-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Database Queries that Explain their Work

Citation for published version:
Cheney, J 2014, 'Database Queries that Explain their Work' Paper presented at PPDP 2014, Canterbury,
United Kingdom, 8/09/14 - 10/09/14, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Preprint (usually an early version)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 20. Feb. 2015

https://core.ac.uk/display/28978353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/database-queries-that-explain-their-work(06dc90be-9587-4ba3-93c8-51d8d09644c4).html

1408.1675v3 [cs.PL] 12 Aug 2014

arXiv

Database Queries that Explain their Work

Amal Ah
Northeastern

James Cheney

University of Edinburgh
jcheney@inf.ed.ac.uk

Abstract

Provenance for database queries or scientific workflows tenof
motivated as providingexplanation increasing understanding of
the underlying data sources and processes used to compmute th
query, andreproducibility, the capability to recompute the results
on different inputs, possibly specialized to a part of thépat
Many provenance systems claim to provide such capabijlhi@s-
ever, most lack formal definitions or guarantees of thespgiro
ties, while others provide formal guarantees only for reddy lim-
ited classes of changes. Building on recent work on proveman
traces and slicing for functional programming languages,inv
troduce a detailed tracing model of provenance for muhiséied
Nested Relational Calculus, define trace slicing algorihinat ex-
tract subtraces needed to explain or recompute specifis piitie
output, and define query slicing and differencing techrsqtiat
support explanation. We state and prove correctness [irepé&or
these techniques and present a proof-of-concept impleti@min
Haskell.

Keywords provenance, database queries, slicing

1. Introduction

Over the past decade, the use of complex computer systeros in s
ence has increased dramatically: databases, scientifidlawrsys-
tems, clusters, and cloud computing based on frameworks asic
MapReduce[[16] or PigLatif [26] are now routinely used fair sc
entific data analysis. With this shift to computational scie based
on (often) unreliable components and noisy data comes atsetle
transparency, and an increased need to understand thésrebul
complex computations by auditing the underlying processes

This need has motivated work @novenancen databases, sci-
entific workflow systems, and many other settirig$ [7, 25].r&te
now a great deal of research on extending such systems fth ri
provenance-tracking features. Generally, these systemtgro-
vide high-level explanations intended to aid the user ireusidnd-
ing how a computation was performed, by recording and pteggn
additional “trace” information.

Over time, two distinct approaches to provenance have exderg
(1) the use ofannotationspropagated through database queries to
illustratewhere-provenancénking results to source datdl [7]n-
eageor why-provenancdinking result records to sets of witness-
ing input records[[15], ohow-provenancelescribing how results
were produced via algebraic expressidng [20], and (2) tkeeofis
graphicalprovenance tracet illustrate how workflow computa-
tions construct final results from inputs and configuratiarepe-
ters [5/ 2111 29]. However, to date few systems formally diyeibie
semantics of provenance or give formal guarantees chamate
how provenance “explains” results.

For example, scientists often conduct parameter sweeps to

search for interesting results. The provenance trace ¢f swom-
putation may be large and difficult to navigate. Once the most

amal@ccs.neu.edu

Umut A. Acar

Carnegie Mellon University &
INRIA-Rocquencourt

umut@cs.cmu.edu

med

University

promising results have been identified, a scientist may want
extract just that information that is needed to explain thsult,
without showing all of the intermediate search steps or tenin
esting results. Conversely, if the results are countdtiné) the
scientist may want to identify the underlying data that cboted
to the anomalous result. Missier et al.1[24] introduced theiof
a “golden trail”, or a subset of the provenance trace thalaéxg,
or allows reproduction of, a high-value part of the outputey
proposed techniques for extracting “golden trails” usiagursive
Datalog queries over provenance graphs; however, they alid n
propose definitions of correctness or reproducibility.

It is a natural question to ask how we know when a proposed
solution, such as Missier et al.’s “golden trail” queriesyrectly
explains or can be used to correctly reproduce the behafitreo
original computation. It seems to have been taken for gdathtat
simple graph traversals suffice to at least overapproxirthegele-
sired subset of the graph. As far as we know, it is still an open
question how to define and prove such correctness propéoties
most provenance techniques. In fact, these propertiestiétie-
fined and formalized in a number of ways, reflecting differaot-
eling choices or requirements. In any case, in the absencleaf
statements and proofs of correctness, claims that diffdoems
of provenance “explain” or allow “reproducibility” are didult to
evaluate objectively.

The main contribution of this paper is to formalize and prihes
correctness of an approach to fine-grained provenance tabalse
queries. We build on our approach developed in prior workictvh
we briefly recapitulate. Our approach is based on analogies b
tween the goals of provenance tracking for databases ankl- wor
flows, and those of classical techniques for program congpreh
sion and analysis, particularfyrogram slicing[31] andinforma-
tion flow[28]. Both program slicing and information flow rely crit-
ically on notions ofdependencesuch as the familiar control-flow
and data-flow dependences in programming languages.

We previously introduced a provenance model for NRC (in-
cluding difference and aggregation operations) catledendency
provenancd1Z], and showed how it can be used to compuita
slices that is, subsets of the input to the query that include all of
the information relevant to a selected part of the outpumn&other
forms of provenance for database query languages, suchwas ho
provenance [20], satisfy similar formal guarantees thatimused
to predict how the output would change under certain claskies
put changes, specifically those expressible by semiringonoon-
phisms. For example, Amsterdamer et al.’s sysiém [3] isbase
the semiring provenance model, so the effects of deletionsaots
of the output can be predicted by inspecting their proveaabat
other kinds of changes are not supported.

More recently, we proposed an approach to provenance called
self-explaining computatioffild] and explored it in the context
of a general-purpose functional programming language 71, 2
In this approach, detailed execution traces are used asradbr

http://arxiv.org/abs/1408.1675v3

provenance. Traces explain results in the sense that thepea
replayedto recompute the results, and they carsheedto obtain
smaller traces that provide more concise explanations i$ [od
the output. Trace slicing also produces a slice of the inpaiving

what was needed by the trace to compute the output. Moreover,

other forms of provenance can be extracted from tracesi(@s3)

In general, we use sequences of natural numfgers. . ,i,] € N*
as indices, and we maintain a stronger invariant: the setdxes
used in a multiset must form @refix code We define a semantics
for NRC expressions over such collections that is fully cete-
istic and does not resort to generation of fresh intermedadiels;
in particular, the union operation adjusts the labels taaé dis-

and we also showed that traces can be used to compute prograntinctness.

slices efficiently through lazy evaluation. Finally, we aleal how
traces suppontifferential slicingtechniques that can highlight the
differences between program runs in order to explain ancigely
localize bugs in the program or errors in the input data.

Our long-term vision is to develop self-explaining compiata
techniques covering all components used in day-to-daynsfice
practice. Databases are probably the single most impostait
component. Since our previous work already applies to argéne

The second technical challenge involves extengiatiernsfor
partial collections. In our previous work, any subexpressdf a
value can be replaced by a hole. This works well in a conven-
tional functional language, where typical values (suchists and
trees) are essentially initial algebras built up by streadtinduction.
However, when we consider unordered collections such as, bag
our previous approach becomes awkward.

For example, if we want to use a pattern to focus on only the

purpose programming language, one way to proceed would be to B field of the second record in query resgi{ R), we can only

simply implement an interpreter for NRC in this language] an

herit the slicing behavior from that. However, without sofuher

inlining or optimization, this naive strategy would yieldtes that
record both the behavior of the NRC query and its interprateng

with internal data structures and representation choidesse de-
tails are (intuitively) irrelevant to understanding thegliilevel be-
havior of the query.

1.1 Technical overview

In this paper, we develop a tracing semantics and tracegltech-
niques tailored to NRC (over a multiset semantics). Thisaem
tics evaluates a query over an input database (i.e. environment
mapping relation names to table values), yielding the usemllt
valuev as well as draceT. Traces are typically large and difficult
to decipher, so we consider a scenario where a user hag,rim
spected the results and requests an explanation for a part of the
result, such as a field value of a single record. As in our preyi
work for functional programs, we use partial values withlds3 O

to describe parts of the output that are to be explained. ¥ame
ple, if the result of a program is just a pdir, 2) then the pattern
(1,0) can be used to request an explanation for just the first com-
ponent. Given a partial valye matching the output, our approach
computes a “slice” consisting of a partial trace and a plairijaut
environment, where components not necessary for recongptlie
explained output pay have been deleted.

The main technical contribution of this paper over our pasi
work [1,[27] is its treatment of tracing and slicing for cailens.
There are two underlying technical challenges; we illustizoth
(and our solutions) via a simple example quyy= ca<g(R) U
pa—B,B—A(0a>p(R)) over atableR with attributesA, B. Here,
oy is relational selection of all tuples satisfying a predécat
andpa. B,B—a IS renaming. Thusg simply swaps the fields of
records wherel > B, and leaves other records alone.

The first challenge is how to address elements of multisets
reliably across different executions and support propagaof
addresses in the output backwards towards the input. Outicol
is to use a mildly enriched semantics in which multiset eleisie
carry explicit labels; that is, we view multisets of elenmefiom X
as functiond — X from some index set t& . For example, ifR
is labeled as follows and we use this enriched semanticsaioae
the above querg) on R, we get a result:

id |A B C id |A B C
T 2 7 L1 2 7
=2 3 8 Q=002 3 3

rs] 14 3 9 2,73] |3 4 9

where in each case thid column contains a distinct index. In
Q(R), the first ‘1’ or ‘2" in each index indicates whether the row
was generated by the left or right subexpression in the upioi.

do this by deleting the other record values, and the smailest
pattern is{[1,r1].0, [2, r2].(A:0, B:3, C:0), [2,r3].0}. This is
tolerable if there are only a few elements, but if there amedneds
or millions of elements and we are only interested in ones iti
a significant overhead. Therefore, we introdecgiched patterns
that allow us to replace entire subsets with holes, for examp
P’ {[2,72].(B:3;0)} U O. Enriched patterns are not just a
convenience; we show experimentally that they allow traares
slices to be smaller (and computed faster) by an order of imafmn
or more.

1.2 Outline

The rest of this paper is structured as follows. Secflon vevthe
(multiset-valued) Nested Relational Calculus and preseumt trac-
ing semantics and deterministic labeling scheme. Selcdijpsasents
trace slicing, including a simple form of patterns. Seclibshows
how to enrich our pattern language to allow for partial relcand
partial set patterns, which considerably increase theesspreness
of the pattern language, leading to smaller slices. Selimesents
the query slicing algorithm and shows how to compute diffeed
slices. Sectiof]6 presents additional examples and discusec-
tion[7 presents our implementation demonstrating the ksnefi
laziness and enriched patterns for trace slicing. SeCtidis@isses
related and future work and Sect{dh 9 concludes.

Due to space limitations, and in order to make room for exam-
ples and high-level discussion, some (mostly routine) ffetails
and proofs are relegated to the appendix.

2. Traced Evaluation for NRC

The nested relational calculls [9] is a simply-typed corgylage
with collection types that can express queries on nestedsitailar

to those of SQL on flat relations, but has simpler syntax agarer
semantics. In this section, we show how to extend the ideds an
machinery developed in our previous work on traces anchgjifcr
functional language$ [27] to NRC. Developing formal foutintas

for tracking provenance in the presence of unordered dales
presents a number of challenges not encountered in thedoatt
programming setting, as we will explain.

