

Edinburgh Research Explorer

Database Queries that Explain their Work

Citation for published version:
Cheney, J 2014, 'Database Queries that Explain their Work' Paper presented at PPDP 2014, Canterbury,
United Kingdom, 8/09/14 - 10/09/14, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/database-queries-that-explain-their-work(06dc90be-9587-4ba3-93c8-51d8d09644c4).html

ar
X

iv
:1

40
8.

16
75

v3
 [

cs
.P

L]
 1

2
A

ug
 2

01
4

Database Queries that Explain their Work

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Amal Ahmed
Northeastern University
amal@ccs.neu.edu

Umut A. Acar
Carnegie Mellon University &

INRIA-Rocquencourt
umut@cs.cmu.edu

Abstract
Provenance for database queries or scientific workflows is often
motivated as providingexplanation, increasing understanding of
the underlying data sources and processes used to compute the
query, andreproducibility, the capability to recompute the results
on different inputs, possibly specialized to a part of the output.
Many provenance systems claim to provide such capabilities; how-
ever, most lack formal definitions or guarantees of these proper-
ties, while others provide formal guarantees only for relatively lim-
ited classes of changes. Building on recent work on provenance
traces and slicing for functional programming languages, we in-
troduce a detailed tracing model of provenance for multiset-valued
Nested Relational Calculus, define trace slicing algorithms that ex-
tract subtraces needed to explain or recompute specific parts of the
output, and define query slicing and differencing techniques that
support explanation. We state and prove correctness properties for
these techniques and present a proof-of-concept implementation in
Haskell.

Keywords provenance, database queries, slicing

1. Introduction
Over the past decade, the use of complex computer systems in sci-
ence has increased dramatically: databases, scientific workflow sys-
tems, clusters, and cloud computing based on frameworks such as
MapReduce [16] or PigLatin [26] are now routinely used for sci-
entific data analysis. With this shift to computational science based
on (often) unreliable components and noisy data comes decreased
transparency, and an increased need to understand the results of
complex computations by auditing the underlying processes.

This need has motivated work onprovenancein databases, sci-
entific workflow systems, and many other settings [7, 25]. There is
now a great deal of research on extending such systems with rich
provenance-tracking features. Generally, these systems aim to pro-
vide high-level explanations intended to aid the user in understand-
ing how a computation was performed, by recording and presenting
additional “trace” information.

Over time, two distinct approaches to provenance have emerged:
(1) the use ofannotationspropagated through database queries to
illustratewhere-provenancelinking results to source data [7],lin-
eageor why-provenancelinking result records to sets of witness-
ing input records [15], orhow-provenancedescribing how results
were produced via algebraic expressions [20], and (2) the use of
graphicalprovenance tracesto illustrate how workflow computa-
tions construct final results from inputs and configuration parame-
ters [5, 21, 29]. However, to date few systems formally specify the
semantics of provenance or give formal guarantees characterizing
how provenance “explains” results.

For example, scientists often conduct parameter sweeps to
search for interesting results. The provenance trace of such a com-
putation may be large and difficult to navigate. Once the most

promising results have been identified, a scientist may wantto
extract just that information that is needed to explain the result,
without showing all of the intermediate search steps or uninter-
esting results. Conversely, if the results are counterintuitive, the
scientist may want to identify the underlying data that contributed
to the anomalous result. Missier et al. [24] introduced the idea of
a “golden trail”, or a subset of the provenance trace that explains,
or allows reproduction of, a high-value part of the output. They
proposed techniques for extracting “golden trails” using recursive
Datalog queries over provenance graphs; however, they did not
propose definitions of correctness or reproducibility.

It is a natural question to ask how we know when a proposed
solution, such as Missier et al.’s “golden trail” queries, correctly
explains or can be used to correctly reproduce the behavior of the
original computation. It seems to have been taken for granted that
simple graph traversals suffice to at least overapproximatethe de-
sired subset of the graph. As far as we know, it is still an open
question how to define and prove such correctness propertiesfor
most provenance techniques. In fact, these properties might be de-
fined and formalized in a number of ways, reflecting differentmod-
eling choices or requirements. In any case, in the absence ofclear
statements and proofs of correctness, claims that different forms
of provenance “explain” or allow “reproducibility” are difficult to
evaluate objectively.

The main contribution of this paper is to formalize and provethe
correctness of an approach to fine-grained provenance for database
queries. We build on our approach developed in prior work, which
we briefly recapitulate. Our approach is based on analogies be-
tween the goals of provenance tracking for databases and work-
flows, and those of classical techniques for program comprehen-
sion and analysis, particularlyprogram slicing[31] and informa-
tion flow[28]. Both program slicing and information flow rely crit-
ically on notions ofdependence, such as the familiar control-flow
and data-flow dependences in programming languages.

We previously introduced a provenance model for NRC (in-
cluding difference and aggregation operations) calleddependency
provenance[12], and showed how it can be used to computedata
slices, that is, subsets of the input to the query that include all of
the information relevant to a selected part of the output. Some other
forms of provenance for database query languages, such as how-
provenance [20], satisfy similar formal guarantees that can be used
to predict how the output would change under certain classesof in-
put changes, specifically those expressible by semiring homomor-
phisms. For example, Amsterdamer et al.’s system [3] is based on
the semiring provenance model, so the effects of deletions on parts
of the output can be predicted by inspecting their provenance, but
other kinds of changes are not supported.

More recently, we proposed an approach to provenance called
self-explaining computation[11] and explored it in the context
of a general-purpose functional programming language [1, 27].
In this approach, detailed execution traces are used as a form of

1

http://arxiv.org/abs/1408.1675v3

provenance. Traces explain results in the sense that they can be
replayedto recompute the results, and they can beslicedto obtain
smaller traces that provide more concise explanations of parts of
the output. Trace slicing also produces a slice of the input showing
what was needed by the trace to compute the output. Moreover,
other forms of provenance can be extracted from traces (or slices),
and we also showed that traces can be used to compute program
slices efficiently through lazy evaluation. Finally, we showed how
traces supportdifferential slicingtechniques that can highlight the
differences between program runs in order to explain and precisely
localize bugs in the program or errors in the input data.

Our long-term vision is to develop self-explaining computation
techniques covering all components used in day-to-day scientific
practice. Databases are probably the single most importantsuch
component. Since our previous work already applies to a general-
purpose programming language, one way to proceed would be to
simply implement an interpreter for NRC in this language, and in-
herit the slicing behavior from that. However, without somefurther
inlining or optimization, this naive strategy would yield traces that
record both the behavior of the NRC query and its interpreter, along
with internal data structures and representation choices whose de-
tails are (intuitively) irrelevant to understanding the high-level be-
havior of the query.

1.1 Technical overview

In this paper, we develop a tracing semantics and trace slicing tech-
niques tailored to NRC (over a multiset semantics). This seman-
tics evaluates a queryQ over an input database (i.e. environmentγ
mapping relation names to table values), yielding the usualresult
valuev as well as atraceT . Traces are typically large and difficult
to decipher, so we consider a scenario where a user has runQ, in-
spected the resultsv, and requests an explanation for a part of the
result, such as a field value of a single record. As in our previous
work for functional programs, we use partial values with “holes”✷
to describe parts of the output that are to be explained. For exam-
ple, if the result of a program is just a pair(1, 2) then the pattern
(1,✷) can be used to request an explanation for just the first com-
ponent. Given a partial valuep matching the output, our approach
computes a “slice” consisting of a partial trace and a partial input
environment, where components not necessary for recomputing the
explained output partp have been deleted.

The main technical contribution of this paper over our previous
work [1, 27] is its treatment of tracing and slicing for collections.
There are two underlying technical challenges; we illustrate both
(and our solutions) via a simple example queryQ = σA<B(R) ∪
ρA7→B,B 7→A(σA≥B(R)) over a tableR with attributesA,B. Here,
σφ is relational selection of all tuples satisfying a predicate φ
andρA7→B,B 7→A is renaming. Thus,Q simply swaps the fields of
records whereA ≥ B, and leaves other records alone.

The first challenge is how to address elements of multisets
reliably across different executions and support propagation of
addresses in the output backwards towards the input. Our solution
is to use a mildly enriched semantics in which multiset elements
carry explicit labels; that is, we view multisets of elements fromX
as functionsI → X from some index set toX. For example, ifR
is labeled as follows and we use this enriched semantics to evaluate
the above queryQ onR, we get a result:

R =

id A B C
[r1] 1 2 7
[r2] 2 3 8
[r3] 4 3 9

Q(R) =

id A B C
[1, r1] 1 2 7
[1, r2] 2 3 8
[2, r3] 3 4 9

where in each case theid column contains a distinct indexri. In
Q(R), the first ‘1’ or ‘2’ in each index indicates whether the row
was generated by the left or right subexpression in the union(’∪’).

In general, we use sequences of natural numbers[i1, . . . , in] ∈ N
∗

as indices, and we maintain a stronger invariant: the set of indexes
used in a multiset must form aprefix code. We define a semantics
for NRC expressions over such collections that is fully determin-
istic and does not resort to generation of fresh intermediate labels;
in particular, the union operation adjusts the labels to maintain dis-
tinctness.

The second technical challenge involves extendingpatternsfor
partial collections. In our previous work, any subexpression of a
value can be replaced by a hole. This works well in a conven-
tional functional language, where typical values (such as lists and
trees) are essentially initial algebras built up by structural induction.
However, when we consider unordered collections such as bags,
our previous approach becomes awkward.

For example, if we want to use a pattern to focus on only the
B field of the second record in query resultQ(R), we can only
do this by deleting the other record values, and the smallestsuch
pattern is{[1, r1].✷, [2, r2].〈A:✷, B:3, C:✷〉, [2, r3].✷}. This is
tolerable if there are only a few elements, but if there are hundreds
or millions of elements and we are only interested in one, this is
a significant overhead. Therefore, we introduceenriched patterns
that allow us to replace entire subsets with holes, for example,
p′ = {[2, r2].〈B:3;✷〉} ∪̇ ✷. Enriched patterns are not just a
convenience; we show experimentally that they allow tracesand
slices to be smaller (and computed faster) by an order of magnitude
or more.

1.2 Outline

The rest of this paper is structured as follows. Section 2 reviews the
(multiset-valued) Nested Relational Calculus and presents our trac-
ing semantics and deterministic labeling scheme. Section 3presents
trace slicing, including a simple form of patterns. Section4 shows
how to enrich our pattern language to allow for partial record and
partial set patterns, which considerably increase the expressiveness
of the pattern language, leading to smaller slices. Section5 presents
the query slicing algorithm and shows how to compute differential
slices. Section 6 presents additional examples and discussion. Sec-
tion 7 presents our implementation demonstrating the benefits of
laziness and enriched patterns for trace slicing. Section 8discusses
related and future work and Section 9 concludes.

Due to space limitations, and in order to make room for exam-
ples and high-level discussion, some (mostly routine) formal details
and proofs are relegated to the appendix.

2. Traced Evaluation for NRC
The nested relational calculus [9] is a simply-typed core language
with collection types that can express queries on nested data similar
to those of SQL on flat relations, but has simpler syntax and cleaner
semantics. In this section, we show how to extend the ideas and
machinery developed in our previous work on traces and slicing for
functional languages [27] to NRC. Developing formal foundations
for tracking provenance in the presence of unordered collections
presents a number of challenges not encountered in the functional
programming setting, as we will explain.

2.1 Syntax and Dynamic Semantics

Figure 1 presents the abstract syntax of NRC expressions, values,
and traces. The expression∅ denotes the empty collection,{e} con-
structs a singleton collection, ande1∪e2 takes the (multiset) union
of two collections. The operationsum e computes the sum of a col-
lection of integers, while the predicateempty e tests whether the
collection denoted bye is empty. Additional aggregation operations
such as count, maximum and average can easily be accommodated.
Finally, the comprehension operation

⋃
{e′ | x ∈ e} iterates over

2

γ, e ⇓ v, T

γ, c ⇓ c, c

γ, e1 ⇓ c1, T1 · · · γ, en ⇓ cn, Tn

γ, f(e1, . . . , en) ⇓ f̂(c1, . . . , cn), f(T1, . . . , Tn) γ, x ⇓ γ(x), x

γ, e1 ⇓ v1, T1 γ[x 7→ v1], e2 ⇓ v2, T2

γ, let x = e1 in e2 ⇓ v2, let x = T1 in T2

γ, e1 ⇓ v1, T1 · · · γ, en ⇓ vn, Tn

γ, 〈A1:e1, . . . , An:en〉 ⇓ 〈A1:v1, . . . , An:vn〉, 〈A1:T1, . . . , An:Tn〉

γ, e ⇓ 〈A1:v1, . . . , An:vn〉, T

γ, e.Ai ⇓ vi, T.Ai

γ, e ⇓ true, T γ, e1 ⇓ v1, T1

γ, if(e, e1, e2) ⇓ v1, if(T, e1, e2) ⊲true T1

γ, e ⇓ false, T γ, e2 ⇓ v2, T2

γ, if(e, e1, e2) ⇓ v2, if(T, e1, e2) ⊲false T2 γ, ∅ ⇓ ∅, ∅

γ, e ⇓ v, T

γ, {e} ⇓ {ǫ.v}, {T}

γ, e1 ⇓ v1, T1 γ, e2 ⇓ v2, T2

γ, e1 ∪ e2 ⇓ 1 · v1 ⊎ 2 · v2, T1 ∪ T2

γ, e ⇓ v, T γ, x ∈ v, e′ ⇓∗ v′,Θ

γ,
⋃

{e′ | x ∈ e} ⇓ v′,
⋃

{e′ | x ∈ T} ⊲Θ

γ, e ⇓ {ℓ1.v1, . . . , ℓn.vn}, T

γ, sum e ⇓ v1+̂ . . . +̂vn, sum T

γ, e ⇓ v, T v = ∅

γ, empty e ⇓ true, empty T

γ, e ⇓ v, T v 6= ∅

γ, empty e ⇓ false, empty T

γ, x ∈ v, e ⇓∗ v,Θ

γ, x ∈ ∅, e ⇓∗ ∅, ∅

γ, x ∈ v1, e ⇓∗ v′1,Θ1 γ, x ∈ v2, e ⇓∗ v′2,Θ2

γ, x ∈ v1 ⊎ v2, e ⇓∗ v′1 ⊎ v′2,Θ1 ⊎Θ2

γ[x 7→ v], e ⇓ v′, T

γ, x ∈ {ℓ.v}, e ⇓∗ ℓ · v′, {ℓ.T}

Figure 2. Traced evaluation.

