). 
 

Genotype data. All animals from the four 
populations were genotyped using the 50k SNP chip. The 
SNP genotypes data were subjected to quality control (QC) 
measures, specific for each population. After QC, 42,841 
SNPs were available for the SBF and BT populations, 
44,859 for the SAR, and 42,469 for the MBR. Out of these 
SNPs, 38,991 were in common among the four populations 
and used for across-population analyses. For the SBF, a 
separate QC was carried out for GWAS analyses, leaving 
44,388 SNPs available. More details on the genotype data 
available are given in Riggio et al. (2013, 2014a). Positions 
of SNPs were obtained from the Sheep Genome browser 
v2.0 (http://www.livestockgenomics.csiro.au/sheep/). 
 

Heritability estimation. Heritabilities (h2) were 
estimated using the genomic relationship matrix (G), 
comprising identity-by-state (IBS) relationships between all 
animals. For the SBF data, where pedigree was available, h2 
were also estimated using the pedigree-based relationship 
matrix (A), using ASReml (Gilmour et al. (2009)).  
 

Within-population QTL mapping. Two 
approaches were used to identify loci underlying variation 
in FEC in SBF. In general, a GWAS analysis was 
performed with the GenABEL package (Aulchenko et al. 
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(2007)) in R environment (http://www.r-project.org), using 
the mmscore function. After Bonferroni correction, 
significance thresholds were P < 1.13 x 10-6 and P < 2.25 x 
10-5 for genome-wide (P < 0.05) and suggestive (i.e., one 
false positive per genome scan) levels, respectively. The 
second approach was the Regional Heritability Mapping 
(RHM), in which each chromosome (OAR) is divided into 
windows of a pre-defined number of SNPs, and the 
variance attributable to each window estimated (Nagamine 
et al. (2012)). In this case, significance was evaluated with 
the likelihood ratio test (LRT), and after Bonferroni 
correction to account for multiple testing, the LRT 
thresholds were 13.56 and 9.29 (i.e., P < 1.15 x 10-4 and P < 
2.30 x 10-3), respectively. More details about the 
methodologies, how they were implemented and the models 
fitted are reported in Riggio et al. (2013). 
 

Across-population QTL mapping. Analyses 
were performed on the SBF, SAR and MBR populations, 
using RHM (Nagamine et al. (2012)). Initially, the analyses 
were performed using only the Strongyles data (i.e. average 
animal effect). Subsequently, a second analysis was 
performed substituting the Nematodirus FEC data for the 
Strongyles data in the SBF population. The G matrix was 
set to be block diagonal by population, to take into account 
that the three populations are genetically distant (hence 
linkage phases between marker and causative mutation are 
likely to differ between populations). Moreover, to account 
for the population structure (i.e. each population comprising 
few sire families and hence long stretches of LD), we ran 
further analyses with G matrices created separately for each 
chromosome under investigation, always excluding the 
chromosome being interrogated (i.e. 26 different G 
matrices were considered). We termed this the ‘n-1’ G 
matrix. This avoided QTL effects on individual 
chromosomes being absorbed by the overall G matrix. 
After Bonferroni correction, the LRT thresholds were 13.38 
and 9.11 (P < 1.27 x 10-4 and P < 2.54 x 10-3), for genome-
wide (p < 0.05) and suggestive significance levels, 
respectively (Riggio et al. (2014b) for further details). 
 

Genomic prediction within and across 
populations. In the within-population (SBF) analysis, the 
predictive ability of the GEBV (i.e., ĝ) was tested through 
cross-validation. Validation sets were obtained by setting 
the phenotype as “unknown” for a defined number of 
individuals from the training set (TS): five non-overlapping 
cross-validation sets were created by randomly selecting 
150 (152 for the fifth set) lambs at a time, masking each 
phenotype only once. For each set, the predicted genomic 
EBVs (PGEBV), i.e. GEBV calculated without phenotypic 
information on the individual, were estimated. 

 
For the analyses across populations, two combined 

datasets were used, with SBF, SAR and MBR making the 
first set (4,123 individuals) and SBF and BT making the 
other (816 lambs). In the first set, two populations were 
used as TS to predict the third one (i.e., SAR and MBR to 
predict SBF; SBF and SAR to predict MBR; and SBF and 
MBR to predict SAR). Moreover, a few (1 or 10) half-sib 
family members from SBF were allocated to the TS and 

used as a connection with the rest of the half-sib family 
members in the validation set to test for the impact of cross-
family links on GEBV.  

 
Genomic prediction accuracies were calculated for 

each validation set. We estimated the Pearson correlations 
of PGEBV with the adjusted phenotypes (rĝ,ŷ), and then the 
accuracy (rĝ,g) for each validation set was estimated by 
dividing rĝ,ŷ by the square root of the h2 of each trait for that 
specific validation set. The accuracy for each trait was then 
obtained by averaging the estimates across groups. 
 

Non-additive genetic variation in SBF data. 
Average animal effect for Strongyles was analysed using 
BiForce Toolbox (Gyenesei et al. (2012)), to detect 
epistasis. Pairwise SNP interactions were assessed using 
contingency tables explained by Gyenesei et al. (2012). 
Bonferroni corrected genome-wide (and suggestive) 
significance threshold for the full pairwise genome scan 
was calculated as P=0.05(1)/(#SNPs*(#SNPs-1)/2), 
equating to 5.41 x 10-11 (1.08 x 10-9). 