2.1 Syntax and Dynamic Semantics

Figure[d presents the abstract syntax of NRC expressiohsgs/a
and traces. The expressifaenotes the empty collectiofe} con-
structs a singleton collection, ardU e» takes the (multiset) union

of two collections. The operatiatum e computes the sum of a col-
lection of integers, while the predicasapty e tests whether the
collection denoted by is empty. Additional aggregation operations
such as count, maximum and average can easily be accommodate
Finally, the comprehension operatij{c’ | = € e} iterates over

v,e1lc1,Th Y, en I cn, Tn v,e1 v, Ty Yz = vi],e2 J v2, T
v,clc,c v, f(e1, .. en) b E(cr, .., en), £(T1, ..., Tn) v xdy(z), v,letz = e1ines vo,letz =Ty inTh
vyer v, Ty Y, en b vn, Tn veld (Arvr, .., Apivg), T
v (Arzer, .., Anten) I (Avvr, oo Anton), (AT, o ATy v, e Ai bv, TA;
v.ed true, T v,e1 $ o1, Th v,ed false, T ~v,e2 § v2,T> v,edv,T

e if(67 €1, 62) 4 v, if(T7 €1, 62) Dtrue 11

v, €1 ‘U"Ul,Tl ’Y,SQU«’UQ,TQ %eUU,T

Y, if(67 €1, 62) U v2, if(T7 €1, 62) Dfalse T2

vierUea 4 1-v1 W2 vy, 71 U Ty

v,ed v, T v=">0
v, empty e || true, empty 7'

v,x €Ev,e " v,0

* /
v,z €vr,ell” vy,0

'y,U{e’|er}l}v',U{e’\xET}D@

/
7, @ € vg,e I 05,09

7,040,0 v, {e} ¥ {ev} {T}
v,z €v,e’ 7,0 vel {lrv1,... lnvn}, T
~,sume |} vi+...+vn, sum T
’Y,E»U«’U,T U;éw

7, empty e || false, empty 1T°

vz e o, T

v,z €0,el* 0,0

v, € vy Wug, e ||* v] Wb, O1 W Os

v.@ € {},e b £ {61}

Figure 2. Traced evaluation.

Operations f u=+| — | x|/ =] < | < | -
Expressions e := c| f(e1,...,en) |z |lete = zine’
(A1 :e1,...,An 1 en) | e.A | if(e, € €"”)

Ol{e}|etUes | U{e'| z €€}

empty e | sume | ---

Labels =Ll |e|n

Values viu=c| (A1 v, .. Ayt op)
| 0| {l1v1,...,0n.vn}

Environments v ::= [z1 — v1,...,Tn — U]

Traces T = - | if(T,€,€") berue T | if(T,€',€") Prarse T
| WelzeT}irO

Trace Sets O = {{1.Ty,...,0n.Th}

Types 7 = int |bool | (A1 :7T1,..., An :Tn) | {7}

Type ContextsT" ::= z1:71,...,%n : T

Figure 1. NRC expressions, values, traces, and types.

the collection obtained by evaluating evaluatinge’(z) with =
bound to each element of the collection in turn, and retgrran
collection containing the union of all of the results. We stimes
consider pairges, e2), a special case of recordg1 : e1, #2 : e2)
using two designated field namgs and#-. Many trace forms are
similar to those for expressions; only the differences amv.

Labels are sequencés= [i,,...,i,] € N*, possibly empty.
The empty sequence is writtenand labels can be concatenated
¢ - £'; concatenation is associative. Record field names areewritt
A, B, A1, Ag, ...

Values in NRC include constants, which we assume in-
clude at least booleans and integers. Record values are-esse
tially partial functions from field names to values, writtéA; :
vi,..., An : vn). Collection values are essentially partial, finite-
domain functions from labels ifN* to values, which we write
{l1.v1,...,0n.vy}. Since they denote functions, collections and
records are identified up to reordering of their elementd, their
field names or labels are always distinct. We wiitev for the
operation that prependgo each of the labels in a setthat is,

l- {41.1}1,. .. ,én.vn} = {é-ﬂl.vl,. .. ,4 énvn} .

Other operations on labels and labeled collections will riteot
duced in due course.

The labels on the elements of a collection provide us withra pe
sistent address for a particular element of the collecfitiis capa-
bility is essential when asking and answering provenanegies
about parts of the source or output data, and when trackieg fin
grained dependencies.

Both expressions and traces are subject to a type system. NRC
types include collection typeis-} which are often taken to be sets,
bags (multisets), or lists, though in this paper, we comsiudtiset
collections only. However, types do not play a significarié rio
this paper so the typing rules are omitted. For expressites,
typing judgmentl’ + e : 7 is standard and the typing rules for
trace well-formednesE 7" : 7 are presented in AppendiX A.

Traced evaluation NRC traces include a trace form correspond-
ing to each of the expressions described above. The steugttine
traces is best understood by inspecting the typing rulegi(E[12)
and the traced evaluation rules (Figlle 2), which define gmeht
~v,e || v, T indicating that evaluating an expressielin environ-
ment~ yields a valuev and a tracé’. We assume an environment
¥ associating constants and function symbols with theirsypad
write £ or + for the semantic operations correspondingftor -+,
and so on. In most cases, the trace form is similar to the sgjme
form; for example the trace of a constant or variable is a teons
tracec, the trace of a primitive operatiaf(es, ..., e,) is a prim-
itive operation trace (71, ..., 7,) applied to the trace®; of the
argumentg;, the trace of a record expression is a trace record con-
structor(A; : Th,..., A, : Ty), and the trace of a field projection
e.Ais atracel. A. Also, the trace of a let-binding is a let-binding
tracelet z = 71 in 7%, wherex is bound in7%. In these cases,
the traces mimic the expression structure.

The traced evaluation rules for conditionals illustratat tihaces
differ from expressions in recording control flow decisioii$ie
trace of a conditional is a conditional tracé(7,e1,e2) >, T’
where T' is the trace of the conditional tesh, is the Boolean
value of the test;, andT” is the trace of the taken branch. The
expressions; and e, are not strictly necessary but retained to
preserve structural similarity to the original expression

The trace off) is a constant trac@. To evaluate a singleton-
collection constructofe}, we evaluate: to obtain a valuey and
return the singleto{e.v} with empty labele. We return the sin-

gleton trace{T'} recording the trace for the evaluation of the ele-
ment. To evaluate the union of two expressions, we evaluath e
one and take the semantic union (writtej of the resulting col-
lections, with a ‘1’ or ‘2’ concatenated onto the beginnirfgeach
label to reflect whether each element came from the first amgkc
part of the union; the union trad® U 75 records the traces for the
evaluation of the two subexpressions. kan e, evaluating yields

a collection of numbers whose sum we return, together witma s
tracesum T recording the trace for evaluation ef Evaluation of
emptiness testampty e is analogous, yielding a traeapty 7.

To evaluate a comprehensiph{e’ | = € e}, we first evaluate,
which yields a collectiorv and tracel’, and then (using auxiliary
judgmenty,z € v, |* o', ©) evaluatee’ repeatedly with
2 bound to each element; of the collectionv to get resulting
valuesv; and corresponding tracd%. We return a new collection
v = {l1-vy,..., Ly - vy }; similarly we return a labeled set of
traces® = {¢,.T1,...,£,. T }. (Analogously to values, trace sets
are essentially finite partial functions from labels to &s)c For
each of these collections, we prepend the appropriate fabéthe
corresponding input element.

A technical point of note is that the resulting traEemay con-
tain free occurrences af. As in our trace semantics for functional
programs, these variables serve as markefs that will be critical
for the trace replay semantics. The comprehension traced®c
using the notation J{e'| z € T} > {{1.T1, ..., £,.T,,}, that the
traceT was used to compute a multiset and z was bound to
each element;.v; in v in turn, with tracel; showing how the cor-
responding subset of the result was computed. The comsieimen
trace also records the expressidmand bound variable, which are
again not strictly necessary but preserve the structuralagity to
the original expression.

At this point it is useful to provide some informal motivatio
for the labeling semantics, compared for example to otherase
tics that use annotations or labels as a form of provenaneedW
not view the labels themselves as provenance; instead,piteey
vide a useful infrastructure for traces, which do captureranfof
provenance. Moreover, by calculating the label of each qiaain
intermediate or final result deterministically (given tlabdéls on
the input), we provide a way to reliably refer to parts of thepait,
which otherwise may be unaddressable in a multiset-valeeths-
tics. This is essential for supporting compositional slicfor op-
erations such as let-binding or comprehension, where ttpubaf
one subexpression becomes a part of the input for another.

A central point of our semantics is that evaluation presethie
property that labels uniquely identify the elements of eacittiset.
This naturally assumes that the labels on the input codesti
are distinct. In fact, a stronger property is required: eatibn
preserves the property that set labels forrprefix code In the
following, we writez < y to indicate that sequenceis a prefix of
sequencey.

Definition 2.1. A prefix codeoverX is a set of sequencds C X~

such that for every:,y € L, if < y thenxz = y. A sub-prefix
codeof a prefix codel is a prefix codel.” such that for allx € L

there existy € L’ such thaty < z. We writeL’ < L to indicate
that L’ is a sub-prefix code of. We say thaf., and L’ are prefix-
disjoint when no element df is a prefix of an element df’ and
vice versa.

Let v be a collectionrv = {¢1.v1,...,0n.v,}. We define the
domain ofv to bedom(v) = ., 4n}. . We say that a value
or value environment iprefix-labeledif for every collectionv
occurring in it, the labelds, ..., ¢, are distinct andlom(v) is a
prefix code. Similarly, we say that a trace is prefix-labefezbery
labeled trace sed = {¢1.11,...,£,. Ty, } is prefix-labeled.

s Tl ~C1 FY?T’!L ™~ Cn
y,c v c Y E£(T1, ..., Tn) ~E(c1,.. . ¢n)
v, T1 ~ v1 Yz = v1], Te ~ v
v,z () Y,letx = T1 inTh ~ va
’*/,Tl m V1 77Tn N Un
s <A15T17 sy A7L5Tn> 8% <A15'U17 cees A7L5U7L>
v, T ~ (A1, ..., Apiog) v, T ~ true v, T1 ~ v1
v TAZ U v if(T7 51752) Dtrue 11 ™ V1
v, T ~ false ¥, To ™ v2 ¥, T ~v
Y, if(T, €1, 52) Dfalse 12 M V2 Y @ ~ @ s {T} ~ {E'U}
7,11~ v, To ~ v2 7T ~A{Llrvi, . by on}
v, T1 UTo~1-v1 0202 w,sumevl—T—...—f—vn
v T v v=1_0 v T v v#0D

v, empty T~ true v, empty T" ~ false

v, T ~v v, €Ev,0 N*

7,U{e|x€T}l>®mv'

v,z €Ev,0 NV

v, €y, 0 A V] v, € v, © A V)

vz€D,0ND v, € v1 W, © AT v] W)

¢; € dom(®) Y[z = vi], 04;) ~ vl
vy € {liv;}, 0 A L)

Figure 3. Trace replay.

Theorem 2.2. If v is prefix-labeled andy,e || v, T thenv and
T are both prefix-labeled. Moreover, 4f and v are prefix-labeled
andv,z € v,e ||* v’,© thenv’ and© are prefix-labeled, and in
additiondom(©) = dom(v) < dom(v’).

Proof. By induction on derivations. The key cases are those for
union, which is straightforward, and for comprehensiore. the
latter case we need the second part, to show that whenesrd
v are prefix-labeled, ify,z € v,e ||* v’,0 thenv’ and© are
prefix-labeled, and in additiolom (©) = dom(v) anddom(v) is
a sub-prefix code afom(v"). O

The prefix code property is needed later in the slicing algo-
rithms, when we will need it to match elements of collectipns-
duced by comprehensions with corresponding elements dfdbe
set®. From now on, we assume that all values, environments, and
traces are prefix-labeled, so any labeled set is assumedeaa
prefix code property.

We will use the following query as a running example.

Q = J{if(z.B =3,{(Aw.A, B:x.C)},{})| = € R}

This is a simple selection query; it identifies recordithat have
B-value of 3, and returns recofdl:x. A, B:x.C') containingz’s A
value and its”' value renamed t®. The result of on the inputR
in the introduction i) (R) = {[r2].(A:2, B:8), [r3].(A:4, B:9)},
and the trace is:
T=U{-lz€Rbv{ [n]if(z.B=3,_)b {},
ro].if(z.B =3,) Prrue {-},
[r3].if(z.B = 3, ., _) Dtrue {-} }

where_ indicates omitted (easily inferrable) subexpressions.

Replay We introduce a judgment, T ~ v for replaying a
trace on a (possibly different) environmentThe rules for replay-

Proposition 2.6(Consistency) If v, e || v, T thenv, T ~ v.