Operations f ::= + | − | ∗ | / | = | < | ≤ | · · ·

Expressions e ::= c | f(e1, . . . , en) | x | let e = x in e′

| 〈A1 : e1, . . . , An : en〉 | e.A | if(e, e′, e′′)

| ∅ | {e} | e1 ∪ e2 |
⋃
{e′ | x ∈ e}

| empty e | sum e | · · ·

Labels ℓ ::= ℓ.ℓ′ | ǫ | n

Values v ::= c | 〈A1 : v1, . . . An : vn〉

| ∅ | {ℓ1.v1, . . . , ℓn.vn}

Environments γ ::= [x1 7→ v1, . . . , xn 7→ vn]

Traces T ::= · · · | if(T, e′, e′′) ⊲true T | if(T, e′, e′′) ⊲false T

|
⋃
{e | x ∈ T} ⊲Θ

Trace Sets Θ ::= {ℓ1.T1, . . . , ℓn.Tn}

Types τ ::= int | bool | 〈A1 : τ1, . . . , An : τn〉 | {τ}

Type ContextsΓ ::= x1 : τ1, . . . , xn : τn

Figure 1. NRC expressions, values, traces, and types.

the collection obtained by evaluatinge, evaluatinge′(x) with x
bound to each element of the collection in turn, and returning a
collection containing the union of all of the results. We sometimes
consider pairs(e1, e2), a special case of records〈#1 : e1,#2 : e2〉
using two designated field names#1 and#2. Many trace forms are
similar to those for expressions; only the differences are shown.

Labels are sequencesℓ = [ii, . . . , in] ∈ N
∗, possibly empty.

The empty sequence is writtenǫ, and labels can be concatenated
ℓ · ℓ′; concatenation is associative. Record field names are written
A,B,A1, A2,

Values in NRC include constantsc, which we assume in-
clude at least booleans and integers. Record values are essen-
tially partial functions from field names to values, written〈A1 :
v1, . . . , An : vn〉. Collection values are essentially partial, finite-
domain functions from labels inN∗ to values, which we write
{ℓ1.v1, . . . , ℓn.vn}. Since they denote functions, collections and
records are identified up to reordering of their elements, and their
field names or labels are always distinct. We writeℓ · v for the
operation that prependsℓ to each of the labels in a setv, that is,

ℓ · {ℓ1.v1, . . . , ℓn.vn} = {ℓ · ℓ1.v1, . . . , ℓ · ℓn.vn} .

Other operations on labels and labeled collections will be intro-
duced in due course.

The labels on the elements of a collection provide us with a per-
sistent address for a particular element of the collection.This capa-
bility is essential when asking and answering provenance queries
about parts of the source or output data, and when tracking fine-
grained dependencies.

Both expressions and traces are subject to a type system. NRC
types include collection types{τ} which are often taken to be sets,
bags (multisets), or lists, though in this paper, we consider multiset
collections only. However, types do not play a significant role in
this paper so the typing rules are omitted. For expressions,the
typing judgmentΓ ⊢ e : τ is standard and the typing rules for
trace well-formednessΓ ⊢ T : τ are presented in Appendix A.

Traced evaluation NRC traces include a trace form correspond-
ing to each of the expressions described above. The structure of the
traces is best understood by inspecting the typing rules (Figure 12)
and the traced evaluation rules (Figure 2), which define a judgment
γ, e ⇓ v, T indicating that evaluating an expressione in environ-
mentγ yields a valuev and a traceT . We assume an environment
Σ associating constants and function symbols with their types, and
write f̂ or +̂ for the semantic operations corresponding tof or +,
and so on. In most cases, the trace form is similar to the expression
form; for example the trace of a constant or variable is a constant
tracec, the trace of a primitive operationf(e1, . . . , en) is a prim-
itive operation tracef(T1, . . . , Tn) applied to the tracesTi of the
argumentsei, the trace of a record expression is a trace record con-
structor〈A1 : T1, . . . , An : Tn〉, and the trace of a field projection
e.A is a traceT.A. Also, the trace of a let-binding is a let-binding
tracelet x = T1 in T2, wherex is bound inT2. In these cases,
the traces mimic the expression structure.

The traced evaluation rules for conditionals illustrate that traces
differ from expressions in recording control flow decisions. The
trace of a conditional is a conditional traceif(T, e1, e2) ⊲b T ′

where T is the trace of the conditional test,b is the Boolean
value of the teste1, andT ′ is the trace of the taken branch. The
expressionse1 and e2 are not strictly necessary but retained to
preserve structural similarity to the original expression.

The trace of∅ is a constant trace∅. To evaluate a singleton-
collection constructor{e}, we evaluatee to obtain a valuev and
return the singleton{ǫ.v} with empty labelǫ. We return the sin-

3

gleton trace{T} recording the trace for the evaluation of the ele-
ment. To evaluate the union of two expressions, we evaluate each
one and take the semantic union (written⊎) of the resulting col-
lections, with a ‘1’ or ‘2’ concatenated onto the beginning of each
label to reflect whether each element came from the first or second
part of the union; the union traceT1 ∪ T2 records the traces for the
evaluation of the two subexpressions. Forsum e, evaluatinge yields
a collection of numbers whose sum we return, together with a sum
tracesum T recording the trace for evaluation ofe. Evaluation of
emptiness testsempty e is analogous, yielding a traceempty T .

To evaluate a comprehension
⋃
{e′ | x ∈ e}, we first evaluatee,

which yields a collectionv and traceT , and then (using auxiliary
judgment γ, x ∈ v, e′ ⇓∗ v′,Θ) evaluatee′ repeatedly with
x bound to each elementvi of the collectionv to get resulting
valuesv′i and corresponding tracesT ′

i . We return a new collection
v′ = {ℓ1 · v′1, . . . , ℓn · v′n}; similarly we return a labeled set of
tracesΘ = {ℓ1.T1, . . . , ℓn.Tn}. (Analogously to values, trace sets
are essentially finite partial functions from labels to traces). For
each of these collections, we prepend the appropriate labelℓi of the
corresponding input element.

A technical point of note is that the resulting traceTi may con-
tain free occurrences ofx. As in our trace semantics for functional
programs, these variables serve as markers inTi that will be critical
for the trace replay semantics. The comprehension trace records,
using the notation

⋃
{e′ | x ∈ T} ⊲ {ℓ1.T1, . . . , ℓn.Tn}, that the

traceT was used to compute a multisetv, andx was bound to
each elementℓi.vi in v in turn, with traceTi showing how the cor-
responding subset of the result was computed. The comprehension
trace also records the expressione′ and bound variablex, which are
again not strictly necessary but preserve the structural similarity to
the original expression.

At this point it is useful to provide some informal motivation
for the labeling semantics, compared for example to other seman-
tics that use annotations or labels as a form of provenance. We do
not view the labels themselves as provenance; instead, theypro-
vide a useful infrastructure for traces, which do capture a form of
provenance. Moreover, by calculating the label of each partof an
intermediate or final result deterministically (given the labels on
the input), we provide a way to reliably refer to parts of the output,
which otherwise may be unaddressable in a multiset-valued seman-
tics. This is essential for supporting compositional slicing for op-
erations such as let-binding or comprehension, where the output of
one subexpression becomes a part of the input for another.

A central point of our semantics is that evaluation preserves the
property that labels uniquely identify the elements of eachmultiset.
This naturally assumes that the labels on the input collections
are distinct. In fact, a stronger property is required: evaluation
preserves the property that set labels form aprefix code. In the
following, we writex ≤ y to indicate that sequencex is a prefix of
sequencey.

Definition 2.1. A prefix codeoverΣ is a set of sequencesL ⊆ Σ∗

such that for everyx, y ∈ L, if x ≤ y thenx = y. A sub-prefix
codeof a prefix codeL is a prefix codeL′ such that for allx ∈ L
there existsy ∈ L′ such thaty ≤ x. We writeL′ ≤ L to indicate
thatL′ is a sub-prefix code ofL. We say thatL andL′ are prefix-
disjoint when no element ofL is a prefix of an element ofL′ and
vice versa.

Let v be a collectionv = {ℓ1.v1, . . . , ℓn.vn}. We define the
domain ofv to bedom(v) = {ℓ1, . . . , ℓn}. . We say that a value
or value environment isprefix-labeledif for every collectionv
occurring in it, the labelsℓ1, . . . , ℓn are distinct anddom(v) is a
prefix code. Similarly, we say that a trace is prefix-labeled if every
labeled trace setΘ = {ℓ1.T1, . . . , ℓn.Tn} is prefix-labeled.

γ, T y v

γ, c y c

γ, T1 y c1 · · · γ, Tn y cn

γ, f(T1, . . . , Tn) y f̂(c1, . . . , cn)

γ, x y γ(x)

γ, T1 y v1 γ[x 7→ v1], T2 y v2

γ, let x = T1 in T2 y v2

γ, T1 y v1 · · · γ, Tn y vn

γ, 〈A1:T1, . . . , An:Tn〉 y 〈A1:v1, . . . , An:vn〉

γ, T y 〈A1:v1, . . . , An:vn〉

γ, T.Ai y vi

γ, T y true γ, T1 y v1

γ, if(T, e1, e2) ⊲true T1 y v1

γ, T y false γ, T2 y v2

γ, if(T, e1, e2) ⊲false T2 y v2 γ, ∅ y ∅

γ, T y v

γ, {T} y {ǫ.v}

γ, T1 y v1 γ, T2 y v2

γ, T1 ∪ T2 y 1 · v1 ⊎ 2 · v2

γ, T y {ℓ1.v1, . . . , ℓn.vn}

γ, sum T y v1 +̂ . . . +̂ vn

γ, T y v v = ∅

γ, empty T y true

γ, T y v v 6= ∅

γ, empty T y false

γ, T y v γ, x ∈ v,Θ y
∗ v′

γ,
⋃

{e | x ∈ T} ⊲Θ y v′

γ, x ∈ v,Θ y
∗ v′

γ, x ∈ ∅,Θ y
∗ ∅

γ, x ∈ v1,Θ y
∗ v′1 γ, x ∈ v2,Θ y

∗ v′2
γ, x ∈ v1 ⊎ v2,Θ y

∗ v′1 ⊎ v′2

ℓi ∈ dom(Θ) γ[x 7→ vi],Θ(ℓi) y v′i
γ, x ∈ {ℓi.vi},Θ y

∗ ℓi · v
′
i

Figure 3. Trace replay.

Theorem 2.2. If γ is prefix-labeled andγ, e ⇓ v, T thenv and
T are both prefix-labeled. Moreover, ifγ andv are prefix-labeled
andγ, x ∈ v, e ⇓∗ v′,Θ thenv′ andΘ are prefix-labeled, and in
additiondom(Θ) = dom(v) ≤ dom(v′).

Proof. By induction on derivations. The key cases are those for
union, which is straightforward, and for comprehensions. For the
latter case we need the second part, to show that wheneverγ and
v are prefix-labeled, ifγ, x ∈ v, e ⇓∗ v′,Θ then v′ andΘ are
prefix-labeled, and in additiondom(Θ) = dom(v) anddom(v) is
a sub-prefix code ofdom(v′).

The prefix code property is needed later in the slicing algo-
rithms, when we will need it to match elements of collectionspro-
duced by comprehensions with corresponding elements of thetrace
setΘ. From now on, we assume that all values, environments, and
traces are prefix-labeled, so any labeled set is assumed to have the
prefix code property.

We will use the following query as a running example.

Q =
⋃

{if(x.B = 3, {〈A:x.A,B:x.C〉}, {}) | x ∈ R}

This is a simple selection query; it identifies records inR that have
B-value of 3, and returns record〈A:x.A,B:x.C〉 containingx’s A
value and itsC value renamed toB. The result ofQ on the inputR
in the introduction isQ(R) = {[r2].〈A:2, B:8〉, [r3].〈A:4, B:9〉},
and the trace is:

T =
⋃
{ | x ∈ R} ⊲ { [r1].if(x.B = 3, ,) ⊲false {},

[r2].if(x.B = 3, ,) ⊲true { },
[r3].if(x.B = 3, ,) ⊲true { } }

4

where indicates omitted (easily inferrable) subexpressions.

Replay We introduce a judgmentγ, T y v for replaying a
trace on a (possibly different) environmentγ. The rules for replay-
ing NRC traces are presented in Figure 3. Many of the rules are
straightforward or analogous to the corresponding evaluation rules.
Here we only discuss the replay rules for conditional and compre-
hension traces.

For the conditional rules, the basic idea is as follows. If re-
playing the traceT of the test yields the same boolean valueb as
recorded in the trace, we replay the trace of the taken branch. If the
test yields a different value, then replay fails.

To replay a comprehension trace
⋃
{e | x ∈ T} ⊲ Θ, rule

RCOMP first replays traceT to update the set of elementsv
over which we will iterate. We define a separate judgmentγ, x ∈
v,Θ y

∗ v′ to iterate over setv and replay traces on the corre-
sponding elements. For elementsℓi ∈ dom(Θ), we replay the
corresponding traceΘ(ℓi). Replay fails ifv contains any labels not
present inΘ.

Replaying a trace can fail if either the branch taken in a condi-
tional test differs from that recorded in the trace, or the intermediate
set obtained from rerunning a comprehension trace includesvalues
whose labels are not present in the trace. This means, in particular,
that changes to the input can be replayed if they only change base
values or delete set elements, but changes leading to additions of
new labels to sets involved in comprehensions typically cannot be
replayed.

Returning to the running example, suppose we change fieldB
of row r1 of R from 2 to 5. This change has no effect on the
control flow choice taken inQ, and replaying the traceT succeeds.
Likewise, changing theA or C field of any column ofR has no
effect, since these values do not affect the control flow choices in
T . However, changing theB field of a row to3 (or changing it from
3 to something else) means that replay will fail.

2.2 Key properties

Before moving on to consider trace slicing, we identify someprop-
erties that formalize the intuition that traces are consistent with and
faithfully record execution.

Evaluation and traced evaluation are deterministic:

Proposition 2.3 (Determinacy). If γ, e ⇓ v, T and γ, e ⇓ v′, T ′

thenv = v′ andT = T ′. If γ, T y v andγ, T y v′ thenv = v′.

When the trace is irrelevant, we writeγ, e ⇓ v to indicate that
γ, e ⇓ v, T for someT .

Traced evaluation is type-safe and produces well-typed traces,
and trace replay is also type-safe.

Theorem 2.4. If γ : Γ andΓ ⊢ e : τ andγ, e ⇓ v, T thenv : τ
andΓ ⊢ T : τ . If γ : Γ andΓ ⊢ T : τ andγ, T y v thenv : τ .

Traces can be represented using pointers to share common
subexpressions; using this DAG representation, traces canbe stored
in space polynomial in the input. (This sharing happens automati-
cally in our implementation in Haskell.)

Proposition 2.5. For a fixede, if γ, e ⇓ v, T then the sizes ofv
and of the DAG representation ofT are at most polynomial in|γ|.

Proof. Most cases are straightforward. The only non-trivial case is
for comprehensions, where we need a stronger induction hypoth-
esis: ifγ, x ∈ v, e ⇓∗ v′,Θ then the sizes ofv′ and of the DAG
representation ofΘ are at most polynomial in|γ|.

Furthermore, traced evaluation produces a trace that replays
to the same value as the original expression run on the original
environment. We call this propertyconsistency.

Proposition 2.6(Consistency). If γ, e ⇓ v, T thenγ, T y v.

Finally, trace replay is faithful to ordinary evaluation inthe fol-
lowing sense: ifT is generated by runninge in γ and we success-
fully replayT onγ′ then we obtain the same value (and same trace)
as if we had rerune from scratch inγ′, and vice versa:

Proposition 2.7 (Fidelity). If γ, e ⇓ v, T , then for anyγ′, v′ we
haveγ′, e ⇓ v′, T if and only ifγ′, T y v′.