 
Heterozygote advantage was evaluated on average 

animal effects for Nematodirus and Strongyles FEC, by 
recoding genotypes into two categories, viz. heterozygotes 
and homozygotes, and a GWAS was then performed 
accounting for relatedness through the G matrix. Significant 
loci from GWAS were tested for their significance in 
ASReml, fitting a mixed model. 
 

Results and Discussion 
 

Heritability estimates. Heritabilities for SBF 
were between 0.04 and 0.27 when estimated with the G 
matrix, and similar results were obtained with the A matrix, 
albeit with slightly higher estimates (Riggio et al. (2013)). 
When analysed across datasets, h2 were 0.35 and 0.39 
(Riggio et al. (2014b)). 
 

Within-population QTL mapping. GWAS 
identified two SNPs with genome-wide significant 
association, whereas several SNPs reached the suggestive 
level. Not surprisingly, some SNPs were found to be 
important for more than one trait within the same parasite 
species, although the significance levels varied with trait. 
Moreover, there were cases where SNPs were also 
significant across trait categories, e.g., eight SNPs were 
associated with both Strongyles and Nematodirus (Riggio et 
al. (2013)). RHM identified one region significant at 
genome-wide level for Nematodirus and several other 
regions significant at the suggestive level. A summary of 
the identified SNPs/regions can be found in Riggio et al. 
(2013). Both GWAS and RHM identified genomic regions 
of interest, with both methods performing well when there 
was a strong evidence of association. For example, both 
methods identified similar regions for SNPs associated with 
Nematodirus average animal effect (OAR 14) and 
Strongyles FEC at 16 weeks (OAR 6). 
 

Across-population QTL mapping. When 
analysing the Strongyles data, genome-wide significant 
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regions were identified on OAR 4, 19 and 20, with the latter 
being the most significant, whereas several other regions 
reached the suggestive significance level (Riggio et al. 
(2014b)). When combining Nematodirus and Strongyles, a 
new region on OAR 14 reaching the genome-wide 
significance was identified (Riggio et al. (2014b)). All our 
RHM results confirmed a region on OAR 20 encompassing 
the major histocompatibility complex (MHC) which was 
previously only identified within SAR population. The 
OAR 14 region identified in the joint-analysis was the same 
region previously reported by Riggio et al. (2013). 
However, this region was not significant in either of the 
other two populations considered, nor when only the 
Strongyles data was analysed, suggesting therefore that this 
region is specifically related to the Nematodirus infection. 
 

Genomic prediction within and across 
populations. Correlations between PGEBV and adjusted 
phenotypes for the cross-validation groups in the SBF data 
were between -0.027 (Nematodirus FEC at 16 weeks) and 
0.324 (Nematodirus FEC at 20 weeks). Moderate within 
population accuracies were observed, generally between 
0.43 and 0.60, except for Nematodirus FEC at 16 weeks 
with an accuracy of 0.10 and also the lowest h2. The across 
population accuracies were very low, sometimes even 
negative (Riggio et al. (2014a)). However, including a 
small number of animals in the TS from the population to 
be predicted was beneficial (Riggio et al. (2014a)). Overall, 
our results suggest that genomic prediction for nematode 
resistance may be of value in closely related animals but 
unlikely to work across breeds with current SNP chip. 
 

Non-additive genetic variation in SBF data. 
Epistasis analysis identified two pairwise SNP interactions 
significant at the suggestive level for Strongyles (Table 1). 
However, at present, there appear to be no obvious 
candidate genes within these regions. 

 
Table 1. Pairwise SNP associations for Strongyles 
average animal effect. 

SNP1 (OAR) SNP2 (OAR) p-value 
Strongyles   

OAR2_158196833 (2) s27833 (3) 4.93x10-10 
OAR2_158196833 (2) s56018 (3) 6.15x10-10 

 
The heterozygote advantage analysis did not 

identify any SNPs significant at the genome-wide level. 
However, some SNPs reached the suggestive significance 
level (Table 2). All SNPs were significant, when tested in a 
full mixed model in ASReml. One of the SNPs for 
Nematodirus was in the same region identified by Riggio et 
al. (2013). When this SNP was fitted as fixed effect in 
ASReml together with the main SNP from standard GWAS 
along with their interaction, both SNPs were significant, 
however the interaction was not significant, suggesting the 
two effects are independent.  

 
 
 

 

Table 2. Heterozygote advantage analysis for 
Nematodirus and Strongyles average animal effects. 

SNP (OAR) Position (bp) p-value 
Nematodirus   

OAR25_25923466 (25) 23694478 2.51x10-6 
OAR14_53406640 (14) 50210627 6.21x10-6 

Strongyles   
OAR5_94598485 (5) 87049760 5.93x10-6 

 
Conclusion 

 
In conclusion, in this project we have been 

successful in detecting QTL for nematode resistance both 
within and across populations. In particular, the joint 
analysis showed that potentially there are a number of 
common pathways that are underlying resistance to widely 
different parasite species. Our results also suggest that 
genomic prediction for nematode resistance may be of 
value in closely related animals, but unlikely to work across 
breeds, with the current SNP chip. Moreover, the non-
additive genetic analyses suggest the presence of a missing 
heritability undetectable via conventional GWAS, which 
warrants further exploration. 
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