Finally, trace replay is faithful to ordinary evaluationthre fol-
lowing sense: ifl" is generated by runningin + and we success-

ing NRC traces are presented in Figlie 3. Many of the rules are fully replayT’ on~' then we obtain the same value (and same trace)

straightforward or analogous to the corresponding eviainatiles.
Here we only discuss the replay rules for conditional andmem
hension traces.

For the conditional rules, the basic idea is as follows. i re
playing the tracel’ of the test yields the same boolean valuas
recorded in the trace, we replay the trace of the taken brafitte
test yields a different value, then replay fails.

To replay a comprehension tradd{e|z € T} > O, rule
RCowmp first replays tracel’ to update the set of elements
over which we will iterate. We define a separate judgmgnt
v,© ~* V' to iterate over set and replay traces on the corre-
sponding elements. For elemerfts € dom(©), we replay the
corresponding trac®(¢;). Replay fails ifv contains any labels not
present in9.

Replaying a trace can fall if either the branch taken in a eond
tional test differs from that recorded in the trace, or therimediate
set obtained from rerunning a comprehension trace inclualess
whose labels are not present in the trace. This means, iicydart
that changes to the input can be replayed if they only chaage b
values or delete set elements, but changes leading to @usliif
new labels to sets involved in comprehensions typicallynoabe
replayed.

Returning to the running example, suppose we change Beld
of row r; of R from 2 to 5. This change has no effect on the
control flow choice taken i), and replaying the tracg succeeds.
Likewise, changing thed or C field of any column ofR has no
effect, since these values do not affect the control flow a®in
T. However, changing th8 field of a row to3 (or changing it from
3 to something else) means that replay will fail.

2.2 Key properties

Before moving on to consider trace slicing, we identify sqimap-
erties that formalize the intuition that traces are comsisivith and
faithfully record execution.

Evaluation and traced evaluation are deterministic:

Proposition 2.3 (Determinacy) If v,e | v,T and~,e || v/, T’
thenv =v andT =T". If v, T ~vandy, T ~ v’ thenv = v'.

When the trace is irrelevant, we write ¢ |} v to indicate that
~v,e |l v, T for someT.

Traced evaluation is type-safe and produces well-typembéra
and trace replay is also type-safe.

Theorem 2.4. If v : T'andT' - e : 7 and~,e |} v, T thenv : 7
andT’HFT : 7. Ify:Tandl' =T : 7andv, T ~ v thenv : 7.

as if we had rerum from scratch imy’, and vice versa:

Proposition 2.7 (Fidelity). If v,e | v, T, then for anyy’, v" we
havey',e |} v/, T ifand only ify', T ~ v'.

Observe that consistency is a special case of fidelity (with
~,v" = v. Moreover, the “if” direction of fidelity holds even though
replay can fail, because we require thate |} v’, T holds for the
same tracél’. If 7/, e || v/, T is derivable but only for a different
traceT”, then replay fails.

3. Trace Slicing

The goal of the trace slicing algorithm we consider is to reeno
information from a trace and input that is not needed to recom
pute a part of the output. To accommodate these requiremeats
introduce traces and values whblesand more generally, we con-
siderpatternsthat represent relations on values capturing possible
changes. In this section, we limit attention to pairs, andsater
slicing for a class o§implepatterns. We consider records and more
expressiveenrichedpatterns in the next section.

We extend traces with holés

T == ---|0O

and define a subtrace relatign that is essentially a syntactic
precongruence on traces and trace sets suchtthat 7' holds
and® C ©' implies® C ©'. (The definition ofC is shown in
full in the companion technical report.) Intuitively, helelenote
parts of traces we do not care about, and we can think of a trace
T with holes as standing for a set of possible complete traces
{T" | T C T'} representing different ways of filling in the holes.
The syntax ofsimple pattern®, set patternsp, and pattern
environmentg is:

p u= O|C[c|(pi,p2)|sp
Sp = (Z) | {(1~p17---7€n-pn}
p = [z1iepi,..,Tn = pal

Essentially, a pattern is a value with holes in some postidine
meaning of each pattern is defined through a relatigrthat says
when two values are equivalent with respect to a patterrs fiehi
lation is defined in Figurgl5. A hol& indicates that the part of
the value is unimportant, that is, for slicing purposes we'tdcare
about that part of the result. Its associated relatienrelates any
two values. Anidentity pattern< is similar to a hole: it says that
the value is important but its exact value is not specified, it
associated relatior is the identity relation on values. Complete

Traces can be represented using pointers to share commorget patterng¢y.p1,. . ., £n.pn} Specify the labels and patterns for

subexpressions; using this DAG representation, traceBeatored
in space polynomial in the input. (This sharing happensraatb
cally in our implementation in Haskell.)

Proposition 2.5. For a fixede, if v,¢ | v, T then the sizes of
and of the DAG representation @fare at most polynomial ify|.

Proof. Most cases are straightforward. The only non-trivial case i
for comprehensions, where we need a stronger inductionthypo
esis: ify,z € v,e ||* v/, O then the sizes of’ and of the DAG
representation op are at most polynomial ifyy|. O

Furthermore, traced evaluation produces a trace thaty®pla
to the same value as the original expression run on the atigin
environment. We call this propergonsistency

all of the elements of a set; that is, such a pattern relatlyssets
that have exactly the labeled elements specified and whase- co
sponding values match according to the correspondingrpatte

We define the union of two set patterns{ds.p; } W {¢/.p,} =
{7:.p:, 7,.p}} provided their domaing; and/’ are prefix-disjoint.
We define a (partial) least upper bound operation on patjerns
such that for any, v’ we havev =, ,» v" if and only if v =, v’
andv ~, v'; the full definition is shown in Figurgl4. We define
the partial ordering C p’ asp U p’ = p’. We say that a value
matchegatternp if p C v. Observe that this implies ~, v. We
extend the | andC operations to pattern environmemptpointwise,
thatis,(p U p')(z) = p(z) U p(a’).

We define several additional operations on patterns that are
needed for the slicing algorithm. Consider the followsiggleton

DUp:pUD = p
OUp=puUo = p[©/0]
clc = ¢

(p1,p2) U (p1,p2) (p1 U ph, p2 Ups)

{lipiy U{lip;y = {lipiUp}
where:
oo/a]=0[e/a] = <
clo/0] = ¢
(p1,p2)[©/0] = (pu[©/0], p2[©/0])
{ipi}[©/0] = {Li.p:[©/O]}

Figure 4. Least upper bound for simple patterns

V1 ~py vﬁ V1 ~py U/2
v~g v Vo U Ccm~¢cC (v1,v2) F(py,p2) (v],vh)
v ~p; vi (1 €{1,...,n})
S e VAP A A

Y =p v = Vx € dom(p). ¥(z) =pe) 7 (2)

Figure 5. Simple pattern equivalence.

extractionoperatiornp.c andlabel projectionoperationp[¢]:

({e-p})-€ P Oe=0 Oe=90
sp[¢] {{v|tlvesp} O=0 OU=°

These operations are only used for the above cases; theynbave
effect on constant or pair patterns. For spfé] extracts the subset
of p whose labels start with truncating the initial prefix, while if
pis O or < then agairp[¢] returns the same kind of hole. Moreover,
dom(p[¢]) is a prefix code iflom(p) is.

Supposd. is a prefix code. We definestrictionof a set pattern
pto L as follows:

splr ={¢L'pesp|LeL}

DlL:D <>|L:<>

Itis easy to see thatom(p|r) C dom(p) sodom(p|z) is a prefix
code ifdom(p) is, so this operation is well-defined on collections:

Lemma 3.1. If sp is prefix-labeled and. is a prefix code then
spl¢] andsp|, are prefix-labeled.

We show other properties of patterns in Apperidix B.

Backward Slicing The rules for backward slicing are given in
Figure[®. The judgment, T' \, p, T" slices tracel’ with respect
to a patternp to yield the sliceT” and sliced input environment
p. The sliced input environment records what parts of the tinpu
are needed to produge this is needed for slicing operations such
as let-binding or comprehensions. The main new ideas argein t
rules for collection operations, particularly compretiens. The
slicing rules S@ONST, SPRIM, SVAR, SLET, SRR, SPROJ, and
SIrfollow essentially the same idea as in our previous wdrk 71, 2
We focus discussion on the new cases, but we review the kag ide
for these operations here in order to make the presentagibn s
contained.

The rules for collections use labels and set pattern opaigtod
effectively undo the evaluation of the set pattern. The 8EPTY
is essentially the same as the constant rule. The ruleGS$es
the singleton extraction operatigne to obtain a pattern describ-
ing the single element of a singleton set value matchinghe
rule SUNION uses the two projectiong|1] andp[2] to obtain the

patterns describing the subsets obtained from the first ecohnsl
subtraces in the union pattern, respectively.

The rule S©MP uses a similar idea to let-binding. We slice the
trace se® using an auxiliary judgment, .0 * p, ©o, po, Ob-
taining a sliced input environment, sliced trace®gt and pattern
po describing the set of values to whieghwas bound. We then use
po to slice backwards through the subtraehat constructed the
set. The auxiliary slicing judgment for trace sets has thées:

a trivial rule SEMPTY™ when the set is empty, rule 818" that
uses label projectiop[¢] to handle a singleton trace set, and a rule
SUNION* handling larger trace sets by decomposing them into sub-
sets. This is essentially a structural recursion over deetset, and

is deterministic even though the rules can be used to decesthe
trace sets in many different ways, becausés associative. Rule
SUNION™ also requires that we restrict the set pattern to match the
domains of the corresponding trace patterns.

The slicing rules S8M and SEuPTYP follow the same idea as
for primitive operations at base type: we require that theleiset
value be preserved exactly. As discussed by Perera bt hlwj2v
primitive operations, this is a potential source of overagjma-
tion, since (for example) for an emptiness test, all we yeadled is
to preserve the number of elements in the set, not their saltlee
last rule shows how to slice pair patterns when the patteén ise
slice both of the subtraces Ky and combine the results.

It is straightforward to show that the slicing algorithm ighw
defined for consistent traces. That isyifl’ ~ v andp C v then
there existg, S such thatp, T \, p, S holds, wherep C ~ and
S C T. We defer the correctness theorem for slicing using simple
patterns to the end of the next section, since it is a speasd of
correctness for slicing using enriched patterns.

Continuing our running example, consider the pattgrn=
{[r2]-(A:0, B:8), [r3].0}. The slice ofT" with respect to this pat-
tern is of the form:

T'=U{-lz € R}v{ [r]O,
[ra].if (2.8 = 3, _,) berus {_},

[r3].0 }

and the slice ofR is R’ = {[r1].0, [r2].(A:0, B:3, C:8), [r3].0}.
(That is, R’ is the value ofp(R), wherep is the pattern environ-
ment produced by slicind@” with respect top.) Observe that the
value of A is not needed but the value & must remair3 in or-
der to preserve the control flow behavior of the tracerenThe
holes indicate that changes t@ and rs in the input cannot af-
fect ro. However, a trace matching’ cannot be replayed if any
of r1, 72, r3 are deleted from the input or if thé field is removed
from an input record, because the replay rules require alefa-
bels mentioned in collections or records’ii to be present. We
now turn our attention to enriched patterns, which mitigatese
drawbacks.

4. Enriched Patterns

So far we have considered only complete set patterns of tie fo
{l1.p1,...,¢n.pn}. These patterns relate pairs of values that have
exactly n elements labeleds,...,¢,, each of which matches
p1, ..., Pn respectively.

This is awkward, as we already can observe in our running ex-
ample above: to obtain a slice describing how one record wais ¢
puted, we need to use a set pattern that lists all of the isdexte
output. Moreover, the slice with respect to such a pattery aso
include labeled subtraces explaining why the other elesnexist
in the output (and no others). This information seems iiveelif
irrelevant to the value &, and can be a major overhead if the col-
lection is large. We also have considered only binary péiveuld
be more convenient to support record patterns directly.

O, T1 N\ p1,51

SHoLE SCONST

<>7T7L \(Pn, Sn

SPRIM SVAR

pye N [l;c

p2, To N\ p2[r = p1],S2 p1,T1 \(p1,51

DvT\([]v‘j p,f(T1,...