Observe that consistency is a special case of fidelity (withγ′ =
γ, v′ = v. Moreover, the “if” direction of fidelity holds even though
replay can fail, because we require thatγ′, e ⇓ v′, T holds for the
same traceT . If γ′, e ⇓ v′, T ′ is derivable but only for a different
traceT ′, then replay fails.

3. Trace Slicing
The goal of the trace slicing algorithm we consider is to remove
information from a trace and input that is not needed to recom-
pute a part of the output. To accommodate these requirements, we
introduce traces and values withholesand more generally, we con-
siderpatternsthat represent relations on values capturing possible
changes. In this section, we limit attention to pairs, and consider
slicing for a class ofsimplepatterns. We consider records and more
expressiveenrichedpatterns in the next section.

We extend traces with holes✷

T ::= · · · | ✷

and define a subtrace relation⊑ that is essentially a syntactic
precongruence on traces and trace sets such that✷ ⊑ T holds
andΘ ⊆ Θ′ impliesΘ ⊑ Θ′. (The definition of⊑ is shown in
full in the companion technical report.) Intuitively, holes denote
parts of traces we do not care about, and we can think of a trace
T with holes as standing for a set of possible complete traces
{T ′ | T ⊑ T ′} representing different ways of filling in the holes.

The syntax ofsimple patternsp, set patternssp, andpattern
environmentsρ is:

p ::= ✷ | ✸ | c | (p1, p2) | sp

sp ::= ∅ | {ℓ1.p1, . . . , ℓn.pn}

ρ ::= [x1 7→ p1, . . . , xn 7→ pn]

Essentially, a pattern is a value with holes in some positions. The
meaning of each pattern is defined through a relationhp that says
when two values are equivalent with respect to a pattern. This re-
lation is defined in Figure 5. A hole✷ indicates that the part of
the value is unimportant, that is, for slicing purposes we don’t care
about that part of the result. Its associated relationh✷ relates any
two values. Anidentity pattern✸ is similar to a hole: it says that
the value is important but its exact value is not specified, and its
associated relationh✸ is the identity relation on values. Complete
set patterns{ℓ1.p1, . . . , ℓn.pn} specify the labels and patterns for
all of the elements of a set; that is, such a pattern relates only sets
that have exactly the labeled elements specified and whose corre-
sponding values match according to the corresponding patterns.

We define the union of two set patterns as{ℓi.pi} ⊎ {ℓ′i.p
′
i} =

{ℓi.pi, ℓ′i.p
′
i} provided their domains~ℓi and~ℓ′i are prefix-disjoint.

We define a (partial) least upper bound operation on patternsp⊔ p′

such that for anyv, v′ we havev hp⊔p′ v′ if and only if v hp v′

andv hp′ v′; the full definition is shown in Figure 4. We define
the partial orderingp ⊑ p′ asp ⊔ p′ = p′. We say that a valuev
matchespatternp if p ⊑ v. Observe that this impliesv hp v. We
extend the⊔ and⊑ operations to pattern environmentsρ pointwise,
that is,(ρ ⊔ ρ′)(x) = ρ(x) ⊔ ρ(x′).

We define several additional operations on patterns that are
needed for the slicing algorithm. Consider the followingsingleton

5

✷ ⊔ p = p ⊔✷ = p
✸ ⊔ p = p ⊔✸ = p[✸/✷]

c ⊔ c = c

(p1, p2) ⊔ (p′1, p
′
2) = (p1 ⊔ p′1, p2 ⊔ p′2)

{ℓi.pi} ⊔ {ℓi.p′i} = {ℓi.pi ⊔ p′i}

where:

✸[✸/✷] = ✷[✸/✷] = ✸

c[✸/✷] = c

(p1, p2)[✸/✷] = (p1[✸/✷], p2[✸/✷])

{ℓi.pi}[✸/✷] = {ℓi.pi[✸/✷]}

Figure 4. Least upper bound for simple patterns

v hp v′

v h✷ v′ v h✸ v c hc c

v1 hp1 v′1 v1 hp2 v′2
(v1, v2) h(p1,p2) (v′1, v

′
2)

vi hpi v′i (i ∈ {1, . . . , n})

{ℓ1.v1, . . . , ℓn.vn} h{ℓ1.p1,...,ℓn.pn} {ℓ1.v
′
1, . . . , ℓn.v

′
n}

γ hρ γ′ ⇐⇒ ∀x ∈ dom(ρ). γ(x) hρ(x) γ
′(x)

Figure 5. Simple pattern equivalence.

extractionoperationp.ǫ andlabel projectionoperationp[ℓ]:

({ǫ.p}).ǫ = p ✷.ǫ = ✷ ✸.ǫ = ✸

sp[ℓ] = {ℓ′.v | ℓ.ℓ′.v ∈ sp} ✷[ℓ] = ✷ ✸[ℓ] = ✸

These operations are only used for the above cases; they haveno
effect on constant or pair patterns. For sets,p[ℓ] extracts the subset
of p whose labels start withℓ, truncating the initial prefixℓ, while if
p is✷ or✸ then againp[ℓ] returns the same kind of hole. Moreover,
dom(p[ℓ]) is a prefix code ifdom(p) is.

SupposeL is a prefix code. We definerestrictionof a set pattern
p toL as follows:

sp|L = {ℓ.ℓ′.p ∈ sp | ℓ ∈ L} ✷|L = ✷ ✸|L = ✸

It is easy to see thatdom(p|L) ⊆ dom(p) sodom(p|L) is a prefix
code ifdom(p) is, so this operation is well-defined on collections:

Lemma 3.1. If sp is prefix-labeled andL is a prefix code then
sp[ℓ] andsp|L are prefix-labeled.

We show other properties of patterns in Appendix B.

Backward Slicing The rules for backward slicing are given in
Figure 6. The judgmentp, T ց ρ, T ′ slices traceT with respect
to a patternp to yield the sliceT ′ and sliced input environment
ρ. The sliced input environment records what parts of the input
are needed to producep; this is needed for slicing operations such
as let-binding or comprehensions. The main new ideas are in the
rules for collection operations, particularly comprehensions. The
slicing rules SCONST, SPRIM, SVAR, SLET, SPAIR, SPROJi, and
SIF follow essentially the same idea as in our previous work [1, 27].
We focus discussion on the new cases, but we review the key ideas
for these operations here in order to make the presentation self-
contained.

The rules for collections use labels and set pattern operations to
effectively undo the evaluation of the set pattern. The ruleSEMPTY
is essentially the same as the constant rule. The rule SSNG uses
the singleton extraction operationp.ǫ to obtain a pattern describ-
ing the single element of a singleton set value matchingp. The
rule SUNION uses the two projectionsp[1] andp[2] to obtain the

patterns describing the subsets obtained from the first and second
subtraces in the union pattern, respectively.

The rule SCOMP uses a similar idea to let-binding. We slice the
trace setΘ using an auxiliary judgmentp, x.Θ ց∗ ρ,Θ0, p0, ob-
taining a sliced input environment, sliced trace setΘ0, and pattern
p0 describing the set of values to whichx was bound. We then use
p0 to slice backwards through the subtraceT that constructed the
set. The auxiliary slicing judgment for trace sets has threerules:
a trivial rule SEMPTY∗ when the set is empty, rule SSNG∗ that
uses label projectionp[ℓ] to handle a singleton trace set, and a rule
SUNION∗ handling larger trace sets by decomposing them into sub-
sets. This is essentially a structural recursion over the trace set, and
is deterministic even though the rules can be used to decompose the
trace sets in many different ways, because⊎ is associative. Rule
SUNION∗ also requires that we restrict the set pattern to match the
domains of the corresponding trace patterns.

The slicing rules SSUM and SEMPTYP follow the same idea as
for primitive operations at base type: we require that the whole set
value be preserved exactly. As discussed by Perera et al. [27] with
primitive operations, this is a potential source of overapproxima-
tion, since (for example) for an emptiness test, all we really need is
to preserve the number of elements in the set, not their values. The
last rule shows how to slice pair patterns when the pattern is✸: we
slice both of the subtraces by✸ and combine the results.

It is straightforward to show that the slicing algorithm is well-
defined for consistent traces. That is, ifγ, T y v andp ⊑ v then
there existsρ, S such thatp, T ց ρ, S holds, whereρ ⊑ γ and
S ⊑ T . We defer the correctness theorem for slicing using simple
patterns to the end of the next section, since it is a special case of
correctness for slicing using enriched patterns.

Continuing our running example, consider the patternp =
{[r2].〈A:✷, B:8〉, [r3].✷}. The slice ofT with respect to this pat-
tern is of the form:

T ′ =
⋃
{ | x ∈ R} ⊲ { [r1].✷,

[r2].if(x.B = 3, ,) ⊲true { },
[r3].✷ }

and the slice ofR is R′ = {[r1].✷, [r2].〈A:✷, B:3, C:8〉, [r3].✷}.
(That is,R′ is the value ofρ(R), whereρ is the pattern environ-
ment produced by slicingT with respect top.) Observe that the
value ofA is not needed but the value ofB must remain3 in or-
der to preserve the control flow behavior of the trace onr2. The
holes indicate that changes tor1 and r3 in the input cannot af-
fect r2. However, a trace matchingT ′ cannot be replayed if any
of r1, r2, r3 are deleted from the input or if theA field is removed
from an input record, because the replay rules require all ofthe la-
bels mentioned in collections or records inT ′ to be present. We
now turn our attention to enriched patterns, which mitigatethese
drawbacks.

4. Enriched Patterns
So far we have considered only complete set patterns of the form
{ℓ1.p1, . . . , ℓn.pn}. These patterns relate pairs of values that have
exactly n elements labeledℓ1, . . . , ℓn, each of which matches
p1, . . . , pn respectively.

This is awkward, as we already can observe in our running ex-
ample above: to obtain a slice describing how one record was com-
puted, we need to use a set pattern that lists all of the indexes in the
output. Moreover, the slice with respect to such a pattern may also
include labeled subtraces explaining why the other elements exist
in the output (and no others). This information seems intuitively
irrelevant to the value atℓ1, and can be a major overhead if the col-
lection is large. We also have considered only binary pairs;it would
be more convenient to support record patterns directly.

6

p, T ց ρ, S

✷, T ց [],✷
SHOLE

p, c ց [],c
SCONST

✸, T1 ց ρ1, S1 · · · ✸, Tn ց ρn, Sn

p, f(T1, . . . , Tn) ց ρ1 ⊔ · · · ⊔ ρn, f(S1, . . . , Sn)
SPRIM

p, x ց [x 7→ p], x
SVAR

p2, T2 ց ρ2[x 7→ p1], S2 p1, T1 ց ρ1, S1

p2, let x = T1 in T2 ց ρ1 ⊔ ρ2, let x = S1 in S2
SLET

p1, T1 ց ρ1, S1 p2, T2 ց ρ2, S2

(p1, p2), (T1, T2) ց ρ1 ⊔ ρ2, (S1, S2)
SPAIR

(p,✷), T ց ρ, S

p, T.#1 ց ρ, S.#1
SPROJ1

(✷, p), T ց ρ, S

p, T.#2 ց ρ, S.#2
SPROJ2

p, T ′ ց ρ′, S′ b, T ց ρ, S

p, if(T, e1, e2) ⊲b T ′ ց ρ′ ⊔ ρ, if(S, e1, e2) ⊲b S′ SIF
p, ∅ ց [],∅

SEMPTY
p.ǫ, T ց ρ, S

p, {T} ց ρ, {S}
SSNG

p[1], T1 ց ρ1, S1 p[2], T2 ց ρ2, S2

p, T1 ∪ T2 ց ρ1 ⊔ ρ2, S1 ∪ S2
SUNION

p, x.Θ ց∗ ρ′,Θ′, p′ p′, T ց ρ, S

p,
⋃

{e | x ∈ T} ⊲Θ ց ρ ⊔ ρ′,
⋃

{e | x ∈ S} ⊲Θ′
SCOMP

✸, T ց ρ, S

p, sum T ց ρ, sum S
SEMPTYP

✸, T ց ρ, S

p, empty T ց ρ, empty S
SSUM

✸, T1 ց ρ1, S1 ✸, T2 ց ρ2, S2

✸, (T1, T2) ց ρ1 ⊔ ρ2, (S1, S2)
SDIAMOND

p, x.Θ ց∗ ρ,Θ0, p0
∅, x.∅ ց∗ [], ∅, ∅

SEMPTY∗
p[ℓ], T ց ρ[x 7→ p0], S

p, x.{ℓ.T} ց∗ ρ, {ℓ.S}, {ℓ.p0}
SSNG∗

p|dom(Θ1), x.Θ1 ց∗ ρ1,Θ
′
1, p1 p|dom(Θ2), x.Θ2 ց∗ ρ2,Θ

′
2, p2

p, x.Θ1 ⊎Θ2 ց∗ ρ1 ⊔ ρ2,Θ
′
1 ⊎Θ′

2, p1 ⊎ p2
SUNION∗

Figure 6. Backward trace slicing.

In this section we sketch how to enrich the language of patterns
to allow forpartial setandpartial record patterns, as follows:

p ::= ✷ | ✸ | c | sp | rp

rp ::= 〈〉 | 〈Ai : pi〉 | 〈Ai : pi;✷〉 | 〈Ai : pi;✸〉

sp ::= ∅ | {ℓi.pi} | {ℓi.pi} ∪̇✷ | {ℓi.pi} ∪̇✸

Record patterns are of the form〈Ai : pi〉, listing the fields and the
patterns they must match, possibly followed by✷ or ✸, which the
remainder of the record must match. The pattern{ℓi.pi}∪̇✷ stands
for a set with labeled elements matching patternsp1, . . . , pn, plus
some additional elements whose values we don’t care about. For
example, we can use the pattern{ℓ1.p1} ∪̇ ✷ to express interest
in why elementℓ1 matchesp1, when we don’t care about the rest
of the set. The second partial pattern,{ℓi.pi} ∪̇ ✸, has similar
behavior, but it says that the rest of the sets being considered must
be equal. For example,{ℓ.✷} ∪̇ ✸ says that the two sets are equal
except possibly at labelℓ. This pattern is needed mainly in order to
ensure that we can define a least upper bound on enriched patterns,
since we cannot express({ℓ1.v1, . . . , ℓn.pn} ∪̇✷) ⊔✸ otherwise.

We define dom({ℓi.pi} ∪̇ ✷) = dom({ℓi.pi} ∪̇ ✸) =
{ℓ1, . . . , ℓn}. Disjoint union of enriched patternssp ⊎ sp

′ is de-
fined only if the domains are prefix-disjoint, so that the labels of the
result still form a prefix code; this operation is defined in Figure 7.

We now extend the definitions ofp[✸/✷] and⊔ to account for
extended patterns. We extend the[✸/✷] substitution operation as
follows:

〈Ai : pi〉[✸/✷] = 〈Ai : pi[✸/✷]〉

〈Ai : pi;✷〉[✸/✷] = 〈Ai : pi[✸/✷];✸〉

〈Ai : pi;✸〉[✸/✷] = 〈Ai : pi[✸/✷];✸〉

({ℓi.pi} ∪̇ ✷)[✸/✷] = {ℓi.pi[✸/✷]} ∪̇ ✸

({ℓi.pi} ∪̇✸)[✸/✷] = {ℓi.pi[✸/✷]} ∪̇ ✸

We handle the additional cases of the⊔ operation in Figure 8,
and extend thehp relation as shown in Figure 9. Note that taking
the least upper bound of a partial pattern with a complete pattern
yields a complete pattern, while taking the least upper bound of
partial patterns involving✸ again relies on the[✸/✷] substitution
operation.