SLET

7T7L)\,(p1u"'

1, T1 "\ p1,51

(,0), T \(p,S

upnvf(slv"'v‘gn)

p2, T2\ p2,52

SRR SPrROJ

p2,letx =T7 inTh \ p1 U pa,let x = S1 in So

(0,p), T \«p,S p, T N\ p, S

SPROXR

(p1,p2), (T1,T2) \(p1 U p2,(S1,52)

b, T N\ p,S

p, T-#1 \(p, S-#1

p.6, T\ p,S

SEMPTY SNG

D, T-#2 ¢ p, S-H#2

p[1],T1 N\ p1,51 p[2],T2 \(p2,52
p,T1 U To N\ p1Up2,51 U So

O, T N\ p, S
pysum T N\ p, sum S

‘p,x.@ \&* Ps ©0, po ‘

SUNION

O, T N\ p, S

SEMPTYP
p, empty T\, p, empty S

SEMPTY*

0,2.0 N\ [1,0,0

Pldom(e,): 01 * p1,07, p1

p; lf(Tv €1, 62) >y T’ \(Pl U p, lf(Sv €1, 62) >p s’

P00 AT} Nop, {5}

,.@ * /,@/’/ I,T ,S
P, 2.0\ p P P, T \p Comp

pldom(®2)7 .02 \/" p2, ®l27p2

| JelzeTivo N pup, | J{e|zeS}re

O, T \(p1,51 0,12 \(p2,52
O, (Th, T2) \(p1 U p2,(S1,52)
p[€], T\ plz = po), S
p,ZB{ZT} * P {63}7 {Z'pO}

SDIAMOND

SSNG*

SUNION*

P, .01 W02 * p1 U p2, O) W Oh, p1 Wp2

Figure 6. Backward trace slicing.

In this section we sketch how to enrich the language of pater
to allow for partial setandpartial record patternsas follows:

p u= O[O|c|sp|rp
rp = <>|<A_z-:pi>|<i:pisﬂ>l<ﬁ:pu<>>
sp = O {lip} | {tip:}UO|{lip;}UO

Record patterns are of the for(r; : p,), listing the fields and the
patterns they must match, possibly followedbyr ¢, which the
remainder of the record must match. The patfghnp; } UO stands
for a set with labeled elements matching patterns . ., p,, plus
some additional elements whose values we don’t care about. F
example, we can use the patteffy.p; } U O to express interest
in why element/; matchesp:, when we don't care about the rest
of the set. The second partial pattefi,;.p;} U <, has similar
behavior, but it says that the rest of the sets being coresid@ust
be equal. For exampld/.0} U < says that the two sets are equal
except possibly at labél This pattern is needed mainly in order to
ensure that we can define a least upper bound on enrichedngatte
since we cannot expre$§l; .v1, . . ., {n.py } U O) U < otherwise.

We definedom({¢;.p;} U O) = dom({l;.p;} U O) =
{1,...,4,}. Disjoint union of enriched patterrsp W sp’ is de-
fined only if the domains are prefix-disjoint, so that the laloé the
result still form a prefix code; this operation is defined igue[T.

We now extend the definitions @f< /0] andU to account for
extended patterns. We extend tke/0] substitution operation as
follows:

(A :p)[0/0] = (Ai:pf©/0))
(Ai ip;O)[0/0] = (Ai:pi[©/0];0)
(Ai 1pi;0)[O/0O] = (A4; 1 pi[©/0];)
({€:.ps :nz} uo)e/al = {LpC/O}Uo

({Lipi} UO)[O/O] {tipi[o/0tUO

We handle the additional cases of theoperation in Figuré]8,
and extend thes,, relation as shown in Figufg 9. Note that taking
the least upper bound of a partial pattern with a completepat
yields a complete pattern, while taking the least upper doofn
partial patterns involving> again relies on thé> /0] substitution
operation.

OWO=0Wo=0W0 = O
SHO = O
spyd=0Wsp = sp
{(TptwO=06{Tp) = {Gp}UD
{Zi.pi}wozoﬁﬂ{&.pi} = {Zz pZ}OO
{Gipi} W ({Gpj}00) = ({Gp}w{f.pj})U
{lipitw ({f’ p]} Uo) = ({lipi}w {4’ 2} U
{tipi} U)W ({f’ Pun) = ({Gpitw {5’ P U
({@}UO)&J({@’ ’}UD) = {bp}w{lphHu
({ti-pi} D) W ({4 pJ}UO) = (bt pz}U{é’ 2} U
{lipi}UO)w ({pf}U0) = ({lipi}w {5’ P U

Figure 7. Enriched pattern union

We extend the singleton extractipre, label projectiorp[¢], and
restrictionp|, operations on set patterns as follows:

(fepUO)e=({eptuD)e = p
- ({#;.p;}UDO) -{t;.p;})wO
£-({£i-pi} UO) (- {lipi}) WO

{lipituD) = ({lip}) WO
{lipi U] = {Lipi}ll) W<
{lipyUD)L = ({flipitlr)wO
{lipiyUO) L = ({lipi}lL)wo

Note that in many cases, we use the disjoint union operation
on the right-hand side; this ensures, for example, that werne
produce results of the forghU O or () U <; these are normalized to
O and © respectively, and this normalization reduces the number
of corner cases in the slicing algorithm.

We define a record pattern projection operafioA as follows:

(Ar:p1,..., Anipn).A; = p; 0.A=0
(Ar1:p1, .. Anipns). A = g CA=C
(Arp1,.., Anipn;0).B = 0O (B¢ {A1,...,An})
(A1p1, .. Anipn; ©). B = O (B¢ {A1,...,An})

We extend the slicing judgment to accommodate these new
patterns in FigurE_10. The rules 8Rand SRoJ, are similar to
those for pairs, except that we use the field projection djpera
in the case for a record trace, and we use partial recordrpatte

{€ipi, g} U ({Lipj} VD
{€ipi €.qy U ({ipfy U O
({€i-pi, a5} U D) U ({69}, ¢ ..} U O
({€i-pi, €5-a;3 UO) U ({€s.p}, £ .71} U ©

({li-ps, €053 U O) U ({€i.p7, €} e } U O

)
)
)
)
)

(Ai tpi, By 1 q) U((A; 1 pj30)) =
(A':m,Br"qﬂ (A pj;0)) =
(A7 pi, By : q5;0)) U ((Ai : p}, O i g3 0)) - =
((Ai: :nz,iqg, O) U ((Ai : p, Cp i 13 ©)) - =
(AP0, By 1455 0) U ((Ai 1 9}, Ok 173 0) =

TP)

{i-pi U p, €5.q;[0/00}

{4;.pi upz,f’ q],é" reyun
{i.ps U P}, €.q;[0 /0], €.k} U O

{£ip: U pl, .50/, 6 ri [O/0]} U ©

(A :piUp;, Byt q5)

(Ai :pi Upj, By : q;[0/0])

(Ai :piUp;, Bj: q;,Ck g3 0)

(Ai piUpl, By q;[©/0],C s 115 0)
(

1 q;[©/0], Ck 1 [O/0]; O)

A; :piUpl, B;

Figure 8. Least upper bound for enriched patterns (excluding somerstnt cases).

_ ’ _ ’
V] ~py U1 Un ~p, Up
T R
(At vi) =gy (Aol
_ ’ _ ’
V1 ~py U1 Un ~pp Up
ey e — — .yl ap!
<Az .U“BJ.w]> ~(Ap0) <A’L .’Ui,Ck.’LUk>
— ! — /
V1 ~py U1 Un ~pp Un

(A; = vi, Bjwy) R (A pi50) (A; = v}, Bjwy)

!
n

{livi} Yo R Tpuo {t;v} W

— / —
V1 ~p; U1 Un ~p, U

_ ’
Un ~pn Un

(v} oo (G} v

— !
V1 ~p; U1

Figure 9. Enriched pattern equivalence

(A:p;8), T \(p, S
p, T.AN p,S.A

p, T\ p,S

p.A1,T1 N\ p1,51

SRec

P-Aru T \(Pn, Sn

SPrROJ
D, <A15T17 ey A7L5Tn> \(prU---Upn, <A15S17 cee 7A7L5Sn> 4
p,l’.@ \&* P, @/:pO
- SHoOLE* ————— SDIAMOND™
0,20\ [,0,0 O,z NS [, 0,0

Figure 10. Backward trace slicing over enriched patterns.

(A : p;O) in the case for a field projection trace. The added
rules SHOLE* and SDAMOND* handle the possibility that a partial
pattern reduces t@ or ¢ through projection; we did not need to
handle this case earlier because a simple set pattern és aitiole
(which could be handled by the rufe 7" ™\, [], 0) or a complete
set pattern showing all of the labels of the result.

Both simple and extended patterns satisfy a number of lemmas
that are required to prove the correctness of trace slicing.

Lemma 4.1(Properties of union and restriction)

1. If pr E vy andps C ve and vy =~p, v andwvs ~p, v5 then
v1 W w2 mp,wp, v1 W V5, provided all of these disjoint unions
are defined.

2. 1fp C vy Wy and Ly < dom(v:) and Le < dom(vz) and
L+, L, are prefix-disjoint, thep|z, C v andp|z, C vs.

Lemma 4.2(Projection andZ).

1. Ifp C {e.v} thenp.e C v.

2. 1fpC1-v1W2- v thenp[l] C vy andp[2] C vs.
3.fpCl-v thenp[é] Co.

4. Ifp C (A; : v;) thenp. A; C ;.

Lemma 4.3(Projection and<,,).

1. IfpC {ev}andv =, v’ then{e.v} =, {e.v'}.

2. fpC1-v1W2- vy anduvr ~p1) v1 andvs <[
1o W2 v, 1-v) W2 v,

3. IfpC ¢ -vandv =, v thenl v <, £-v'.

4.1fp C (4; :v;) and vy =p.a;, v,...

(As - vi) ~p (A 2 0)).

Proofs are collected in AppendiX B.

We now state the key correctness property for slicing. Intu-
itively, it says that if we slicel” with respect to output pattenm
obtaining a slicep and .S, thenp will be reproduced on recomputa-
tion under any change to the input and trace that is consiatiém
the slice — formally, that means that the changed trAtenust
match the sliced trac8, and the changed input’ must matchy
modulop.

vh then

,Un p.A, Uy then

Theorem 4.4(Correctness of Slicing)

1. Suppose,, T ~ vandp C v andp,T \, p,S. Then for all
v =, vandT’ 3 S such thaty’, T’ ~ v’ we havev’ =, v

2. Supposey,x € v9,® ~* vandp C v andp,z.0¢ \,
p, 00, po, Where®o C ©. Then for ally’ =, v andvy ~p, vo
and®’ J ©; such thaty’, z € vp,®" ~* v’ we have’ =, v

Returning to our running example, we can use the enriched
patternp’ = {[r2].(B:8; 0)} U O to indicate interest in th& field
of r2, without naming the other fields of the row or the other row
indexes. Slicing with respect to this pattern yields thdofeing
slice:

"= -l € R}o {[ra)if(z.B =3,) beree {-}}

and the slice oRRis R = {[r2].(B:3, C:8; 0)}UO. This indicates
that (as before) the values of andrs and of theA field of r

are irrelevant ta- in the result; unlikel”’, however, we can also
potentially replay ifr1 andrs have been deleted frof. Likewise,
we can replay if thed field has been removed from a record, or if
some other field such a3 is added. This illustrates that enriched
patterns allow for smaller slices than simple patternsh gieater
flexibility concerning possible updates to the input.

A natural question is whether slicing computes the (or a)llsma
est possible answer. Because our definition of correctssiédeased
on recomputation, minimal slices are not computable, byeagsit-
forward reduction from the undecidability of minimizing pkn-
dency provenancél[L,112].

5. Query and Differential Slicing

We now adapt slicing techniques to provide explanationgims
of query expressions, and show how to use differences batwee
slices to provide precise explanations for parts of the waiutp

5.1 Query slicing

Our previous work [27] gave an algorithm for extractingragram
slicefrom a trace. We now adapt this idea to queries. A trace slice
shows the parts of the trace that need to be replayed in ardent-
pute the desired part of the output; similarlgery sliceshows the
part of the query expression that is needed in order to etisatrée
desired part of the output is recomputed. As with traces, loava
holesO in programs to allow deleting subexpressions, and define
C as a syntactic precongruence such tfhdt e. We also define a
least upper bound operatieri ¢’ on partial query expressions in
the obvious way, so thai Ll e = e.

We define a judgment, T X\ p, e that traverse§” and “un-
evaluates’, yielding a partial input environmenptand partial pro-
grame. The rules are illustrated in Figurel11. Many of the rules are
similar to those for trace slicing; the main differenceseuin the
cases for conditionals and comprehensions, where we selldye
sliced expressions back into expressions, possibly inggroles or
merging sliced expressions obtained by running the same icod
different ways (as in a comprehension that contains a donaif).

Again, it is straightforward to show that if,e || v,T and
p E v then there exisp, ¢’ such thatp, T\ p, ¢/, wherep C ~
ande’ C e. The essential correctness property for query slices is
similar to that for trace slices: again, we require thatmeing any
sufficiently similar query on a sufficiently similar inputq@uces a
result that matches. The proof of this result is in AppendixID.

Theorem 5.1(Correctness of Query Slicing)

1. Supposey, T ~ v andp C v andp, T \y p,e. Then for all
v' =, vande’ Jesuchthaty’, e’ || v' we havev’ =, v.

2. Supposey, x € 19,0 ~* vandp C v andp, © \y p, €0, Po.
Then for ally’ =, v andvy =, vo andej, 3 eo such that
v, x € vh,eo I v we havey' =<, v.

Combining with the consistency property (Proposifiod 2w
have:

Corollary 5.2. Supposey,e |} v,T andp C v andp, T \yp, €.

Then for ally’ =, v ande” 3 ¢’ such thaty’,e” || v, we have
!

v ~p v

Continuing our running example, the query slice for thegratt
p’ considered above is

Q' = J{if(z.B =3,{(A:0,B2.C)},{})| = € R}

since only the computation of th& field in the output is irrelevant
top’.

D,T\,[],D p,c\uﬂ,c

O, T1 \up1,e1 O, Tn \upn,en
p7f(T17"'7Tn)\lpl u"'upn7f(617"'7en)

p2, To \yp2lz — pi],e2 p1,T1 \up1,e€1
p2,let z =T in Th \yp1 Ll p2,let z = e] inea

p1,T1 N\ p1,e€1 Py Tn \upn,en

(A1:p1, .o Anipn), (AT, o A Tn) \ep1 U -+ - U pn, (Arzer, . ..

p.A, T \up,S
P, T.AN\yp, S-A

p1, Ti\up1,e) true,T\yp, e
p1, if(Tv €1, 62) Dtrue 11 \(p1 U p, if(e', 6,17 D)

p2, T \up2, € false, T \yp, ¢’
p2, if(Tv €1, 52) Dfaise 12 \pz U p, if(e'7 0O, 6/2)

Plel, T \up, e
pATY up, {e}

O, T \up, e
p,sum T Ny p, sum e

0,0 [],0

P[], T \p1,e1 p[2], T2 \up2,e2
p, T U Ta\yp1 Upz,e1 Uea

O, T \up, e
p, empty T \y p, empty e
pz.ON p,e',po po, T \up, €
p el ze Ty 0Npup/ | J{e'| = € e}

O, T1 \up1,e1 O, Tn \upn,en
<>7<A1 2Ty, Ap 5Tn>\1plu"'upn7(A1 5617-~~7An55n>
O, 0], 0
0,20\ [,0,0 0,20\ [],0,0 O,z 0N [],0,0

p[@], T\(p[:c = pO]v €
p,z{L TN\ p,e,{€.po}

Pldom(©1), 01\ p1,€1,P1 Pldom(©),T-O2 " p2, €2, p2
P, .01 W O2\" p1 L p2,e1 Uea,p1 Wp2

Figure 11. Unevaluation (selected rules).

5.2 Differential slicing

We consider gpattern differenceto be a pair of patterngp, p’)
wherep C p'. Intuitively, a pattern difference selects the part of a
value present in the outer componenhtand not in the inner com-
ponentp. For example, the pattern differengds:0; O), (B:8; 0))
selects the valug located in theB component of a record. We can
also write this difference a(sB:; 0y, using to highlight the
boundary between the inner and outer pattern. Trace ang gaer
tern differences are defined analogously.

7A7L5€n>

It is straightforward to show by induction that slicing is nm
tonic in both arguments:

Lemma 5.3(Monotonicity). If p C p’ andT T 7" andp’, T" \,
o', S’ then there exisp, S such thatp, T\, p,.S andp C p’ and
S E S’. In addition,p, S \(p, S

This implies that given a pattern difference and a trace, ave ¢
compute a trace difference using the following rule:

p2, T N\ p2,52 p1,5 N\ p1,51
(p17p2)7T \l (P17P2)7 (81752)

It follows from monotonicity thatp: T p2 and S1 C Ss, thus,
pattern differences yield trace differences. Furthernibiesecond
part of monotonicity implies that we can compute the smalliee
S1 from the larger sliceSs, rather than re-traversg. It is also
possible to define a simultaneous differential slicing juéat, as
an optimization to ensure we only traverse the trace once.
Query slicing is also monotone, so differential query slican
be obtained in exactly the same way. Revisiting our runnkaagre
ple one last time, consider the differential patt€pr .
0. The differential query slice for the patteph consudered above

is
= J{if(2.B = 3,{(A:0, B{z.C])},{})| z € R}

6. Examples and Discussion

In this section we present some more complex examples & illu
trate key points.

QH

Renaming Recall the swapping query from the introduction,
written in NRC as

= U{{if(m.A > x.B,(A:x.B, B:x.A), (z))}| © € R}

This query illustrates a key difference between our appraad
the how-provenance model of Green et &l [20]. As discussed i
[13], renaming operations are ignored by how-provenaneehe
how-provenance annotations of the resultQefare the same as for
a query that simply return®. In other words, the choice to swap
the fields whend > B is not reflected in the how-provenance,
which shows that it is impossible to extract where-proveeafor
traces) from how-provenance. Extracting where-proveadram
traces appears straightforward, extending our previouk .

This example also illustrates how traces and slices canéx us
for partial recomputation. The slice for output pattéfh r1].(B:2) }U
O, for example, will show that this record was produced beeaus
the A component of A:1, B:2, C:7) at index[r] in the input was
less than or equal to thB component. Thus, we can replay after
any change that preserves this ordering information.

Union Consider query

= J{{(B:2.B)} |z € R} U{(B:3)}
that projects theB fields of elements o and adds another copy
of (B:3) to the result. This yields
Q2(R) = {[1,71](B:2), [1,r2].(B:3), [1,73].(B:3), [2].(B:3) }

This illustrates that the indexes may not all have the samgtte
but still form a prefix code. If we slice with respecttd, r2].(B:3) }U
O then the query slice is:

= J{{(B:x.B)} |z € R}UD

andR’ = {[r2].(B:3;0)} U O whereas if we slice with respect to
{[2].(B:3)} U O then the query slice i3 = O U {(B:3)} and

R” = 0O, indicating that this part of the result has no dependence
on the input.

10

A related point: one may wonder whether it makes sense to se-
lect a particular copy of B:3) in the output, since in a conven-
tional multiset, multiple copies of the same value are itatiglish-
able. We believe it is important to be able to distinguistedént
copies of a value, which may have different explanationsafing
n copies of a value as a single value with multiplicityvould ob-
scure this distinction and force us to compute the sliced of ¢he
copies even if only a single explanation is required. Thighy we
have chosen to work with indexed sets, rather than pure setsti

Joins So far all examples have involved a single taBleCon-
sider a simple join query

Qs ={(Ax.A,By.C) |z € R,y € S,x.B=y.B}
and consider the following tabl€, and the resul@s(R, S).

id | B C id A B
_ [81] 2 4 [7‘17 81] 1 4
=] |3 4 U= 002 4
[83] 4 5 [7‘;, 82] 4 5
The full trace of this query execution is as follows:
T3 =U{-]z € R} {
[r]-U{-ly € St { [si].if(z.B=y.B, .,) Ptrue {-},
[32] if((E.B =Y. B7 -)Dfalse {},
[33] if((E.B =Y. B7 -)Dfalse {}}7
[ro] U{-ly € S} { [s1].if(z.B=y.B, .,) Prarse {},
[32] if((E.B = y B7 -)[>true {—},
[53] if(x'B =Y. B7 -)Dfalse {}}7
[rs] U{-ly € S}e{ [s1].if(z.B=y.B, .,) Prarse {},
[32] if((E.B = y B7 -)[>true {—},
[s3].if(2.B = y.B, -,) Pralse {}}}

Slicing with respect to{[r1, s1].(A:1; O), [r2, s2].(B:4; 0)} U O
yields trace slice

=U{-lz e R}p{
[Tl} U{ | ye S} [>{ [Sl]'if(w'B = y'B7—7 —) Dtrue {—}7
[rol. U{-ly € S} { [s2].if(x.B =y.B, .,) Purue {-}}

and input sliceRy = {[r1].(A:1, B:2;0), [r2].(B:3;0)} and
S5 = {[s1].(B:2; 0), [s2].(B:3; C:4) }.

Workflows NRC expressions can be used to represent work-
flows, if primitive operations are added representing thekflaw
steps([2 21]. To illustrate query slicing and differensifi¢ing for a
workflow-style query, consider the following more complaley:

={flz,y) |z eT,ycT,zcUp(zy),qy,2)}

where f computes some function afandy andp andq are selec-
tion criteria. Here, we assum¥@andU are collections of data files
and f, p, ¢ are additional primitive operations on them. This query
exercises most of the distinctive features of our approaehcan
of course translate it to the NRC core calculus used in tHefése
paper. Ifdom(T) = {t1,...,t10} anddom(U) = {u1,...,u10}
then we might obtain resuf{llts, t4, us].v1, [te, ts, uio].v2}. If we
focus on the value; using the patterd [ts, t4, us].v1 } U O, then
the program slice we obtain @4 itself, while the data slice might
beT’ = {[t5].O, [t4]. 0} U DO, U’ = {[us].©} U O, indicating that
if the values ats, t4, us are held fixed then the end result will still
be v1. The trace slice is similar, and shows thatwas computed
by applying f with = bound to the value &t in 7', y bound tot.,
and z bound tous, and thatp(x, y) andq(z,y, z) succeeded for
these values.

If we consider a differential slice using pattern differenc
{[tg,t4,u5].} U O then we obtain the following program dif-
ference:

A=Ul/@y]|lceTyeT e Upy),qy2)

This shows that most of the query is needed to ensure that thetracing, making it feasible for in-memory execution of witolws

result at[ts, ta, us] is produced, but the subterif(z,y) is only
needed to compute the valug. This can be viewed as a query-
based explanation for this part of the result.

7. Implementation

To validate our design and experiment with larger exampies,
extended our Haskell implementatiSiticer of program slicing for
functional programs[[27] with the traces and slicing tegueis
presented in this paper. We call the resulting syskiRCSlicer;

it supports a free combination of NRC and general-purpose-fu
tional programming featureBIRCSlicer interprets expressions in-
memory without optimization. As reported previously f8licer,
we have experimented with several alternative tracing éinohg
strategies, which use Haskell's lazy evaluation strataglifferent
ways. The alternatives we consider here are:

e eager the trace is fully computed during evaluation.

represented in NRC.

8. Related and future work

Program slicing has been studied extensiviely[[17, 30, 31jaa the
use of execution traces, for example in dynamic slicing. @ork
contrasts with much of this work in that we regard the tracg an
underlying data as being of interest, not just the prograomes
of our previous work[[12] identified analogies between paogr
slicing and provenance, but to our knowledge, there is neroth
prior work on slicing in databases.

Lineage and why-provenance were motivated semantically in
terms of identifyingwitnessesor parts of the input needed to en-
sure that a given part of the output is produced by a queryyEar
work on lineage in relational algebra [15] associates eathub
record with a witness. Buneman et al. studied a more general n
tion called why-provenance that maps an output part to &coll
tion of witnesses [7.,18]. This idea was generalized furtioethe

e lazy. the value is computed eagerly, but the trace is computed how-provenancer semiringmodel [18] 20], based on using alge-

lazily using Haskell's default lazy evaluation strategy.