✸ ⊎✷ = ✷ ⊎ ✸ = ✷ ⊎ ✷ = ✷

✸ ⊎ ✸ = ✸

sp ⊎ ∅ = ∅ ⊎ sp = sp

{ℓi.pi} ⊎ ✷ = ✷ ⊎ {ℓi.pi} = {ℓi.pi} ∪̇✷

{ℓi.pi} ⊎ ✸ = ✸ ⊎ {ℓi.pi} = {ℓi.pi} ∪̇✸

{ℓi.pi} ⊎ ({ℓ′j .p
′
j} ∪̇ ✷) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✷

{ℓi.pi} ⊎ ({ℓ′j .p
′
j} ∪̇✸) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✸

({ℓi.pi} ∪̇ ✷) ⊎ ({ℓ′j .p
′
j} ∪̇ ✷) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✷

({ℓi.pi} ∪̇✸) ⊎ ({ℓ′j .p
′
j} ∪̇ ✷) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✷

({ℓi.pi} ∪̇✷) ⊎ ({ℓ′j .p
′
j} ∪̇✸) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✷

({ℓi.pi} ∪̇ ✸) ⊎ ({ℓ′j .p
′
j} ∪̇✸) = ({ℓi.pi} ⊎ {ℓ′j .p

′
j}) ∪̇ ✸

Figure 7. Enriched pattern union

We extend the singleton extractionp.ǫ, label projectionp[ℓ], and
restrictionp|L operations on set patterns as follows:

({ǫ.p} ∪̇✸).ǫ = ({ǫ.p} ∪̇✷).ǫ = p

ℓ · ({ℓi.pi} ∪̇✷) = (ℓ · {ℓi.pi}) ⊎ ✷

ℓ · ({ℓi.pi} ∪̇ ✸) = (ℓ · {ℓi.pi}) ⊎ ✸

({ℓi.pi} ∪̇✷)[ℓ] = ({ℓi.pi}[ℓ]) ⊎ ✷

({ℓi.pi} ∪̇ ✸)[ℓ] = ({ℓi.pi}[ℓ]) ⊎ ✸

({ℓi.pi} ∪̇✷)|L = ({ℓi.pi}|L) ⊎ ✷

({ℓi.pi} ∪̇ ✸)|L = ({ℓi.pi}|L) ⊎ ✸

Note that in many cases, we use the disjoint union operation⊎
on the right-hand side; this ensures, for example, that we never
produce results of the form∅ ∪̇✷ or ∅ ∪̇✸; these are normalized to
✷ and✸ respectively, and this normalization reduces the number
of corner cases in the slicing algorithm.

We define a record pattern projection operationp.A as follows:
〈A1:p1, . . . , An:pn〉.Ai = pi ✷.A = ✷

〈A1:p1, . . . , An:pn; 〉.Ai = pi ✸.A = ✸

〈A1:p1, . . . , An:pn;✷〉.B = ✷ (B /∈ {A1, . . . , An})
〈A1:p1, . . . , An:pn;✸〉.B = ✸ (B /∈ {A1, . . . , An})

We extend the slicing judgment to accommodate these new
patterns in Figure 10. The rules SREC and SPROJA are similar to
those for pairs, except that we use the field projection operation
in the case for a record trace, and we use partial record patterns

7

{ℓi.pi, ℓ′j .qj} ⊔ ({ℓi.p′i} ∪̇ ✷) = {ℓi.pi ⊔ p′i, ℓ
′
j .qj}

{ℓi.pi, ℓ′j .qj} ⊔ ({ℓi.p′i} ∪̇✸) = {ℓi.pi ⊔ p′i, ℓ
′
j .qj[✸/✷]}

({ℓi.pi, ℓ′j .qj} ∪̇ ✷) ⊔ ({ℓi.p′i, ℓ
′′
k .rk} ∪̇ ✷) = {ℓi.pi ⊔ p′i, ℓ

′
j .qj, ℓ

′′
k .rk} ∪̇✷

({ℓi.pi, ℓ′j .qj} ∪̇ ✷) ⊔ ({ℓi.p′i, ℓ
′′
k .rk} ∪̇✸) = {ℓi.pi ⊔ p′i, ℓ

′
j .qj[✸/✷], ℓ′′k .rk} ∪̇ ✸

({ℓi.pi, ℓ′j .qj} ∪̇ ✸) ⊔ ({ℓi.p′i, ℓ
′′
k .rk} ∪̇✸) = {ℓi.pi ⊔ p′i, ℓ

′
j .qj[✸/✷], ℓ′′k .rk[✸/✷]} ∪̇ ✸

〈Ai : pi, Bj : qj〉 ⊔ (〈Ai : p′i;✷〉) = 〈Ai : pi ⊔ p′i, Bj : qj〉

〈Ai : pi, Bj : qj〉 ⊔ (〈Ai : p′i;✸〉) = 〈Ai : pi ⊔ p′i, Bj : qj [✸/✷]〉

(〈Ai : pi, Bj : qj ;✷〉) ⊔ (〈Ai : p′i, Ck : rk;✷〉) = 〈Ai : pi ⊔ p′i, Bj : qj , Ck : rk;✷〉

(〈Ai : pi, Bj : qj ;✷〉) ⊔ (〈Ai : p′i, Ck : rk;✸〉) = 〈Ai : pi ⊔ p′i, Bj : qj [✸/✷], Ck : rk;✸〉

(〈Ai : pi, Bj : qj ;✸〉) ⊔ (〈Ai : p′i, Ck : rk;✸〉) = 〈Ai : pi ⊔ p′i, Bj : qj [✸/✷], Ck : rk[✸/✷];✸〉

Figure 8. Least upper bound for enriched patterns (excluding some symmetric cases).

v1 hp1 v′1 · · · vn hpn v′n

〈Ai : vi〉 h〈Ai:pi〉
〈Ai : v′i〉

v1 hp1 v′1 · · · vn hpn v′n

〈Ai : vi, Bj :wj〉 h〈Ai:pi;✷〉 〈Ai : v′i, Ck :w
′
k〉

v1 hp1 v′1 · · · vn hpn v′n

〈Ai : vi, Bj :wj〉 h〈Ai:pi;✸〉 〈Ai : v′i, Bj :wj〉

v1 hp1 v′1 · · · vn hpn v′n

{ℓi.vi} ⊎ v h{ℓi.pi}∪̇✷
{ℓi.v′i} ⊎ v′

v1 hp1 v′1 · · · vn hpn v′n

{ℓi.vi} ⊎ v h{ℓi.pi}∪̇✸
{ℓi.v′i} ⊎ v

Figure 9. Enriched pattern equivalence

p, T ց ρ, S 〈A:p;✷〉, T ց ρ, S

p, T.A ց ρ, S.A
SREC

p.A1, T1 ց ρ1, S1 · · · p.An, Tn ց ρn, Sn

p, 〈A1:T1, . . . , An:Tn〉 ց ρ1 ⊔ · · · ⊔ ρn, 〈A1:S1, . . . , An:Sn〉
SPROJA

p, x.Θ ց∗ ρ,Θ′, p0

✷, x.Θ ց∗ [],∅,✷
SHOLE∗

✸, x.∅ ց∗ [], ∅, ∅
SDIAMOND∗

Figure 10. Backward trace slicing over enriched patterns.

〈A : p;✷〉 in the case for a field projection trace. The added
rules SHOLE∗ and SDIAMOND∗ handle the possibility that a partial
pattern reduces to✷ or ✸ through projection; we did not need to
handle this case earlier because a simple set pattern is either a hole
(which could be handled by the rule✷, T ց [],✷) or a complete
set pattern showing all of the labels of the result.

Both simple and extended patterns satisfy a number of lemmas
that are required to prove the correctness of trace slicing.

Lemma 4.1(Properties of union and restriction).

1. If p1 ⊑ v1 andp2 ⊑ v2 andv1 hp1 v′1 andv2 hp2 v′2 then
v1 ⊎ v2 hp1⊎p2 v′1 ⊎ v′2, provided all of these disjoint unions
are defined.

2. If p ⊑ v1 ⊎ v2 andL1 ≤ dom(v1) andL2 ≤ dom(v2) and
L1, L2 are prefix-disjoint, thenp|L1 ⊑ v1 andp|L2 ⊑ v2.

Lemma 4.2(Projection and⊑).

1. If p ⊑ {ǫ.v} thenp.ǫ ⊑ v.
2. If p ⊑ 1 · v1 ⊎ 2 · v2 thenp[1] ⊑ v1 andp[2] ⊑ v2.
3. If p ⊑ ℓ · v thenp[ℓ] ⊑ v.
4. If p ⊑ 〈Ai : vi〉 thenp.Ai ⊑ vi.

Lemma 4.3(Projection andhp).

1. If p ⊑ {ǫ.v} andv hp.ǫ v
′ then{ǫ.v} hp {ǫ.v′}.

2. If p ⊑ 1 · v1 ⊎ 2 · v2 and v1 hp[1] v′1 and v2 hp[2] v′2 then
1 · v1 ⊎ 2 · v2 hp 1 · v′1 ⊎ 2 · v′2.

3. If p ⊑ ℓ · v andv hp[ℓ] v
′ thenℓ · v hp ℓ · v′.

4. If p ⊑ 〈Ai : vi〉 and v1 hp.A1 v′1, . . . , vn hp.An
v′n then

〈Ai : vi〉 hp 〈Ai : v′i〉.

Proofs are collected in Appendix B.
We now state the key correctness property for slicing. Intu-

itively, it says that if we sliceT with respect to output patternp,
obtaining a sliceρ andS, thenp will be reproduced on recomputa-
tion under any change to the input and trace that is consistent with
the slice — formally, that means that the changed traceT ′ must
match the sliced traceS, and the changed inputγ′ must matchγ
moduloρ.

Theorem 4.4(Correctness of Slicing).

1. Supposeγ, T y v andp ⊑ v andp, T ց ρ, S. Then for all
γ′

hρ γ andT ′ ⊒ S such thatγ′, T ′
y v′ we havev′ hp v.

2. Supposeγ, x ∈ v0,Θ y
∗ v and p ⊑ v and p, x.Θ0 ց

ρ,Θ′
0, p0, whereΘ0 ⊆ Θ. Then for allγ′

hρ γ andv′0 hp0 v0
andΘ′ ⊒ Θ′

0 such thatγ′, x ∈ v0,Θ
′
y

∗ v′ we havev′ hp v.

Returning to our running example, we can use the enriched
patternp′ = {[r2].〈B:8;✷〉} ∪̇✷ to indicate interest in theB field
of r2, without naming the other fields of the row or the other row
indexes. Slicing with respect to this pattern yields the following
slice:

T ′′ =
⋃

{ | x ∈ R} ⊲ {[r2].if(x.B = 3, ,) ⊲true { }}

and the slice ofR isR′′ = {[r2].〈B:3, C:8;✷〉}∪̇✷. This indicates
that (as before) the values ofr1 and r3 and of theA field of r2

8

are irrelevant tor2 in the result; unlikeT ′, however, we can also
potentially replay ifr1 andr3 have been deleted fromR. Likewise,
we can replay if theA field has been removed from a record, or if
some other field such asD is added. This illustrates that enriched
patterns allow for smaller slices than simple patterns, with greater
flexibility concerning possible updates to the input.

A natural question is whether slicing computes the (or a) small-
est possible answer. Because our definition of correct slices is based
on recomputation, minimal slices are not computable, by a straight-
forward reduction from the undecidability of minimizing depen-
dency provenance [1, 12].

5. Query and Differential Slicing
We now adapt slicing techniques to provide explanations in terms
of query expressions, and show how to use differences between
slices to provide precise explanations for parts of the output.

5.1 Query slicing

Our previous work [27] gave an algorithm for extracting aprogram
slice from a trace. We now adapt this idea to queries. A trace slice
shows the parts of the trace that need to be replayed in order to com-
pute the desired part of the output; similarly, aquery sliceshows the
part of the query expression that is needed in order to ensurethat the
desired part of the output is recomputed. As with traces, we allow
holes✷ in programs to allow deleting subexpressions, and define
⊑ as a syntactic precongruence such that✷ ⊑ e. We also define a
least upper bound operatione ⊔ e′ on partial query expressions in
the obvious way, so that✷ ⊔ e = e.

We define a judgmentp, T ցց ρ, e that traversesT and “un-
evaluates”p, yielding a partial input environmentρ and partial pro-
grame. The rules are illustrated in Figure 11. Many of the rules are
similar to those for trace slicing; the main differences arise in the
cases for conditionals and comprehensions, where we collapse the
sliced expressions back into expressions, possibly inserting holes or
merging sliced expressions obtained by running the same code in
different ways (as in a comprehension that contains a conditional).

Again, it is straightforward to show that ifγ, e ⇓ v, T and
p ⊑ v then there existρ, e′ such thatp, T ցց ρ, e′, whereρ ⊑ γ
ande′ ⊑ e. The essential correctness property for query slices is
similar to that for trace slices: again, we require that rerunning any
sufficiently similar query on a sufficiently similar input produces a
result that matchesp. The proof of this result is in Appendix D.

Theorem 5.1(Correctness of Query Slicing).

1. Supposeγ, T y v and p ⊑ v and p, T ցց ρ, e. Then for all
γ′

hρ γ ande′ ⊒ e such thatγ′, e′ ⇓ v′ we havev′ hp v.
2. Supposeγ, x ∈ v0,Θ y

∗ v andp ⊑ v andp,Θ ցց ρ, e0, p0.
Then for allγ′

hρ γ and v′0 hp0 v0 and e′0 ⊒ e0 such that
γ′, x ∈ v′0, e

′
0 ⇓∗ v′ we havev′ hp v.

Combining with the consistency property (Proposition 2.6), we
have:

Corollary 5.2. Supposeγ, e ⇓ v, T andp ⊑ v andp, T ցց ρ, e′.
Then for allγ′

hρ γ ande′′ ⊒ e′ such thatγ′, e′′ ⇓ v′, we have
v hp v′.

Continuing our running example, the query slice for the pattern
p′ considered above is

Q′ =
⋃

{if(x.B = 3, {〈A:✷, B:x.C〉}, {}) | x ∈ R}

since only the computation of theA field in the output is irrelevant
to p′.

p, T ցց ρ, e

✷, T ցց [],✷ p, c ցց [], c

✸, T1 ցց ρ1, e1 · · · ✸, Tn ցց ρn, en

p, f(T1, . . . , Tn) ցց ρ1 ⊔ · · · ⊔ ρn, f(e1, . . . , en)

p, x ցց [x 7→ p], x

p2, T2 ցց ρ2[x 7→ p1], e2 p1, T1 ցց ρ1, e1

p2, let x = T1 in T2 ցց ρ1 ⊔ ρ2, let x = e1 in e2

p1, T1 ցց ρ1, e1 · · · pn, Tn ցց ρn, en

〈A1:p1, . . . , An:pn〉, 〈A1:T1, . . . , An:Tn〉 ցց ρ1 ⊔ · · · ⊔ ρn, 〈A1:e1, . . . , An:en〉

p.A,T ցց ρ, S

p, T.A ցց ρ, S.A

p1, T1 ցց ρ1, e
′
1 true, T ցց ρ, e′

p1, if(T, e1, e2) ⊲true T1 ցց ρ1 ⊔ ρ, if(e′, e′1,✷)

p2, T2 ցց ρ2, e
′
2 false, T ցց ρ, e′

p2, if(T, e1, e2) ⊲false T2 ցց ρ2 ⊔ ρ, if(e′,✷, e′2) ∅, ∅ ցց [],∅

p[ǫ], T ցց ρ, e

p, {T} ցց ρ, {e}

p[1], T1 ցց ρ1, e1 p[2], T2 ցց ρ2, e2

p, T1 ∪ T2 ցց ρ1 ⊔ ρ2, e1 ∪ e2

✸, T ցց ρ, e

p, sum T ցց ρ, sum e

✸, T ցց ρ, e

p, empty T ցց ρ, empty e

p, x.Θ ցց∗ ρ′, e′, p0 p0, T ցց ρ, e′0

p,
⋃

{e | x ∈ T} ⊲Θ ցց ρ ⊔ ρ′,
⋃

{e′ | x ∈ e′0}

✸, T1 ցց ρ1, e1 · · · ✸, Tn ցց ρn, en

✸, 〈A1 : T1, . . . , An : Tn〉 ցց ρ1 ⊔ · · · ⊔ ρn, 〈A1 : e1, . . . , An : en〉

✸, ∅ ցց [], ∅

p, x.Θ ցց ρ, e, p′

✷, x.Θ ցց∗ [],✷,✷ ∅, x.∅ ցց∗ [],✷,∅ ✸, x.∅ ցց∗ [],✷, ∅

p[ℓ], T ցց ρ[x 7→ p0], e

p, x.{ℓ.T} ցց∗ ρ, e, {ℓ.p0}

p|dom(Θ1), x.Θ1 ցց∗ ρ1, e1, p1 p|dom(Θ2), x.Θ2 ցց∗ ρ2, e2, p2

p, x.Θ1 ⊎Θ2 ցց∗ ρ1 ⊔ ρ2, e1 ⊔ e2, p1 ⊎ p2

Figure 11. Unevaluation (selected rules).

5.2 Differential slicing

We consider apattern differenceto be a pair of patterns(p, p′)
wherep ⊑ p′. Intuitively, a pattern difference selects the part of a
value present in the outer componentp′ and not in the inner com-
ponentp. For example, the pattern difference(〈B:✷;✷〉, 〈B:8;✷〉)
selects the value8 located in theB component of a record. We can
also write this difference as〈B: 8 ;✷〉, using ? to highlight the
boundary between the inner and outer pattern. Trace and query pat-
tern differences are defined analogously.

9

It is straightforward to show by induction that slicing is mono-
tonic in both arguments:

Lemma 5.3(Monotonicity). If p ⊑ p′ andT ⊑ T ′ andp′, T ′ ց
ρ′, S′ then there existρ, S such thatp, T ց ρ, S andρ ⊑ ρ′ and
S ⊑ S′. In addition,p, S′ ց ρ, S.

This implies that given a pattern difference and a trace, we can
compute a trace difference using the following rule:

p2, T ց ρ2, S2 p1, S2 ց ρ1, S1

(p1, p2), T ց (ρ1, ρ2), (S1, S2)

It follows from monotonicity thatρ1 ⊑ ρ2 andS1 ⊑ S2, thus,
pattern differences yield trace differences. Furthermore, the second
part of monotonicity implies that we can compute the smallerslice
S1 from the larger sliceS2, rather than re-traverseT . It is also
possible to define a simultaneous differential slicing judgment, as
an optimization to ensure we only traverse the trace once.

Query slicing is also monotone, so differential query slices can
be obtained in exactly the same way. Revisiting our running exam-
ple one last time, consider the differential pattern{[r2].〈B: 8 ;✷〉}∪̇
✷. The differential query slice for the patternp′ considered above
is

Q′′ =
⋃

{if(x.B = 3, {〈A:✷, B: x.C 〉}, {}) | x ∈ R}

6. Examples and Discussion
In this section we present some more complex examples to illus-
trate key points.

Renaming Recall the swapping query from the introduction,
written in NRC as

Q1 =
⋃

{{if(x.A > x.B, 〈A:x.B,B:x.A〉, 〈x〉)}| x ∈ R}

This query illustrates a key difference between our approach and
the how-provenance model of Green et al. [20]. As discussed in
[13], renaming operations are ignored by how-provenance, so the
how-provenance annotations of the results ofQ1 are the same as for
a query that simply returnsR. In other words, the choice to swap
the fields whenA > B is not reflected in the how-provenance,
which shows that it is impossible to extract where-provenance (or
traces) from how-provenance. Extracting where-provenance from
traces appears straightforward, extending our previous work [1].

This example also illustrates how traces and slices can be used
for partial recomputation. The slice for output pattern{[1, r1].〈B:2〉}∪̇
✷, for example, will show that this record was produced because
theA component of〈A:1, B:2, C:7〉 at index[r1] in the input was
less than or equal to theB component. Thus, we can replay after
any change that preserves this ordering information.

Union Consider query

Q2 =
⋃

{{〈B:x.B〉} | x ∈ R} ∪ {〈B:3〉}

that projects theB fields of elements ofR and adds another copy
of 〈B:3〉 to the result. This yields

Q2(R) = {[1, r1].〈B:2〉, [1, r2].〈B:3〉, [1, r3].〈B:3〉, [2].〈B:3〉}

This illustrates that the indexes may not all have the same length,
but still form a prefix code. If we slice with respect to{[1, r2].〈B:3〉}∪̇
✷ then the query slice is:

Q′
2 =

⋃
{{〈B:x.B〉} | x ∈ R} ∪✷

andR′ = {[r2].〈B:3;✷〉} ∪̇✷ whereas if we slice with respect to
{[2].〈B:3〉} ∪̇ ✷ then the query slice isQ′′

2 = ✷ ∪ {〈B:3〉} and
R′′ = ✷, indicating that this part of the result has no dependence
on the input.

A related point: one may wonder whether it makes sense to se-
lect a particular copy of〈B:3〉 in the output, since in a conven-
tional multiset, multiple copies of the same value are indistinguish-
able. We believe it is important to be able to distinguish different
copies of a value, which may have different explanations. Treating
n copies of a value as a single value with multiplicityn would ob-
scure this distinction and force us to compute the slices of all of the
copies even if only a single explanation is required. This iswhy we
have chosen to work with indexed sets, rather than pure multisets.

Joins So far all examples have involved a single tableR. Con-
sider a simple join query

Q3 = {〈A:x.A,B:y.C〉 | x ∈ R, y ∈ S, x.B = y.B}

and consider the following tableS, and the resultQ3(R,S).

S =

id B C
[s1] 2 4
[s2] 3 4
[s3] 4 5

Q3(R,S) =

id A B
[r1, s1] 1 4
[r2, s2] 2 4
[r3, s2] 4 5

The full trace of this query execution is as follows:

T3 =
⋃
{ | x ∈ R} ⊲ {

[r1].
⋃
{ | y ∈ S} ⊲ { [s1].if(x.B = y.B, ,) ⊲true { },

[s2].if(x.B = y.B, ,) ⊲false {},
[s3].if(x.B = y.B, ,) ⊲false {}},

[r2].
⋃
{ | y ∈ S} ⊲ { [s1].if(x.B = y.B, ,) ⊲false {},

[s2].if(x.B = y.B, ,) ⊲true { },
[s3].if(x.B = y.B, ,) ⊲false {}},

[r3].
⋃
{ | y ∈ S} ⊲ { [s1].if(x.B = y.B, ,) ⊲false {},

[s2].if(x.B = y.B, ,) ⊲true { },
[s3].if(x.B = y.B, ,) ⊲false {}}}

Slicing with respect to{[r1, s1].〈A:1;✷〉, [r2, s2].〈B:4;✷〉} ∪̇ ✷

yields trace slice

T ′
3 =

⋃
{ | x ∈ R} ⊲ {

[r1].
⋃
{ | y ∈ S} ⊲ { [s1].if(x.B = y.B, ,) ⊲true { },

[r2].
⋃
{ | y ∈ S} ⊲ { [s2].if(x.B = y.B, ,) ⊲true { }}

and input sliceR′
3 = {[r1].〈A:1, B:2;✷〉, [r2].〈B:3;✷〉} and

S′
3 = {[s1].〈B:2;✷〉, [s2].〈B:3;C:4〉}.

Workflows NRC expressions can be used to represent work-
flows, if primitive operations are added representing the workflow
steps [2, 21]. To illustrate query slicing and differentialslicing for a
workflow-style query, consider the following more complex query:

Q4 = {f(x, y) | x ∈ T, y ∈ T, z ∈ U, p(x, y), q(x, y, z)}

wheref computes some function ofx andy andp andq are selec-
tion criteria. Here, we assumeT andU are collections of data files
andf, p, q are additional primitive operations on them. This query
exercises most of the distinctive features of our approach;we can
of course translate it to the NRC core calculus used in the rest of the
paper. Ifdom(T) = {t1, . . . , t10} anddom(U) = {u1, . . . , u10}
then we might obtain result{[t3, t4, u5].v1, [t6, t8, u10].v2}. If we
focus on the valuev1 using the pattern{[t3, t4, u5].v1} ∪̇ ✷, then
the program slice we obtain isQ4 itself, while the data slice might
beT ′ = {[t3].✸, [t4].✸} ∪̇✷, U ′ = {[u5].✸} ∪̇✷, indicating that
if the values att3, t4, u5 are held fixed then the end result will still
bev1. The trace slice is similar, and shows thatv1 was computed
by applyingf with x bound to the value att3 in T , y bound tot4,
andz bound tou5, and thatp(x, y) andq(x, y, z) succeeded for
these values.

If we consider a differential slice using pattern difference
{[t3, t4, u5]. v1 } ∪̇ ✷ then we obtain the following program dif-
ference:

Qδ
4 =

⋃
{ f(x, y) | x ∈ T, y ∈ T, z ∈ U, p(x, y), q(x, y, z)}

10

This shows that most of the query is needed to ensure that the
result at[t3, t4, u5] is produced, but the subtermf(x, y) is only
needed to compute the valuev1. This can be viewed as a query-
based explanation for this part of the result.

7. Implementation
To validate our design and experiment with larger examples,we
extended our Haskell implementationSlicer of program slicing for
functional programs [27] with the traces and slicing techniques
presented in this paper. We call the resulting systemNRCSlicer;
it supports a free combination of NRC and general-purpose func-
tional programming features.NRCSlicer interprets expressions in-
memory without optimization. As reported previously forSlicer,
we have experimented with several alternative tracing and slicing
strategies, which use Haskell’s lazy evaluation strategy in different
ways. The alternatives we consider here are:

• eager: the trace is fully computed during evaluation.

• lazy: the value is computed eagerly, but the trace is computed
lazily using Haskell’s default lazy evaluation strategy.

To evaluate the effectiveness of enriched patterns, we measured the
time needed for the eager and lazy techniques to trace and slice
the workflow exampleQ4 in the previous section. We considered a
instantiation of the workflow where the data values are simply in-
tegers and with input tablesT,U = {1, . . . , 50}, and defined the
operationsf(x, y) asx ∗ y, p(x, y) asx < y, andq(x, y, z) as
x2 + y2 = z2. This is not a realistic workflow, and we expect that
the time to evaluate the basic operations of a realistic workflow fol-
lowing this pattern would be much larger. However, the overheads
of tracing and slicing do not depend on the execution time of prim-
itive operations, so we can still draw some conclusions fromthis
simplistic example.

The comprehension iterates over503 = 125,000 triples, produc-
ing 20 results. We considered simple and enriched patterns select-
ing a single element of the result. We measured evaluation time,
and the overhead of tracing, trace slicing, and query slicing. The
experiments were conducted on a MacBook Pro with 2GB RAM
and a 2.8GHz Intel Core Duo, using GHC version 7.4.

eval trace slice qslice
eager-simple 0.5 1.5 2.5 1.6
eager-enriched 0.5 1.5 <0.1 <0.1
lazy-simple 0.5 0.7 1.3 1.7
lazy-enriched 0.5 0.7 <0.1 <0.1

The times are in seconds. The “eval” column shows the time needed
to compute the result without tracing. The “trace”, “slice”, and “qs-
lice” columns show the added time needed to trace and compute
slices. The full traces in each of these runs have over 2.1 million
nodes; the simple pattern slices are almost as large, while the en-
riched pattern slices are only 95 nodes. For this example, slicing is
over an order of magnitude faster using enriched patterns. The lazy
tracing approach required less total time both for tracing and slic-
ing (particularly for simple patterns). Thus, Haskell’s built-in lazy
evaluation strategy offers advantages by avoiding explicitly con-
structing the full trace in memory when it is not needed; however,
there is still room for improvement. Again, however, for an actual
workflow involving images or large data files, the evaluationtime
would be much larger, dwarfing the time for tracing or slicing.

Our implementation is a proof-of-concept that evaluates queries
in-memory via interpretation, rather than compilation; further work
would be needed to adapt our approach to support fine-grained
provenance for conventional database systems. Nevertheless, our
experimental results do suggest that the lazy tracing strategy and
use of enriched patterns can effectively decrease the overhead of

tracing, making it feasible for in-memory execution of workflows
represented in NRC.

8. Related and future work
Program slicing has been studied extensively [17, 30, 31], as has the
use of execution traces, for example in dynamic slicing. Ourwork
contrasts with much of this work in that we regard the trace and
underlying data as being of interest, not just the program. Some
of our previous work [12] identified analogies between program
slicing and provenance, but to our knowledge, there is no other
prior work on slicing in databases.

Lineage and why-provenance were motivated semantically in
terms of identifyingwitnesses, or parts of the input needed to en-
sure that a given part of the output is produced by a query. Early
work on lineage in relational algebra [15] associates each output
record with a witness. Buneman et al. studied a more general no-
tion called why-provenance that maps an output part to a collec-
tion of witnesses [7, 8]. This idea was generalized further to the
how-provenanceor semiringmodel [18, 20], based on using alge-
braic expressions as annotations; this approach has been extended
to handle some forms of negation and aggregation [4, 19]. Semiring
homomorphisms commute with query evaluation; thus, homomor-
phic changes to the input can be performed directly on the output
without re-running the query. However, this approach only applies
to changes describable as semiring homomorphisms, such as dele-
tion.

Where-provenance was also introduced by Buneman et al. [7,
8]. Although the idea of tracking where input data was copied
from is natural, it is nontrivial to characterize semantically, because
where-provenance does not always respect semantic equivalence.
In later work, Buneman et al. [6] studied where-provenance for
the pure NRC and characterized its expressiveness for queries and
updates. It would be interesting to see whether their notionof
expressive completenessfor where-provenance could be extended
to richer provenance models, such as traces, possibly leading to an
implementation strategy via translation to plain NRC.