To evaluate the effectiveness of enriched patterns, weunedshe
time needed for the eager and lazy techniques to trace arel sli
the workflow exampl&), in the previous section. We considered a
instantiation of the workflow where the data values are sjnpl
tegers and with input tablés, U = {1,...,50}, and defined the
operationsf(x,y) asx x y, p(z,y) asz < y, andq(z,y, z) as

z? +5y? = 2. This is not a realistic workflow, and we expect that
the time to evaluate the basic operations of a realistic f\awifol-
lowing this pattern would be much larger. However, the ogads

of tracing and slicing do not depend on the execution timeriofip
itive operations, so we can still draw some conclusions ftbim
simplistic example.

The comprehension iterates ov@® = 125,000 triples, produc-
ing 20 results. We considered simple and enriched patteiasts
ing a single element of the result. We measured evaluatioas, ti
and the overhead of tracing, trace slicing, and query glicithe
experiments were conducted on a MacBook Pro with 2GB RAM
and a 2.8GHz Intel Core Duo, using GHC version 7.4.

eval trace slice (gslice
eager-simple | 0.5 15 2.5 1.6
eager-enriched 0.5 15 <01 <01
lazy-simple 0.5 0.7 1.3 1.7
lazy-enriched | 0.5 0.7 <01 <01

The times are in seconds. The “eval” column shows the timdexte
to compute the result without tracing. The “trace”, “slicahd “gs-

braic expressions as annotations; this approach has besmlexr

to handle some forms of negation and aggregalidn [4, 19]irBem
homomorphisms commute with query evaluation; thus, hontemo
phic changes to the input can be performed directly on thpubut
without re-running the query. However, this approach omlyli@s

to changes describable as semiring homomorphisms, sudieas d
tion.

Where-provenance was also introduced by Buneman €t al. [7,
[8]. Although the idea of tracking where input data was copied
from is natural, it is nontrivial to characterize semaniticdecause
where-provenance does not always respect semantic ezpieal
In later work, Buneman et alll[6] studied where-provenarme f
the pure NRC and characterized its expressiveness foreguand
updates. It would be interesting to see whether their notibn
expressive completenefss where-provenance could be extended
to richer provenance models, such as traces, possiblynigaalian
implementation strategy via translation to plain NRC.

Provenance has been studied extensively for scientificfiark
systems[[d, 29], but there has been little formal work on #raan-
tics of workflow provenance. The closest work to ours is tHat o
Hidders et al.[[21], who model workflows by extending the NRC
with nondeterministic, external function calls. They skean op-
erational semantics that recondsis that contain essentially all of
the information in a derivation tree, represented as a seipbés.
They also suggest ways of extractisgbrunsfrom runs, but their
treatment is partial and lacks strong formal guaranteekgoas
to our results.

There have been some attempts to reconcile the database and

lice” columns show the added time needed to trace and computeworkflow views of provenance; Hidders et al.][21] argued fue t

slices. The full traces in each of these runs have over 2.tlomil
nodes; the simple pattern slices are almost as large, wielen-
riched pattern slices are only 95 nodes. For this exampinglis
over an order of magnitude faster using enriched pattetmslazy
tracing approach required less total time both for tracing slic-
ing (particularly for simple patterns). Thus, Haskell'slbin lazy
evaluation strategy offers advantages by avoiding explicion-
structing the full trace in memory when it is not needed; have
there is still room for improvement. Again, however, for atual
workflow involving images or large data files, the evaluatiione
would be much larger, dwarfing the time for tracing or slicing
Our implementation is a proof-of-concept that evaluatesigs
in-memory via interpretation, rather than compilatiortifier work

use of Nested Relational Calculus (NRC) as a unifying formal
ism for both workflow and database operations, and subséguen
Kwasnikowska and Van den Busschel [22] showed how to map this
model to the Open Provenance Model. Acar etal. [2] later &rm
ized a graph model of provenance for NRC. The most advanced
work in this direction appears to be that of Amsterdamer B3|
who combined workflow and database styles of provenanceein th
context of the PigLatin system (a MapReduce variant based on
nested relational queries). Lipstick allows analyzingithpact of
restricted hypothetical changes (such as deletion) ors pdrthe
output, but to our knowledge no previous work provides a fdrm
guarantee about the impact of changes other than deletion.

In our previous work[[12], we introducedependency prove-

would be needed to adapt our approach to support fine-grainednance which conservatively over-approximates the changes that

provenance for conventional database systems. Nevesshear
experimental results do suggest that the lazy tracingestyaand
use of enriched patterns can effectively decrease the eadrbf

11

can take place in the output if the input is changed. We devel-
oped definitions and techniques for dependency provenarfed i
NRC including nonmonotone operationsnpty, sum) and primi-

tive functions. Dependency provenance cannot predicttyxdaow
the output will be affected by a general modification to therse,
but it can guarantee that some parts of the output will nohgbaf
certain parts of the input are fixed. Our notion of equivaéenmod-
ulo a pattern is a generalization of tequal-except-atelation used
in that work. Motivated by dependency provenance, an edelah-
nical report [1D] presented a model of traced evaluatiolNBIC
and proved elementary properties such as fidelity. Howdéveicl
not investigate slicing techniques, and used nondetestigriabel
generation instead of our deterministic scheme; our détéstic
approach greatly simplifies several aspects of the systarticp-
larly for slicing.

There are several intriguing directions for future worlclird-
ing developing more efficient techniques for traced evadnaand
slicing that build upon existing database query optim@atapa-
bilities. It appears possible to translate multiset quese as to
make the labels explicit, since a fixed given query incredes
label depth by at most a constant. Thus, it may be possibleale e
uate queries with label information but without tracingtfithen
gradually build the trace by slicing backwards through thery,
re-evaluating subexpressions as necessary. Other itigre#ec-
tions include the use of slicing techniques for securitpite confi-
dential input information while disclosing enough abowt tface to
permit recomputation, and the possibility of extractinigestforms
of provenance from traces, as explored in the context oftiomal
programs in prior work [1].

9. Conclusion

The importance of provenance for transparency and repitoitityc

is widely recognized, yet there has been little explicitcdission
of correctness properties formalizing intuitions aboutvirove-
nance is to provide reproducibility. In self-explaininghgputation,
traces are considered to be explanations of a computatitimein
sense that the trace can be used to recompute (parts of) tiet ou
under hypothetical changes to the input. This paper deselop
foundations of self-explaining computation for databaserigs,
by defining a tracing semantics for NRC, proposing a formé de
nition of correctness for tracing (fidelity) and slicing,dadefining

a correct (though potentially overapproximate) algorittomtrace
slicing. Trace slicing can be used to obtain smaller “golttai”
traces that explain only a part of the input or output, andaethe
impact of changes in hypothetical scenarios similar to gl
run. At a technical level, the main contributions are theefidruse
of prefix codes to label multiset elements, and the developoke
enriched patterns that allow more precise slices. Our désigal-
idated by a proof-of-concept implementation that shows ltm-
ness and enriched patterns can significantly improve pegoce
for small (in-memory) examples.

In the near term, we plan to combine our work on self-
explaining functional programg [27] and database querikis (
paper) to obtain slicing and provenance models for progriaugm
languages with query primitives, such as E# [14] or Lirkd][23
Ultimately, our aim is to extend self-explaining compuatito
programs that combine several execution models, includios-
flows, databases, conventional programming languagesjméb
action, or cloud computing.

Acknowledgments We are grateful to Peter Buneman, Jan Van

ciety University Research Fellowship, by the EU FP7 DIACHRO
project, and EPSRC grant EP/K020218/1. Acar is partially-su

ported by an EU ERC grant (2012-StG 308246—DeepSea) and an

NSF grant (CCF-1320563).

References

[1] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core dakifor
provenance.Journal of Computer Securit21:919-969, 2013. Full
version of a POST 2012 paper.

[21 U. A. Acar, P. Buneman, J. Cheney,
J. Van den Bussche, and S. Vansummeren.
data and workflow provenance. TRAPP, 2010.

[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J.&toovich,
and V. Tannen. Putting lipstick on pig: Enabling databagke svork-
flow provenancePVLDB, 5(4):346-357, 2011.

[4] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenancedgregate
queries. INPPODS pages 153-164. ACM, 2011.

[5] R. Bose and J. Frew. Lineage retrieval for scientific gatacessing: a
survey.ACM Comput. Sury37(1):1-28, 2005.

[6] P. Buneman, J. Cheney, and S. Vansummeren. On the eigmesss
of implicit provenance in query and update languag&sM Transac-
tions on Database Systen83(4):28, November 2008.

[7] P. Buneman, S. Khanna, and W. Tan. Why and where: A charact
ization of data provenance. IC€DT, number 1973 in LNCS, pages
316-330. Springer, 2001.

[8] P. Buneman, S. Khanna, and W. Tan. On propagation ofidekeind
annotations through views. PODS pages 150-158, 2002.

[9] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Prin@pmé pro-
gramming with complex objects and collection typégheor. Comp.
Sci, 149(1):3-48, 1995.

[10] J. Cheney, U. A. Acar, and A. Ahmed. Provenance tracésRR
arXiv.org/abs/0812.0564, 2008.

[11] J. Cheney, U. A. Acar, and R. Perera. Toward a theory f se
explaining computation. Iftn search of elegance in the theory and
practice of computation: a Festschrift in honour of PetemBman
number 8000 in LNCS, pages 193-216. Springer, 2013.

[12] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as degrayd
analysis.Mathematical Structures in Computer Scien2&(6):1301—
1337, 2011.

[13] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance italoses:
Why, how, and where. Foundations and Trends in Databases
1(4):379-474, 2009.

[14] J. Cheney, S. Lindley, and P. Wadler. A practical theminanguage-
integrated query. IICFP, pages 403—-416, New York, NY, USA, 2013.
ACM.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineageiefv data in
a warehousing environmenfACM Trans. Database Sys5(2):179—
227, 2000.

[16] J. Dean and S. Ghemawat. MapReduce: simplified datepsioty on
large clustersCommun. ACM51(1):107-113, 2008.

[17] J. Field and F. Tip. Dynamic dependence in term rewgitaystems
and its application to program slicing.nformation and Software
Technology40(11-12):609-636, 1998.

[18] J. N. Foster, T. J. Green, and V. Tannen. Annotated XMlergs and
provenance. I?ODS pages 271-280, 2008.

[19] F. Geerts and A. Poggi. On database query languagés fi@lations.
J. Applied Logi¢ 8(2):173-185, 2010.

N. Kwasnikowska,
A graph model of

den Bussche, and Roly Perera for comments on this work and to[20] T. J. Green, G. Karvounarakis, and V. Tannen. Provemaemirings.

the anonymous reviewers for detailed suggestions. Effonsored
by the Air Force Office of Scientific Research, Air Force Matker

Command, USAF, under grant number FA8655-13-1-3006. The

U.S. Government and University of Edinburgh are authortpae-
produce and distribute reprints for their purposes nostithding
any copyright notation thereon. Cheney is supported by aR®y-

12

In PODS pages 31-40, 2007.
[21] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewars] J. Van den
Bussche. A formal model of dataflow repositories DS, 2007.

[22] N. Kwasnikowska and J. Van den Bussche. Mapping the NRC
dataflow model to the open provenance modellP#\, pages 3-16,
2008.

[23] S. Lindley and J. Cheney. Row-based effect types foaluke inte-
gration. InTLDI, pages 91-102. ACM Press, 2012.

[24] P. Missier, B. Ludascher, S. Dey, M. Wang, T. McPhélifs. Bowers,
M. Agun, and I. Altintas. Golden trail: Retrieving the daiatbry that
matters from a comprehensive provenance repositbmernational
Journal of Digital Curation 7(1):139-150, 2011.

[25] L. Moreau. The foundations for provenance on the wedundations
and Trends in Web Scienc®(2-3), 2010.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tamki Pig
latin: a not-so-foreign language for data processing. SIBMOD,
pages 1099-1110. ACM, 2008.