Provenance has been studied extensively for scientific workflow
systems [5, 29], but there has been little formal work on the seman-
tics of workflow provenance. The closest work to ours is that of
Hidders et al. [21], who model workflows by extending the NRC
with nondeterministic, external function calls. They sketch an op-
erational semantics that recordsruns that contain essentially all of
the information in a derivation tree, represented as a set oftriples.
They also suggest ways of extractingsubrunsfrom runs, but their
treatment is partial and lacks strong formal guarantees analogous
to our results.

There have been some attempts to reconcile the database and
workflow views of provenance; Hidders et al. [21] argued for the
use of Nested Relational Calculus (NRC) as a unifying formal-
ism for both workflow and database operations, and subsequently
Kwasnikowska and Van den Bussche [22] showed how to map this
model to the Open Provenance Model. Acar et al. [2] later formal-
ized a graph model of provenance for NRC. The most advanced
work in this direction appears to be that of Amsterdamer et al. [3],
who combined workflow and database styles of provenance in the
context of the PigLatin system (a MapReduce variant based on
nested relational queries). Lipstick allows analyzing theimpact of
restricted hypothetical changes (such as deletion) on parts of the
output, but to our knowledge no previous work provides a formal
guarantee about the impact of changes other than deletion.

In our previous work [12], we introduceddependency prove-
nance, which conservatively over-approximates the changes that
can take place in the output if the input is changed. We devel-
oped definitions and techniques for dependency provenance in full
NRC including nonmonotone operations (empty, sum) and primi-

11

tive functions. Dependency provenance cannot predict exactly how
the output will be affected by a general modification to the source,
but it can guarantee that some parts of the output will not change if
certain parts of the input are fixed. Our notion of equivalence mod-
ulo a pattern is a generalization of theequal-except-atrelation used
in that work. Motivated by dependency provenance, an earlier tech-
nical report [10] presented a model of traced evaluation forNRC
and proved elementary properties such as fidelity. However,it did
not investigate slicing techniques, and used nondeterministic label
generation instead of our deterministic scheme; our deterministic
approach greatly simplifies several aspects of the system, particu-
larly for slicing.

There are several intriguing directions for future work, includ-
ing developing more efficient techniques for traced evaluation and
slicing that build upon existing database query optimization capa-
bilities. It appears possible to translate multiset queries so as to
make the labels explicit, since a fixed given query increasesthe
label depth by at most a constant. Thus, it may be possible to eval-
uate queries with label information but without tracing first, then
gradually build the trace by slicing backwards through the query,
re-evaluating subexpressions as necessary. Other interesting direc-
tions include the use of slicing techniques for security, tohide confi-
dential input information while disclosing enough about the trace to
permit recomputation, and the possibility of extracting other forms
of provenance from traces, as explored in the context of functional
programs in prior work [1].

9. Conclusion
The importance of provenance for transparency and reproducibility
is widely recognized, yet there has been little explicit discussion
of correctness properties formalizing intuitions about how prove-
nance is to provide reproducibility. In self-explaining computation,
traces are considered to be explanations of a computation inthe
sense that the trace can be used to recompute (parts of) the output
under hypothetical changes to the input. This paper develops the
foundations of self-explaining computation for database queries,
by defining a tracing semantics for NRC, proposing a formal defi-
nition of correctness for tracing (fidelity) and slicing, and defining
a correct (though potentially overapproximate) algorithmfor trace
slicing. Trace slicing can be used to obtain smaller “goldentrail”
traces that explain only a part of the input or output, and explore the
impact of changes in hypothetical scenarios similar to the original
run. At a technical level, the main contributions are the careful use
of prefix codes to label multiset elements, and the development of
enriched patterns that allow more precise slices. Our design is val-
idated by a proof-of-concept implementation that shows that lazi-
ness and enriched patterns can significantly improve performance
for small (in-memory) examples.

In the near term, we plan to combine our work on self-
explaining functional programs [27] and database queries (this
paper) to obtain slicing and provenance models for programming
languages with query primitives, such as F# [14] or Links [23].
Ultimately, our aim is to extend self-explaining computation to
programs that combine several execution models, includingwork-
flows, databases, conventional programming languages, Webinter-
action, or cloud computing.

Acknowledgments We are grateful to Peter Buneman, Jan Van
den Bussche, and Roly Perera for comments on this work and to
the anonymous reviewers for detailed suggestions. Effort sponsored
by the Air Force Office of Scientific Research, Air Force Material
Command, USAF, under grant number FA8655-13-1-3006. The
U.S. Government and University of Edinburgh are authorizedto re-
produce and distribute reprints for their purposes notwithstanding
any copyright notation thereon. Cheney is supported by a Royal So-

ciety University Research Fellowship, by the EU FP7 DIACHRON
project, and EPSRC grant EP/K020218/1. Acar is partially sup-
ported by an EU ERC grant (2012-StG 308246—DeepSea) and an
NSF grant (CCF-1320563).

References
[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core calculus for

provenance.Journal of Computer Security, 21:919–969, 2013. Full
version of a POST 2012 paper.

[2] U. A. Acar, P. Buneman, J. Cheney, N. Kwasnikowska,
J. Van den Bussche, and S. Vansummeren. A graph model of
data and workflow provenance. InTAPP, 2010.

[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich,
and V. Tannen. Putting lipstick on pig: Enabling database-style work-
flow provenance.PVLDB, 5(4):346–357, 2011.

[4] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance foraggregate
queries. InPODS, pages 153–164. ACM, 2011.

[5] R. Bose and J. Frew. Lineage retrieval for scientific dataprocessing: a
survey.ACM Comput. Surv., 37(1):1–28, 2005.

[6] P. Buneman, J. Cheney, and S. Vansummeren. On the expressiveness
of implicit provenance in query and update languages.ACM Transac-
tions on Database Systems, 33(4):28, November 2008.

[7] P. Buneman, S. Khanna, and W. Tan. Why and where: A character-
ization of data provenance. InICDT, number 1973 in LNCS, pages
316–330. Springer, 2001.

[8] P. Buneman, S. Khanna, and W. Tan. On propagation of deletions and
annotations through views. InPODS, pages 150–158, 2002.

[9] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of pro-
gramming with complex objects and collection types.Theor. Comp.
Sci., 149(1):3–48, 1995.

[10] J. Cheney, U. A. Acar, and A. Ahmed. Provenance traces.CoRR,
arXiv.org/abs/0812.0564, 2008.

[11] J. Cheney, U. A. Acar, and R. Perera. Toward a theory of self-
explaining computation. InIn search of elegance in the theory and
practice of computation: a Festschrift in honour of Peter Buneman,
number 8000 in LNCS, pages 193–216. Springer, 2013.

[12] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as dependency
analysis.Mathematical Structures in Computer Science, 21(6):1301–
1337, 2011.

[13] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases,
1(4):379–474, 2009.

[14] J. Cheney, S. Lindley, and P. Wadler. A practical theoryof language-
integrated query. InICFP, pages 403–416, New York, NY, USA, 2013.
ACM.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage ofview data in
a warehousing environment.ACM Trans. Database Syst., 25(2):179–
227, 2000.

[16] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters.Commun. ACM, 51(1):107–113, 2008.

[17] J. Field and F. Tip. Dynamic dependence in term rewriting systems
and its application to program slicing.Information and Software
Technology, 40(11–12):609–636, 1998.

[18] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: queries and
provenance. InPODS, pages 271–280, 2008.

[19] F. Geerts and A. Poggi. On database query languages forK-relations.
J. Applied Logic, 8(2):173–185, 2010.

[20] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31–40, 2007.

[21] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz,and J. Van den
Bussche. A formal model of dataflow repositories. InDILS, 2007.

[22] N. Kwasnikowska and J. Van den Bussche. Mapping the NRC
dataflow model to the open provenance model. InIPAW, pages 3–16,
2008.

12

[23] S. Lindley and J. Cheney. Row-based effect types for database inte-
gration. InTLDI, pages 91–102. ACM Press, 2012.

[24] P. Missier, B. Ludäscher, S. Dey, M. Wang, T. McPhillips, S. Bowers,
M. Agun, and I. Altintas. Golden trail: Retrieving the data history that
matters from a comprehensive provenance repository.International
Journal of Digital Curation, 7(1):139–150, 2011.

[25] L. Moreau. The foundations for provenance on the web.Foundations
and Trends in Web Science, 2(2–3), 2010.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. InSIGMOD,
pages 1099–1110. ACM, 2008.

[27] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs
that explain their work. InICFP, pages 365–376. ACM, 2012.

[28] A. Sabelfeld and A. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
2003.

[29] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance
in e-science.SIGMOD Record, 34(3):31–36, 2005.

[30] F. Tip. A survey of program slicing techniques.J. Prog. Lang., 3(3),
1995.

[31] M. Weiser. Program slicing. InICSE, pages 439–449. IEEE Press,
1981.

13

Γ ⊢ T : τ
n ∈ N

Γ ⊢ n : int

b ∈ {true, false}

Γ ⊢ b : bool

f : (b1, . . . , bn) → b ∈ Σ Γ ⊢ T1 : b1 · · · Γ ⊢ Tn : bn

Γ ⊢ f(T1, . . . , Tn) : b

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ T1 : τ1 Γ, x : τ1 ⊢ T2 : τ2

Γ ⊢ let x = T1 in T2 : τ2

Γ ⊢ T1 : τ1 · · · Γ ⊢ Tn : τn

Γ ⊢ 〈A1 : T1, . . . , An : Tn〉 : 〈A1 : τ1, . . . , An : τn〉

Γ ⊢ T : 〈A1 : τ1, . . . , An : τn〉

Γ ⊢ T.Ai : τi

b ∈ {true, false} Γ ⊢ T : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ Γ ⊢ T ′ : τ

Γ ⊢ if(T, e1, e2) ⊲b T
′ : τ Γ ⊢ ∅ : {τ}

Γ ⊢ T : τ

Γ ⊢ {T} : {τ}

Γ ⊢ T : {τ} Γ ⊢ T ′ : {τ}

Γ ⊢ T ∪ T ′ : {τ}

Γ ⊢ T : {int}

Γ ⊢ sum T : int

Γ ⊢ T : {τ}

Γ ⊢ empty T : bool

Γ, x : τ ⊢ e : {τ ′} Γ ⊢ T : {τ} Γ, x ∈ {τ} ⊢ Θ : {τ ′}

Γ ⊢
⋃

{e | x ∈ T} ⊲Θ : {τ ′}

Γ, x ∈ {τ} ⊢ Θ : {τ ′}

Γ, x ∈ {τ} ⊢ ∅ : {τ ′}

Γ, x : τ ⊢ T : {τ ′}

Γ, x ∈ {τ} ⊢ {ℓ.T} : {τ ′}

Γ, x ∈ {τ} ⊢ Θ1 : {τ ′} Γ, x ∈ {τ} ⊢ Θ2 : {τ ′}

Γ, x ∈ {τ} ⊢ Θ1 ∪Θ2 : {τ ′}

Figure 12. Well-typed traces.

T ′ ⊑ T

✷ ⊑ T T ⊑ T

T ′′ ⊑ T ′ T ′ ⊑ T

T ′′ ⊑ T

T ′
1 ⊑ T1 · · · T ′

n ⊑ Tn

f(T ′
1, . . . , T

′
n) ⊑ f(T1, . . . , Tn)

T ′
1 ⊑ T1 T ′

2 ⊑ T2

let x = T ′
1 in T ′

2 ⊑ let x = T1 in T2

T ′
1 ⊑ T1 · · · T ′

n ⊑ Tn

〈A1 : T ′
1, . . . , An : T ′

n〉 ⊑ 〈A1 : T1, . . . , An : Tn〉

T ′ ⊑ T

T ′.A ⊑ T.A

T ′
0 ⊑ T0 T ′ ⊑ T

if(T ′
0, e1, e2) ⊲b T ′ ⊑ if(T0, e1, e2) ⊲b T ∅ ⊑ ∅

T ′ ⊑ T

{T ′} ⊑ {T}

T ′
1 ⊑ T1 T ′

2 ⊑ T2

T ′
1 ∪ T ′

2 ⊑ T1 ∪ T2

T ′ ⊑ T

sum T ′ ⊑ sum T

T ′ ⊑ T

empty T ′ ⊑ empty T

T ′ ⊑ T Θ′ ⊑ Θ
⋃

{e | x ∈ T ′} ⊲Θ′ ⊑
⋃

{e | x ∈ T} ⊲Θ

Θ′ ⊑ Θ ⇐⇒ ∀ℓ ∈ dom(Θ′).Θ′(ℓ) ⊑ Θ(ℓ)

Figure 13. Subtrace relation.

A. Auxiliary definitions
Figure 12 summarizes the typing rules for traces. Figure 13 defines the subtrace relation.

B. Proofs of pattern properties
We prove the required properties for enriched patterns. Thecorresponding properties for the sublanguage of simple patterns follow
immediately since simple patterns are closed under the relevant operations.

Lemma B.1. If p, p′ ⊑ v thenp ⊔ p′ exists and is the least upper bound ofp andp′.

Proof. If both p andp′ match some patternq, then it is straightforward to show by induction onq that p ⊔ p′ is defined andp ⊔ p′ ⊑ q.
Specifically, ifp or p′ is ✷ or ✸ then we are done; ifp andp′ are both constants then we are done; otherwise, in each case,the toplevel
structure ofp andp′ must matchq, so that we can apply one of the rules for⊔ on smaller terms that match part ofq. Whenq = v, the desired
result follows. The second part (that⊔ is a least upper bound) also follows directly since clearly,p, p′ ⊑ p⊔ p′ and ifp, p′ ⊑ q then a similar
argument shows thatp ⊔ p′ ⊑ q.

Lemma B.2. For anyv, v′, p, v hp[✸/✷] v
′ holds if and only ifv hp v′ holds andv = v′.

Proof. Straightforward induction on the derivation ofv hp[✸/✷] v
′.

Lemma B.3. For anyv, v′, p, p′, we havev hp⊔p′ v
′ if and only ifv hp v′ andv hp′ v

′. Moreover,p ⊑ p′ if and only if for all v, v′, we
havev hp′ v

′ impliesv hp v′.

Proof. For the first part, we proceed by induction on the total size ofp, p′. The cases where one ofp, p′ is ✷ or ✸ are straightforward; for✸
we also need Lemma B.2. The cases involving constants, pairs, or complete set and record patterns are also straightforward.

There are several similar cases involving partial set or record patterns. We illustrate two representative cases:

1. If p = {ℓi.pi, ℓ′i.qi} andp′ = {ℓi.p′i} ∪̇ ✷ thenp ⊔ p′ = {ℓi.pi ⊔ p′i, ℓ
′
i.qi}. First, supposev hp⊔p′ v

′. This meansv = {ℓi.vi, ℓ′i.wi}
andv′ = {ℓi.v′i, ℓ

′
i.w

′
i}, wherevi hpi⊔p′

i
v′i andwi hqi w′

i. Therefore, by induction,vi hpi v′i andvi hp′
i
v′i, so we can conclude that

{ℓi.vi, ℓ′i.wi} hp {ℓi.v′i, ℓ
′
i.w

′
i} and{ℓi.vi, ℓ′i.wi} hp′ {ℓi.v′i, ℓ

′
i.w

′
i}, as required.

14

Conversely, if we assumev hp v′ andv hp′ v′, then we must havev = {ℓi.vi, ℓ′i.wi} andv′ = {ℓi.v′i, ℓ
′
i.w

′
i}, wherevi hpi v′i and

vi hp′
i
v′i andwi hqi w′

i. Thus, by induction we havevi hpi⊔p′
i
v′i so we can conclude{ℓi.vi, ℓ′i.wi} hp⊔p′ {ℓi.v′i, ℓ

′
i.w

′
i}.

2. If p = {ℓi.pi, ℓ′i.qi} ∪̇ ✷ andp′ = {ℓi.p′i, ℓ
′′
i .ri} ∪̇ ✸ thenp ⊔ p′ = {ℓi.pi ⊔ p′i, ℓ

′
i.qi[✸/✷], ℓ′′i .ri} ∪̇ ✸. First, supposev hp⊔p′ v′.

This meansv = {ℓi.vi, ℓ′i.wi, ℓ′′i .ui} ⊎ w0 and v′ = {ℓi.v′i, ℓ
′
i.w

′
i, ℓ

′′
i .u

′
i} ⊎ w0, wherevi hpi⊔p′

i
v′i andwi hqi[✸/✷] w′

i and
ui hri u′

i. Therefore, by induction,vi hpi v′i andvi hp′
i
v′i, and we also havewi hqi w′

i andwi = w′
i, so we can conclude that

{ℓi.vi, ℓ′i.wi, ℓ′′i .ui} ⊎ w0 hp {ℓi.v′i, ℓ
′
i.w

′
i, ℓ

′′
i .u

′
i} ⊎ w0 and{ℓi.v′i, ℓ

′
i.wi, ℓ′′i .ui} ⊎ w0 hp′ {ℓi.v′i, ℓ

′
i.w

′
i, ℓ

′′
i .u

′
i} ⊎ w0, as required.

Conversely, if we assumev hp v′ andv hp′ v
′, then we must havev = {ℓi.vi, ℓ′i.wi, ℓ′′i .ui} ⊎ v0 andv′ = {ℓi.v′i, ℓ

′
i.w

′
i, ℓ

′′
i .u

′
i} ⊎ v′0

wherevi hpi v′i andvi hp′
i
v′i andwi hqi w′

i andui hri u′
i. In addition, we must have thatwi = w′

i andv0 = v′0 sincev andv′

must be equal at all labels not inℓi, ℓ′′i . Thus, by induction we havevi hpi⊔p′
i
v′i and (using Lemma B.2) we can also easily show that

wi hqi[✸/✷] wi, so we can conclude that{ℓi.vi, ℓ′i.wi, ℓ′′i .u
′
i} ⊎ v0 hp⊔p′ {ℓi.v′i, ℓ

′
i.wi, ℓ′′i .ui} ⊎ v0.

The second part follows immediately from the definition ofp ⊑ p′ asp ⊔ p′ = p′.

Lemma B.4(Properties of union and restriction).

1. If p1 ⊑ v1 andp2 ⊑ v2 andv1 hp1 v′1 andv2 hp2 v′2 thenv1 ⊎ v2 hp1⊎p2 v′1 ⊎ v′2, provided all of these disjoint unions are defined.
2. If p ⊑ v1 ⊎ v2 andL1 ≤ dom(v1) andL2 ≤ dom(v2) andL1, L2 are prefix-disjoint, thenp|L1 ⊑ v1 andp|L2 ⊑ v2.

Proof. For part 1, assumep1 ⊑ v1, p2 ⊑ v2, v1 hp1 v′1 andv2 hp2 v′2, and assume that the domains ofp1 andp2, v1 andv2, andv′1 andv′2
are prefix-disjoint respectively, so that the unions exist.There are several cases. Ifp1 or p2 is✷ then the conclusion is immediate. If both are
✸ thenv1 = v′1 andv2 = v′2 sov1 ⊎ v2 = v′1 ⊎ v′2.

Most of the remaining cases are straightforward; we illustrate with the casep1 = {ℓi.pi} ∪̇✷ andp2 = {ℓ′i.qi} ∪̇✸. In this case,

v1 = {ℓi.v1i } ⊎ v10

v2 = {ℓ′i.v
2
i } ⊎ v20

v′1 = {ℓi.w1
i } ⊎ w1

0

v′2 = {ℓ′i.w
2
i } ⊎ w2

0

and we also know thatv1i hpi w1
i andv2i hqi w2

i for eachi. Therefore,

{ℓi.v1i } ⊎ v10 ⊎ {ℓ′i.v
2
i } ⊎ v20 = {ℓi.v1i , ℓ

′
i.v

2
i } ⊎ v10 ⊎ v20

h
{ℓi.pi,ℓ

′

i
.qi}∪̇✷

{ℓi.w1
i , ℓ

′
i.w

2
i } ⊎ w1

0 ⊎ w2
0

= {ℓi.w1
i } ⊎ w1

0 ⊎ {ℓ′i.w
1
i } ⊎ w2

0

For part 2, assumep ⊑ v1 ⊎ v2 andLi ≤ dom(vi) for i ∈ {1, 2}. We proceed by case analysis onp. The casesp = ✷ andp = ✸ are
immediate since✷|L = ✷ and✸|L = ✸. If p = {ℓi.pi} is a complete set pattern, thenp|L1 selects just those elements ofp that have a prefix
in Li, and since every element ofvq has its label’s prefix inL1 we must have thatv1 = {ℓ′i.v

′
i} wherepi ⊑ v′i for eachi andp|L1 = {ℓ′i.p

′
i},

which is what we need to show. The cases forp = {ℓi.pi} ∪̇✷ andp = {ℓi.pi} ∪̇ ✸ are similar.
A symmetric argument suffices to showp|L2 ⊑ v2.

Lemma B.5(Projection and⊑).

1. If p ⊑ {ǫ.v} thenp.ǫ ⊑ v.
2. If p ⊑ 1 · v1 ⊎ 2 · v2 thenp[1] ⊑ v1 andp[2] ⊑ v2.
3. If p ⊑ ℓ · v thenp[ℓ] ⊑ v.
4. If p ⊑ 〈Ai : vi〉 thenp.Ai ⊑ vi.

Proof. For part (1), supposep ⊑ {ǫ.v}. We proceed by case analysis onp. The cases for✷ and✸ are trivial. If p = {ǫ.p′} thenp.ǫ = p′ so
the conclusion follows. The cases forp = {ǫ.p′} ∪̇ ✷ or p = {ǫ.p′} ∪̇✸ are similar.

For part (2), supposep ⊑ 1 · v1 ⊎ 2 · v2. Supposev1 = {ℓi.vi} andv2 = {ℓ′i.v
′
i}. If p is a complete set pattern, then it must be of the

form {1.ℓi.pi, 2.ℓ′i.qi} , wherepi ⊑ vi andqi ⊑ v′i. The desired conclusion follows sincep[1] = {ℓi.pi}, and a symmetric argument shows
thatp[2] ⊑ v2. The cases for partial set patterns are similar, since the✷ or✸ is preserved by the projection operation.

For part (3), supposep ⊑ ℓ · v. The proof is analogous to the previous case.
For part (4), supposep ⊑ 〈Ai : vi〉. If p = ✸ or ✷, the result is immediate; otherwise,p is a record pattern. If it is a total record pattern

〈Ai : pi〉 then clearlyp.Ai = pi ⊑ vi. Otherwise, it is a partial pattern, in which case eitherp.Ai is a patternpi mentioned inp, in which
case we are done, orp.Ai = ✸ or p.Ai = ✷, and the conclusion follows immediately.

Lemma B.6(Projection andhp).

1. If p ⊑ {ǫ.v} andv hp.ǫ v
′ then{ǫ.v} hp {ǫ.v′}.

2. If p ⊑ 1 · v1 ⊎ 2 · v2 andv1 hp[1] v
′
1 andv2 hp[2] v

′
2 then1 · v1 ⊎ 2 · v2 hp 1 · v′1 ⊎ 2 · v′2.

3. If p ⊑ ℓ · v andv hp[ℓ] v
′ thenℓ · v hp ℓ · v′.

4. If p ⊑ 〈Ai : vi〉 andv1 hp.A1 v′1, . . . , vn hp.An
v′n then〈Ai : vi〉 hp 〈Ai : v′i〉.

15

Proof. For part (1), supposep ⊑ {ǫ.v} andv hp.ǫ v′. If p = ✷ or ✸ then the result is immediate (this is the case for all three parts of the
lemma). Ifp = {ǫ.p′}, p = {ǫ.p′} ∪̇✷, or p = {ǫ.p′} ∪̇✸ thenp.ǫ = p′ sov hp′ v

′. We can conclude{ǫ.v} hp {ǫ.v′}.
For part (2), supposep ⊑ 1 · v1 ⊎ 2 · v2 andv1 hp[1] v

′
1 andv2 hp[2] v

′
2. As usual, the casesp = ✷ andp = ✸ are trivial. Suppose

v1 = {ℓi.v′i} andv2 = {ℓ′i.v
′′
i }. If p is a complete set pattern it must be of the form{1.ℓi.pi, 2.ℓ′i.qi}, andv1 h{ℓi.pi}

v′1 andv2 h
{ℓ′

i
.qi}

v′2.

It is straightforward to show that1·v1 h{1·ℓi.pi}
1·v′1 and2·v2 h

{2·ℓ′
i
.qi}

2·v′2, so by previous results we have1·v1⊎2·v2 hp 1·v′1⊎2·v′2.
The cases for partial patterns follow the same reasoning, making use of the fact that projection preserves the partial pattern.
For part (3), supposep ⊑ ℓ · v. The argument is similar to the previous case.
For part (4) supposep ⊑ 〈Ai : vi〉 andvi hp.Ai

v′i for eachi. If p is✷, ✸, or a complete record pattern then the conclusion is immediate.
Otherwise, ifp = 〈Bi : qi〉 ∪̇ ✷, the conclusion is immediate since each component of the records〈Ai : vi〉 and〈Ai : v′i〉 either match the
appropriateqi or need not match because of the hole. Finally, ifp = 〈Bi : qi〉 ∪̇ ✸, the conclusion follows since each pair of corresponding
components of the records〈Ai : vi〉 and〈Ai : v′i〉 either match the appropriateqi or are equal becausep.Ai = ✸ if Ai is not among the
Bj .

C. Proof of correctness of trace slicing
Lemma C.1. If γ, x ∈ v1,Θ y

∗ v2 andv′1 ⊆ v1 then there existsv′2 ⊆ v2 such thatγ, x ∈ v′1,Θ y
∗ v′2.

Proof. The proof is straightforward by induction on derivations. The cases forv1 = ∅ andv1 = {ℓ.v} are immediate; ifv1 = w1 ⊎ w2 then
we proceed by induction using the subsetsw′

1 = w1 ∩ v′1 andw′
2 = w2 ∩ v′1.

We prove correctness of the full trace slicing algorithm, with enriched patterns, since the correctness for simple patterns follows as a
special case.

Theorem C.2(Correctness of Slicing).

1. Supposeγ, T y v andp ⊑ v andp, T ց ρ, S. Then for allγ′
hρ γ andT ′ ⊒ S such thatγ′, T ′

y v′ we havev′ hp v.
2. Supposeγ, x ∈ v0,Θ y

∗ v andp ⊑ v andp, x.Θ0 ց∗ ρ,Θ′
0, p0, whereΘ0 ⊆ Θ. Then for allγ′

hρ γ andv′0 hp0 v0 andΘ′ ⊒ Θ′
0

such thatγ′, x ∈ v′0,Θ
′
y

∗ v′ we havev′ hp v.

Proof. For part (1), the proof is by induction on the structure of slicing derivations, using inversion to extract information from other
derivations. The cases for variables, constants, primitive operations, and let-binding are exactly as in previous work [1]. The cases for
conditionals are similar to the those for variant types and case constructs in previous work.

We show the cases for records and set operations, which are new to this paper (records are handled similarly to pairs in ourprevious work,
so the cases for pairs are omitted).

• Field projection. If the last step in the slicing derivationis

〈Ai:p;✷〉, T ց ρ, S

p, T.Ai ց ρ, S.Ai

then the evaluation derivation must be of the form

γ, T y 〈A1:v1, . . . , An:vn〉

γ, T.Ai y vi

Let γ′
hρ γ andT ′ ⊒ S.Ai be given, whereγ′, T ′

y v′. ThenT ′ must have the formT ′′.Ai for someT ′′ ⊒ S so the replay derivation
is of the form

γ′, T ′′
y 〈A1:v

′
1, . . . , An:v

′
n〉

γ′, T ′′.Ai y v′i

The induction hypothesis applies since it is easy to show that 〈Ai : p;✷〉 ⊑ 〈A1:v1, . . . , An:vn〉. Therefore

〈A1:v
′
1, . . . , An:v

′
n〉 h〈Ai:p;✷〉 〈A1:v1, . . . , An:vn〉 .

From this it is obvious thatv′i hp vi.
• Record. If the last step in the slicing derivation is

p.A1, T1 ց ρ1, S1 · · · p.An, Tn ց ρn, Sn

p, 〈A1:T1, . . . , An:Tn〉 ց ρ1 ⊔ · · · ⊔ ρn, 〈A1:S1, . . . , An:Sn〉

then the evaluation derivation must be of the form

γ, T1 y v1 · · · γ, Tn y vn

γ, 〈A1:T1, . . . , An:Tn〉 y 〈A1:v1, . . . , An:vn〉

Let γ′
hρ1⊔···⊔ρn γ andT ′ ⊒ 〈A1:S1, . . . , An:Sn〉 be given, whereγ′, T ′

y v′. ThenT ′ must have the form〈A1:T
′
1, . . . , An:T

′
n〉,

whereT ′
i ⊒ Si for eachi, so the replay derivation is of the form

γ′, T ′
1 y v′1 · · · γ′, T ′

n y v′n

γ′, 〈A1:T
′
1, . . . , An:T

′
n〉 y 〈A1:v

′
1, . . . , An:v

′
n〉

16

By Lemma B.5 we knowp.Ai ⊑ vi for eachi, andγ′
hρi γ for eachi, so by inductionv′i hp.Ai

vi for eachi. Using Lemma B.6 we
can conclude that〈A1:v

′
1, . . . , An:v

′
n〉 hp 〈A1:v1, . . . , An:vn〉.