[27] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Funefipnograms
that explain their work. INCFP, pages 365-376. ACM, 2012.

[28] A. Sabelfeld and A. Myers. Language-based informafiow secu-
rity. IEEE Journal on Selected Areas in Communicatj@ig1):5-19,
2003.

[29] Y. Simmhan, B. Plale, and D. Gannon. A survey of data pnance
in e-science SIGMOD Record34(3):31-36, 2005.

[30] F. Tip. A survey of program slicing techniqued. Prog. Lang. 3(3),
1995.

[31] M. Weiser. Program slicing. IICSE pages 439-449. IEEE Press,
1981.

13

neN b € {true, false} f£f:(b1,...,bp) > bEX THTy:by T+T,:bn z:T7€eD
T'Fn:int T'Fb:bool PE£(Th,...,Th) : b Trz:7
TFTy : 711 Tx:mbHTh: 7o '+-Ty:7m1 T+Ty:mh THET: (A1 :71,...,An : ™)
T'Fletx =T, inTh : 1 (AT, A i) (AL i 71, An s i) THTA; 7
b € {true, false} I'=T :bool I'ke 7 I'kex: T THT : 7 I'T:7
T'Fif(T,e1,e2) by TV 7 THO:{r} THA{T}: {7}
PET:{r} TFT :{r} TFT:{int} rET:{r} Dairbei{r} TET:{r} Tze{r}to:{r}
T uUT :{r} T'ksumT:int T'F empty T : bool F'_U{EM/’ET}D@:{T,}
. !
‘F,:EE{T}"@.{T}‘ Dz:rHT:{r'} Nze{r}rF061:{r} ze{r}r0O2:{r}
Toze{r}+0:{r} Tz e{r}+{eT}:{r'} Mze{r}FO1UBs: {7’}

Figure 12. Well-typed traces.

T T'CT TCT - T.CTa TICTT T,CT»
ocT TCT T"CT £(T1,..., T))C£(Ty,...,Th) letz =T inTj Cletx =T in Ty
ricr . T,CT TCT T,CT, T CT
<A1 :T{,...,An :T,,/L> C <A1 :T1,..., An :Tn> T .A CTA if(Té,el,eg) >y, T’ C if(To,61,62) >y T NED
/ ’
TCT TICTT T,CT TCT TCT "cT ©ecLe
(T'YC {T} T/UT,CT1 U T sun T’ C sun T empty T’ C empty T (HelzeT}pe' T J{e|lzeT}rO

©'CO < Ve dom(0).0(t)C O

Figure 13. Subtrace relation.

A. Auxiliary definitions
Figure[12 summarizes the typing rules for traces. Fifureefidiés the subtrace relation.

B. Proofs of pattern properties

We prove the required properties for enriched patterns. ddreesponding properties for the sublanguage of simpléeipet follow
immediately since simple patterns are closed under thearel@perations.

Lemma B.1. If p, p’ C v thenp LI p’ exists and is the least upper boundpcdnd p’.

Proof. If both p andp’ match some patters, then it is straightforward to show by induction grthatp LI p’ is defined ang LI p’ C q.
Specifically, ifp or p’ is O or < then we are done; ib andp’ are both constants then we are done; otherwise, in eachtbaseplevel
structure ofp andp’ must matchy, so that we can apply one of the rules foon smaller terms that match part@fWheng = v, the desired
result follows. The second part (thatis a least upper bound) also follows directly since clearly, = pLip’ and ifp, p’ C ¢ then a similar
argument shows thatLl p’ C q. O

Lemma B.2. For anyv,v’, p, v ~p[c,o) v" holds if and only ifv =, v’ holds andv = v'.
Proof. Straightforward induction on the derivation of<, ¢ /o) v'. O

Lemma B.3. For anywv, v',p,p’, we havev =, v" ifand only ifv =, v" andv ~, v'. Moreover,p C p’ if and only if for allv, v’, we
havev =, v’ impliesv =, v'.

Proof. For the first part, we proceed by induction on the total sizg, pf. The cases where one pfp’ is O or < are straightforward; fot>
we also need LemniaB.2. The cases involving constants, paicemplete set and record patterns are also straightfdrwa
There are several similar cases involving partial set asnipatterns. We illustrate two representative cases:

1. If p={l;.pi,l.qi} andp’ = {¢;.p/} U DO thenp U p’ = {¢;.p; Upl, l}.q; }. First, suppose ~,.,, v'. This means = {¢;.v;, l;.w;}
andv’ = {¢;.v], ¢].w]}, wherev; =, ,,» v; andw; ~,, w;. Therefore, by inductiony; ~,, v; andv; =, v;, so we can conclude that

{éi.vi,ég.wi} ~p {éi.v’. A

1) 7t

p

w}} and{4;.vg, O.wi } ~p {:v], 0;.w!}, as required.

1) 7t

14

Conversely, if we assumze~,, v andv =, v, then we must have = {;.v;, ¢,.w;} andv’ = {¢;.v], ;.w!}, wherev; =, v} and
Vi Aoy v; andw; ~q, w;. Thus, by induction we have, ~,, U, v} S0 we can concludel;.v;, £.w; } =y, {6:.0], 0wl }.

2.1fp = {lipi, €,.q;} U O andp’ = {£;.p,, 07 .r;} U O thenp U p' = {£;.p; Up,, 05.q:[O/0], €/ 1} U . First, suppose =, v'.
This meansv = {4;.v;, Oiow;, 0w} Wwo ando’ = {4;.0], 04wl 07w} W wo, wherew; ~piUp! vj andw; ~g,[0/0) w; and
u; ~r; uj. Therefore, by inductiony; ~,, v; andwv; ~pt v;, and we also have);, ~,, w; andw; = wj, so we can conclude that
{03, 0w 0 s} W wo ~p {6307, €], 07l } W wo and {6 0], € wi, 07 ui } Wwo =~y {007, 050l 07 ul} Uwo, as required.

R

Conversely, if we assume~, v" andv =,/ v’, then we must have = {li.vi, l,.wi, 0 i} W andv = {0}, O w), 0wl W g

wherev; ~,, vi andv; =, v; andw; ~q, w; andu; ~,, u;. In addition, we must have that; = w; andvo = v; sincev andv’
must be equal at all labels not i, 6” Thus, by induction we have; <, JUp! v; and (using LemmB_Bl2) we can also easily show that

W; q;(0/0] Wi, SOWe can conclude thil;.vi, £,.w;, 07 ul} W vg =y {4iv], 0w, €7 i} @ vg.

The second part follows immediately from the definitionpdf p’ asp LI p’ = p'. a

Lemma B.4 (Properties of union and restriction)

1. If p1 C vy andpe C we andvr ~p, v] andvs ~p, v5 thenvy Wus ~p, wp, v W s, provided all of these disjoint unions are defined.
2. IfpC v Yoy and Ly < dom(vi) and Lz < dom(vz) and Ly, Lo are prefix-disjoint, them|r, C v1 andp|r, C va.

Proof. For part 1, assumg; C v1, p2 T v2, v1 ~p, v} andvs ~p, vs, and assume that the domaingefandp., v1 andvs, andv] andvs
are prefix-disjoint respectively, so that the unions exibere are several casespif or p» is O then the conclusion is immediate. If both are
<O thenv; = v] andwvy = v} SOV Wve = v] W vh. L

Most of the remaining cases are straightforward; we ilatstwith the casp: = {¢;.p;} U0 andp> = {¢}.¢;} U ©. In this case,

v = {fiol}woy
vy = {l2}wol
v = {lwl}wwg
vy = {Gw?tww

and we also know that! ~,, w; andv? ~,, w; for eachi. Therefore,

{601} wog w {002} Wl = {60}, 0 02} Wug Wl

— 2
N{Tpi 0 YOO {4 wl . 2} W wp W wh

= {6wy W we w{l.w!} wwl
For part 2, assumg C v; Wve andL; < dom(v;) for i € {1,2}. We proceed by case analysis priThe casep = O andp = < are
immediate sinc&l|;, = O and<|r = ©. If p = {¢;.p; } is a complete set pattern, thejr,, selects just those elementspathat have a prefix
in L;, and since every element of has its label's prefix i, we must have that; = {¢;.v}} wherep; C v; for eachi andp|r., = {¢;.p’},

which is what we need to show. The casespfet {¢;.p;} U O andp = {¢;.p;} U < are similar.
A symmetric argument suffices to sheh., C vs. |

Lemma B.5(Projection and-).

1. Ifp C {e.v} thenp.e C v.

2. fpC1-v; W2 - v thenp[l] C vy andp[2] C vs.
3. IfpC ¢ vthenp[l] C v.

4. Ifp C (A; : v;) thenp. A; C v;.

Proof. For part (1), supposge C {e.v}. We proceed by case analysismriThe cases foll and< are trivial. If p = {e.p'} thenp.e = p’ so
the conclusion follows. The cases for= {e.p'} U O orp = {e.p'} U < are similar.

For part (2), supposg C 1 - v, W 2 - vz. Supposen = {£;.v;} andvs = {£,.0/}. If pis a complete set pattern, then it must be of the
form {1.¢;.p;,2.05.q;} , wherep; C v; andg; C v;. The desired conclusion follows sinpfl] = {/;.p; }, and a symmetric argument shows
thatp[2] C v.. The cases for partial set patterns are similar, sincé&tbe< is preserved by the projection operation.

For part (3), suppose C 7 - v. The proof is analogous to the previous case.

For part (4), suppose C (A; : v;). If p = < or O, the result is immediate; otherwigejs a record pattern. If it is a total record pattern
(A; : pi) then clearlyp.A; = p; C v;. Otherwise, it is a partial pattern, in which case eithet; is a patterrp; mentioned irp, in which
case we are done, prA; = & orp.A; = 0O, and the conclusion follows immediately. |

Lemma B.6 (Projection and<,).

1. Ifp C {ev} andv ~p.c v then{e.v} =, {e.v'}.

2. fpC1-v1 W2 vy andvy ~pj1) v1 andug ~pp2) vhthenl - vy W2 vs ~p 101 W2 - vs.
3. IfpC ¢-vandv =y v' thenl -v =<, £-v'.

4. 1fp C (Ai s vi) andor mp.a, Vi, .., 00 ~p.a, vy then(A; :v;) =, (A 2 0l).

15

Proof. For part (1), suppose C {e.v} andv =, v’. If p = O or < then the result is immediate (this is the case for all threrespt the
lemma). Ifp = {e.p’}, p = {e.p’} UD, orp = {e.p’} U O thenp.e = p’ sov =, v'. We can concludge.v} =, {e.v'}.

For part (2), supposg T 1 - v1 W2 - v2 andwvy ~pp;) v; andvs ~p,2) vs. As usual, the casgs= O andp = < are trivial. Suppose
v1 = {¢;.0]} andvy = {€].v]}. If pis a complete set pattern it must be of the fofh¥;.p;, 2.0].q; }, andvi ~ 7~ vi andv. ~ T vh.
Itis straightforward to show that vi =~ 77— 105 and2- v S ETa 2-v5, SO by previous results we havev; W2-vs =, 1-v] W2-v5.

The cases for partial patterns follow the same reasoningingase of the fact that projection preserves the partitiepa

For part (3), suppose C ¢ - v. The argument is similar to the previous case.

For part (4) supposg C (A, : v;) andv; =~p.a, v; for eachi. If pis O, ©, or a complete record pattern then the conclusion is imnedia
Otherwise, ifp = (B; : ¢;) U O, the conclusion is immediate since each component of thede¢A; : v;) and (4, : v}) either match the
appropriatey; or need not match because of the hole. Finally, i (B; : ¢;) U <, the conclusion follows since each pair of corresponding
components of the records!; : v;) and(A; : v]) either match the appropriatg or are equal becaugeA; = < if A; is not among the
B;. |

C. Proof of correctness of trace slicing
Lemma C.1. If v,z € v1,© ~* vy andv; C v; then there exists), C v such thaty, z € v}, ® ~* v5.

Proof. The proof is straightforward by induction on derivationfeTcases for; = () andv, = {£.v} are immediate; iy = w1 W w2 then
we proceed by induction using the subsets= w; N v} andws = ws N 25, |

We prove correctness of the full trace slicing algorithmthwénriched patterns, since the correctness for simplenpattfollows as a
special case.