• Empty set. This case is trivial, similar to the usual case forconstants.
• Singleton. This case follows immediately from the relevantproperties ofp.ǫ, using similar reasoning to the record projection case.
• Union. If the last step in the slicing derivation is

p[1], T1 ց ρ1, S1 p[2], T2 ց ρ2, S2

p, T1 ∪ T2 ց ρ1 ⊔ ρ2, S1 ∪ S2

then the evaluation derivation must be of the form

γ, T1 y v1 γ, T2 y v2

γ, T1 ∪ T2 y 1 · v1 ⊎ 2 · v2

Let γ′
hρ1⊔ρ2 γ andT ′ ⊒ T1 ∪ T2 be given, whereγ′, T ′

y v′. ThenT ′ must have the formT ′
1 ∪ T ′

2 whereT ′
i ⊒ Si so the replay

derivation is of the form
γ′, T ′

1 y v′1 γ′, T ′
2 y v′2

γ′, T ′
1 ∪ T ′

2 y 1 · v′1 ⊎ 2 · v′2

By Lemma B.5 we knowp[1] ⊑ v1 andp[2] ⊑ v2, andγ′
hρi γ, so by induction we havev′1 hp[1] v1 andv′2 hp[2] v2, and therefore by

Lemma B.6 we can conclude1 · v′1 ⊎ 2 · v′2 hp 1 · v1 ⊎ 2 · v2.
• Sum and emptiness. In both cases, since the slice ensures that the whole argument to the sum or emptiness test is preserved, the argument

is straightforward. For example, for emptiness suppose thederivation is of the form:

✸, T ց ρ, S

p, empty T ց ρ, empty S

Then there are two cases. If replay derivation is of the form

γ, T y ∅

γ, empty T y true

Supposeγ′
hρ γ andT ′ ⊒ empty S with γ′, T ′

y v′. ThenT ′ is of the formempty T ′′ with T ′′ ⊒ S, so the replay derivation must be
of the form:

γ′, T ′′
y v′′

γ′, empty T ′′
y v′

By induction,v′′ h✸ ∅, which impliesv′′ = ∅ sov′ = true hp true (sincep ⊑ true). The cases where the argument toempty T
evaluates to a nonempty set, and forsum T , are similar.

• Comprehension. If the derivation is of the form

p, x.Θ ց∗ ρ′,Θ0, p0 p0, T ց ρ, S

p,
⋃

{e | x ∈ T} ⊲Θ ց ρ ⊔ ρ′,
⋃

{e | x ∈ S} ⊲Θ0

then the replay derivation must be of the form

γ, T y v0 γ, x ∈ v0Θ y
∗ v

γ,
⋃

{e | x ∈ T} ⊲Θ y v

Supposeγ′
hρ⊔ρ′ γ andT ′ ⊒

⋃
{e | x ∈ S}⊲Θ0 with γ′, T ′

y v′. ThenT ′ must be of the form
⋃
{e | x ∈ T ′′}⊲Θ′ for someT ′′ ⊒ S

andΘ′ ⊒ Θ0 so the replay derivation must be of the form

γ′, T ′′
y v′0 γ′, x ∈ v′0,Θ

′
y

∗ v′

γ′,
⋃

{e | x ∈ T ′′} ⊲Θ′
y v′

Sincep0 ⊑ v0 andγ′
hρ γ andγ′

hρ′ γ we havev′0 hp0 v0 by induction. Thus, by the second induction hypothesis, sincep ⊑ v and
γ′

hρ′ γ andv′0 hp0 v0 we havev′ hp v.

For part (2), the proof is again by induction on the structureof derivations.

• If the slicing derivation is of the form

∅, x.∅ ց∗ [], ∅, ∅

then the conclusion is immediate, since rerunning an empty trace set always yields the empty set.
• If the slicing derivation is of the form

✸, x.∅ ց∗ [], ∅, ∅

then the conclusion is immediate as before, since rerunningan empty trace set always yields the empty set.

17

• If the slicing derivation is of the form

✷, x.Θ ց∗ [], ∅,✷

then the conclusion is immediate, since any two values matchaccording to✷.
• If the slicing derivation is of the form

p[ℓ], T ց ρ[x 7→ p0], S

p, x.{ℓ.T} ց∗ ρ, {ℓ.S}, {ℓ.p0}

then observe thatΘ ⊇ {ℓ.T} by assumption, soΘ(ℓ) = T . So, the replay derivation must have the form

ℓ ∈ dom(Θ) γ[x 7→ v0], T y v

γ, x ∈ {ℓ.v0},Θ y
∗ ℓ · v

Now suppose thatγ′
hρ γ andv′0 h{ℓ.p0} {ℓ.v0} andΘ′ ⊒ {ℓ.S} are given whereγ′, x ∈ v′0,Θ

′
y

∗ v′. It follows thatv′0 = {ℓ.v′′0 }
andv′′0 hp0 v0, soγ′[x 7→ v′′0] hρ[x 7→p0] γ[x 7→ v0]. Moreover, by inversion the derivation must have the form:

ℓ ∈ dom(Θ′) γ′[x 7→ v′′0],Θ
′(ℓ) y v′

γ′, x ∈ {ℓ.v′′0 },Θ
′
y

∗ ℓ · v′

Since by Lemma B.5p[ℓ] ⊑ v andΘ′(ℓ) ⊒ S (which holds becauseΘ′ ⊒ {ℓ.S}), we have by induction thatv′ hp[ℓ] v, and using
Lemma B.6 we can conclude thatℓ · v′ hp ℓ · v, as desired.

• Suppose the slicing derivation is of the form:

p|dom(Θ1), x.Θ1 ց∗ ρ1,Θ
′
1, p1 p|dom(Θ2), x.Θ2 ց∗ ρ2,Θ

′
2, p2

p, x.Θ1 ⊎Θ2 ց∗ ρ1 ⊔ ρ2,Θ
′
1 ⊎Θ′

2, p1 ⊎ p2

and suppose thatγ, x ∈ v0,Θ y
∗ v whereΘ ⊇ Θ1 ⊎Θ2. Suppose thatγ′

hρ1⊔ρ2 γ andv′0 hp1⊎p2 v0 andΘ′ ⊒ Θ′
1 ⊎Θ′

2 are given,
whereγ′, x ∈ v′0,Θ

′
y

∗ v′. We need to show thatv′ hp v.
Sincev′0 hp1⊎p2 v0, it is straightforward to show that there must existv1, v2, v

′
1, v

′
2 such thatv1 ⊎ v2 = v0, v′1 ⊎ v′2 = v′0, v1 hp1 v1

andv′2 hp2 v2. Furthermore, by Lemma C.1 we know thatγ, x ∈ vi,Θ y
∗ wi andγ′, x ∈ v′i,Θ

′
y

∗ w′
i for somew1, w2, w

′
1, w

′
2.

Therefore, we can conclude that:

γ, x ∈ v1,Θ y
∗ w1 γ, x ∈ v2,Θ y

∗ w2

γ, x ∈ v1 ⊎ v2,Θ y
∗ w1 ⊎ w2

γ′, x ∈ v′1,Θ
′
y

∗ w′
1 γ′, x ∈ v′2,Θ

′
y

∗ w′
2

γ′, x ∈ v′1 ⊎ v′2,Θ
′
y

∗ w′
1 ⊎ w′

2

Furthermore, sincev1 ⊎ v2 = v0, by determinacy we know thatw1 ⊎ w2 = v and similarlyw′
1 ⊎ w2 = v′. By induction sincepi ⊑ vi

andΘi ⊆ Θ, we know thatw′
i hp|dom(Θi)

wi, so we know that

v′ = w′
1 ⊎ w′

2 hp|dom(Θi)
⊎p|dom(Θ2)

w1 ⊎ w2 = v .

To conclude, sincep ⊑ w1 ⊎ w2 anddom(Θ1) ≤ w1 anddom(Θ2) ≤ w2, it follows thatp = p|dom(Θ1) ⊎ p|dom(Θ2), so we can
concludew1 ⊎ w2 hp w′

1 ⊎ w′
2 as desired.

This exhausts all cases and completes the proof.

D. Proof of correctness of query slicing
Lemma D.1. If γ, x ∈ v1, e ⇓∗ v2 andv′1 ⊆ v1 then there existsv′2 ⊆ v2 such thatγ, x ∈ v′1, e ⇓∗ v′2.

Proof. The proof is straightforward by induction on derivations. The cases forv1 = ∅ andv1 = {ℓ.v} are immediate; ifv1 = w1 ⊎ w2 then
we proceed by induction using the subsetsw′

1 = w1 ∩ v′1 andw′
2 = w2 ∩ v′1.

We prove Theorem 5.1 by strengthening the induction hypothesis as follows:

Theorem D.2(Correctness of Query Slicing).

1. Supposeγ, T y v andp ⊑ v andp, T ցց ρ, e. Then for allγ′
hρ γ ande′ ⊒ e such thatγ′, e′ ⇓ v′ we havev′ hp v.

2. Supposeγ, x ∈ v0,Θ y
∗ v andp ⊑ v andp,Θ0 ցց∗ ρ, e0, p0, whereΘ0 ⊆ Θ. Then for allγ′

hρ γ andv′0 hp0 v0 ande′0 ⊒ e0 such
thatγ′, x ∈ v′0, e

′
0 ⇓∗ v′ we havev′ hp v.

Proof. The proof is by induction on the structure of query slicing derivations. Many of the cases are essentially the same as for trace slicing.
The cases for conditionals are straightforward, since in either case the sliced trace and environment retain enough information to force the
same branch to be taken on recomputation. We show the detailsof the cases involving conditionals and comprehensions.

For part (1), we consider a conditional and comprehension rule:

• If the slicing derivation is of the form:

p1, T1 ցց ρ1, e
′
1 true, T ցց ρ, e′

p1, if(T, e1, e2) ⊲true T1 ցց ρ1 ⊔ ρ,if(e′, e′1,✷)

18

then the replay derivation must be of the form:
γ, T y true γ, T1 y v1

γ, if(T, e1, e2) ⊲true T1 y v1

Supposeγ′
hρ1⊔ρ γ ande′′ ⊒ if(e′, e′1,✷) are given whereγ′, e′ ⇓ v′. Thene′′ = if(e′′0 , e

′′
1 , e

′′
2), wheree′′0 ⊒ e′ ande′′1 ⊒ e′1, so

there are two cases for the evaluation derivation. If it has the form

γ′, e′0 ⇓ false γ′, e′2 ⇓ v′2

γ′, if(e′0, e
′
1, e

′
2) ⇓ v′2

then sinceγ′
hρ γ andγ′

hρ1 γ, by induction we would have thatfalse htrue true, which is absurd. So this case cannot arise.
Otherwise, the derivation must have the form:

γ′, e′0 ⇓ true γ′, e′1 ⇓ v′1

γ′, if(e′0, e
′
1, e

′
2) ⇓ v′1

Sinceγ′
hρ γ andγ′

hρ1 γ, by induction we have thatv′1 hp1 v1 as desired.
• Comprehension. If the derivation is of the form

p, x.Θ ցց∗ ρ′, e′1, p0 p0, T ցց ρ, e′0

p,
⋃

{e | x ∈ T} ⊲Θ ցց ρ ⊔ ρ′,
⋃

{e′1 | x ∈ e′0}

then the replay derivation must be of the form

γ, T y v0 γ, x ∈ v0,Θ y
∗ v

γ,
⋃

{e | x ∈ T} ⊲Θ y v

Supposeγ′
hρ⊔ρ′ γ ande′′ ⊒

⋃
{e′1 | x ∈ e′0} with γ′, e′′ ⇓ v′. Thene′′ must be of the form

⋃
{e′′1 | x ∈ e′′0} for somee′′1 ⊒ e′1 and

e′′0 ⊒ e′0, so the evaluation derivation must be of the form

γ′, e′′0 ⇓ v′0 γ′, x ∈ v′0, e
′′
1 ⇓∗ v′

γ′,
⋃

{e′′1 | x ∈ e′′0} ⇓ v′

Sincep0 ⊑ v0 andγ′
hρ γ andγ′

hρ′ γ we havev′0 hp0 v0 by induction. Thus, by the second induction hypothesis, sincep ⊑ v and
γ′

hρ′ γ andv′0 hp0 v0 we havev hp v′.

For part (2), we consider the singleton and union rules:

• If the slicing derivation is of the form
p[ℓ], T ցց ρ[x 7→ p0], e

′

p, x.{ℓ.T} ցց∗ ρ, e′, {ℓ.p0}

then recall that by assumption,Θ(ℓ) ⊇ {ℓ.T}, soΘ(ℓ) = T , so the replay derivation must have the form

ℓ ∈ dom(Θ) γ[x 7→ v0], T y v

γ, x ∈ {ℓ.v0},Θ y
∗ ℓ · v

Now suppose thatγ′
hρ γ andv′0 h{ℓ.p0} {ℓ.v0} ande′′ ⊒ e′ are given whereγ′, x ∈ v′0, e

′′ ⇓∗ v′. It follows thatv′0 = {ℓ.v′′0 } and
v′′0 hp0 v0, soγ′[x 7→ v′′0] hρ[x 7→p0] γ[x 7→ v0]. Moreover, by inversion the derivation must have the form:

γ′[x 7→ v′′0], e
′′ ⇓ v′

γ′, x ∈ {ℓ.v′′0 }, e
′′ ⇓∗ ℓ · v′

Since by Lemma B.5p[ℓ] ⊑ v we have by induction thatv′ hp[ℓ] v, and using Lemma B.6 we can conclude thatℓ ·v′ hp ℓ ·v, as desired.
• Suppose the slicing derivation is of the form:

p|dom(Θ1), x.Θ1 ցց∗ ρ1, e
′
1, p1 p|dom(Θ2), x.Θ2 ցց∗ ρ2, e

′
2, p2

p, x.Θ1 ⊎Θ2 ցց∗ ρ1 ⊔ ρ2, e
′
0, p1 ⊎ p2

and suppose thatγ, x ∈ v0,Θ y
∗ v whereΘ ⊇ Θ1 ⊎Θ2. Suppose thatγ′

hρ1⊔ρ2 γ andv′0 hp1⊎p2 v0 ande′0 ⊒ e0 are given, where
γ′, x ∈ v′0, e

′
0 ⇓∗ v′. We need to show thatv′ hp v.

Sincev′0 hp1⊎p2 v0, it is straightforward to show that there must existv1, v2, v
′
1, v

′
2 such thatv1⊎v2 = v0, v′1⊎v′2 = v′0, v1 hp1 v1 and

v′2 hp2 v2. Furthermore, by Lemmas C.1 and D.1 we know thatγ, x ∈ vi,Θ y
∗ wi andγ′, x ∈ v′i, e

′
0 ⇓∗ w′

i for somew1, w2, w
′
1, w

′
2.

Therefore, we can conclude that:

γ, x ∈ v1,Θ y
∗ w1 γ, x ∈ v2,Θ y

∗ w2

γ, x ∈ v1 ⊎ v2,Θ y
∗ w1 ⊎ w2

γ′, x ∈ v′1, e
′
0 ⇓∗ w′

1 γ′, x ∈ v′2, e
′
0 ⇓∗ w′

2

γ′, x ∈ v′1 ⊎ v′2, e
′
0 ⇓∗ w′

1 ⊎ w′
2

Furthermore, sincev1 ⊎ v2 = v0, by determinacy we know thatw1 ⊎ w2 = v and similarlyw′
1 ⊎ w2 = v′. By induction sincepi ⊑ vi

andΘi ⊆ Θ, we know thatw′
i hp|dom(Θi)

wi, so we know that

v′ = w′
1 ⊎ w′

2 hp|dom(Θi)
⊎p|dom(Θ2)

w1 ⊎ w2 = v .

19

To conclude, sincep ⊑ w1 ⊎ w2 anddom(Θ1) ≤ w1 anddom(Θ2) ≤ w2, it follows thatp = p|dom(Θ1) ⊎ p|dom(Θ2), so we can
concludew1 ⊎ w2 hp w′

1 ⊎ w′
2 as desired.

This exhausts all cases and completes the proof.

20