Theorem C.2(Correctness of Slicing)

1. Suppose,, T ~vandp Evandp, T N\, p,S. Then for ally’ =, v andT’ 3 S such thaty’, T’ ~ v" we havev’ =, v.
2. Supposey, z € v, ©® ~* vandp C v andp, 2.0 * p, O, po, Where®y C O. Then for ally’ =, v andvy ~,, vo and®’ J ©q
such thaty’, x € v}, © ~* v" we haver’ =, v.

Proof. For part (1), the proof is by induction on the structure o€islj derivations, using inversion to extract informationrfi other
derivations. The cases for variables, constants, prienitigerations, and let-binding are exactly as in previouskiif. The cases for
conditionals are similar to the those for variant types aambaonstructs in previous work.

We show the cases for records and set operations, whichartrlis paper (records are handled similarly to pairs inprevious work,
so the cases for pairs are omitted).

¢ Field projection. If the last step in the slicing derivatisn

<Ai:p; D>7T \& Ps S
D, TAZ \ P, SAL

then the evaluation derivation must be of the form
v, T ~ (Arvr, ..., Apiog)
v, T.Ai ~ v;

Lety’ =, yandT’ 3 S.A; be given, where/, T" ~ v'. ThenT’ must have the forrfi"’. A, for someT”" 3 S so the replay derivation
is of the form

¥, T" ~ (A, ... Apio,)
~ 1" Ay ~ v
The induction hypothesis applies since it is easy to show(tha: p; O) C (A;:v1,. .., An:v,). Therefore

(A, ... Aoy) Aoy (Ao, .. Ao
From this it is obvious that; ~,, v;.
e Record. If the last step in the slicing derivation is
p. A1, Th \(p1,51 p.An, Tn \(P, Sn
p, (AT, ..., AnTh) \yp1 U= Upn, (A1:51,..., An:Sn)

then the evaluation derivation must be of the form

rvalmvl f%TnmU'n
Ys <A12T1,...,AnZTn> m <A1Z'01,...,An:'l)n>

Lety' =p,u-.up, v andT’ J (A1:51,..., An:Ss) be given, where/, T’ ~ v'. ThenT’ must have the form{A,:77, ..., An:T},),
whereT; 3 S; for eachi, so the replay derivation is of the form

e R A L e
v AALTY, . AT A~ (Arvy, . Aoy

16

By LemmdB.3% we know.A; C v; for eachi, andy’ =, v for eachi, so by inductionv] ~,. 4, v; for eachi. Using Lemm&BJb we
can conclude thatA:v1, ..., An:vy) =p (A1, ..., Apivg).

Empty set. This case is trivial, similar to the usual casectorstants.

Singleton. This case follows immediately from the relevanaperties op.¢, using similar reasoning to the record projection case.
Union. If the last step in the slicing derivation is

P[], Th N\ p1,51 p[2],T2 \(p2, 52
p7T1 U T \"p1 |_|p275'1 U Ss
then the evaluation derivation must be of the form
v, T1 ~ vy ¥, T2 ~ 02
v, Th UTo~1-v1 U2 v

Lety’ =p,up, v andT’ 3 Ty U T be given, where/, T’ ~ v'. ThenT” must have the forri} U Ty whereT; 3 S, so the replay
derivation is of the form
! / ! / / !
v, 11 vy v, Ty ~ vy
VT U Ty~ 10 W2 vh
By LemmdB.% we knovp[1] T v andp[2] C v2, andy’ =, ~, so by induction we have] ~,; v1 andwvs <,z ve, and therefore by
LemmdB.6 we can conclude: v W2 - vy ~p 1-v1 W2 - vo.
Sum and emptiness. In both cases, since the slice ensutéisdlnghole argument to the sum or emptiness test is presahedrgument
is straightforward. For example, for emptiness supposeéé¢higation is of the form:
O, TN\ p,S
p,empty T\ p, empty S
Then there are two cases. If replay derivation is of the form

YT A0
v, empty 1"~ true

Supposey’ =, vandT’ 3 empty S with ', 7' ~ v’. ThenT” is of the formempty 7" with 7"’ 3 S, so the replay derivation must be
of the form:
’yl7 Tll ~ 'U”
~' empty T"" ~ v’
By induction,v” =¢), which impliesv” = () sov’ = true =, true (sincep C true). The cases where the argumenktgpty T
evaluates to a nonempty set, andam 7", are similar.
Comprehension. If the derivation is of the form
p,l’.@ \&* pl7@07p0 p07T\&p75
p,U{e| T € T}D@\,pl_lp',U{e| x € S}>06g
then the replay derivation must be of the form
v, T ~ vy v,z €O A v

fy,U{e|x€T}l>@mv

Supposey’ ~,,» vyandT’ J J{e| z € S}>O¢ with~', T’ ~ v’. ThenT’ must be of the forny J{e| = € T"} >©’ for someT” 1 S
and®’ 30 O, so the replay derivation must be of the form

/ 4 / / / / * /
LT~ vy Y,x €vy,0 N v

7'7U{e| reT"} >0 A~

Sincepo C vo andy’ =, v andy’ =, v we havevy ~p, vo by induction. Thus, by the second induction hypothesis;esinC v and
v =, vy andvg ~p, vo We haver’ =, v.

For part (2), the proof is again by induction on the structfrderivations.

If the slicing derivation is of the form

0,z.0 N\ [,0,0
then the conclusion is immediate, since rerunning an ematgtset always yields the empty set.
If the slicing derivation is of the form

0,z 0N (1,00

then the conclusion is immediate as before, since reruranirgmpty trace set always yields the empty set.

17

o If the slicing derivation is of the form

0,20\ [,0,0
then the conclusion is immediate, since any two values matcbrding tad.
e If the slicing derivation is of the form

pll], T ¢ plz — pol, S

p, LE{ZT} \&* Ps {45}7 {f.po}
then observe thad D {£.T'} by assumption, s®(¢) = T'. So, the replay derivation must have the form

¢ € dom(©) Y[z = v, T ~v
v, € {fvo},® A" L-v

Now suppose that’ ~, v andvj ~.p,3 {€.vo} and®’ J {£.S} are given where/, z € vy, ©" ~* v'. It follows thatvy = {¢.vg
andvgy ~p, v0, SOV [& > V0] Splzspe) V[— vo]. Moreover, by inversion the derivation must have the form:
¢ € dom(©") Y[z = vp],0' () ~
v,z € {lvi},0 AT LY
Since by Lemm&BIp[¢| C v and©’(¢) 3 S (which holds becaus®’ 1 {¢.5}), we have by induction that’ <, v, and using

LemmdB.6 we can conclude thatv’ =, £ - v, as desired.
Suppose the slicing derivation is of the form:

p|dom((—)1)7x'®1 \&* p17®/17p1 p|dom((—)2)7m'@2 \l* P25 @l27p2
P01 WO\ p1Lp2, O W 6O5, p1Wps

and suppose that, z € vy, ® ~* v where® D ©; W O3. Suppose thay’ ~,,Lp, ¥ andvy ~p,wp, vo aNdO’ J O] W OF are given,
wherey’, r € vy, © ~* v'. We need to show that ~,, v.

Sincevy ~p,wpy Vo, it is straightforward to show that there must existve, v1, vy such that, W v = vo, v] W vy = v), v1 ~p, V1

andvy ~p, ve. Furthermore, by Lemnfa@.1 we know thatr € v;,© ~* w; andy',z € vj, ©" ~* w; for somews, wa, wi, wh.

Therefore, we can conclude that:

/ / / * / / / / * /
v, T €v1,0 AT w v, T € v2,0 N wo Y, €v,® AT wy v, x €vy,0 AT ws

v, T € v Wz, ® N w Waws ' x e vy Wy, O AT w Wws
Furthermore, since; & vo = v, by determinacy we know that; & w2 = v and similarlyw] & ws = v’. By induction sincep; C v;
and®; C O, we know thatw; Fplgom(o,) Wir SOWe know that

! !/ /
= H ~ s ==
v wy Wwsy ~pldom(©;)¥Pldom(63) w1 W ws v .

To conclude, sincg T w1 W w2 anddom(01) < wi anddom(O2) < we, it follows thatp = plaom(e,) ¥ Pldom(e,), SO We can
concludew; W ws ~, w} Ww} as desired.

This exhausts all cases and completes the proof. |

D. Proof of correctness of query slicing

LemmaD.1. If v,z € v1,e |J* v2 andv; C v; then there exists, C vo such thaty, z € vi,e ||* v5.

Proof. The proof is straightforward by induction on derivationfeTcases for; = () andv, = {¢.v} are immediate; iy = w1 W w2 then
we proceed by induction using the subsets= w; N v andws = ws N 25, |
We prove Theorefi 51 by strengthening the induction hysishes follows:

Theorem D.2(Correctness of Query Slicing)

1. Suppose, T ~ vandp C v andp, T \yp, e. Then for ally’ =<, v ande’ J e such thaty’, ¢’ || v" we haver’ =, v.
2. Suppose, x € v, ©® ~* vandp C v andp, O\ p, eo, po, Where®, C ©. Then for ally’ =, v andvj =,, vo andey I eo such
thaty', z € vy, ey | v’ we haver’ =, v.

Proof. The proof is by induction on the structure of query slicingiziions. Many of the cases are essentially the same asafi slicing.
The cases for conditionals are straightforward, sincetimeeicase the sliced trace and environment retain enoughmation to force the
same branch to be taken on recomputation. We show the deftdlile cases involving conditionals and comprehensions.

For part (1), we consider a conditional and comprehensitn ru

o If the slicing derivation is of the form:

p17T1\1p17el1 true7T\lp7el
p1, lf(T, €1, 62) Dtrue Tl \1p1 U P, if(el7 el17 D)

18

then the replay derivation must be of the form:
v, T~ true v, Tt ~ v1

Y, lf(T7 €1, 62) Dtrue 11 M V1
Supposey’ ~,,u, v ande” 3 if(e’, e}, 0) are given where/, ¢’ |} v'. Thene” = if(eg, e, ey), whereey 3 e’ ande! 3 e}, so
there are two cases for the evaluation derivation. If it hasorm
7,e0 I false A en Yoy
v, if(ep, €l en) I vp
then sincey’ =<, v andy’ =,, v, by induction we would have thdtlse =~ true, which is absurd. So this case cannot arise.
Otherwise, the derivation must have the form:

7ieo btrue Aler by
7', if(ep, €h, e2) 4 v1
Sincey’ =, v andy’ =,, 7, by induction we have that; ~,, v1 as desired.
Comprehension. If the derivation is of the form

p,l’@\‘* p/7e/17p0 p()7T\Ap7e/0
pUlel 2 € Tho ©NupU g, Utk | 2 € ch)

then the replay derivation must be of the form

¥, T ~ vo v,z €vo, O N v
7,U{e|:c€T}l>@mv

Supposey’ ~,.,,, vande” J [J{e1| = € ep} with v/, ¢’ | v’. Thene” must be of the form J{e! | = € ej } for someey J ¢’ and
e J ep, so the evaluation derivation must be of the form

Yieo bvo Az ey el §7o
v, U{e'ﬂ r€egt o
Sincepo C vo andy’ =, v andy’ =, v we havev, ~p, vo by induction. Thus, by the second induction hypothesis;esinC v and
v =,y andvg ~p, vo We havev =, v'.

For part (2), we consider the singleton and union rules:

If the slicing derivation is of the form
pll, T\upla = pol, ¢’

p, :C{(T} \A* P 6,7 {fpo}
then recall that by assumptio®,(¢) 2 {¢.T'}, so©(¢) = T, so the replay derivation must have the form

¢ € dom(©) Y[z = v, T ~v
v, € {fvo},® A L-v

Now suppose that’ ~, v andvj ~ge.p,} {¢.v0} ande” J €’ are given where/, z € v, e” |* v'. It follows thatvy = {¢.vg} and
Vo ~py V0, SOV [T > V(] Splmope] Y[— vo]. Moreover, by inversion the derivation must have the form:

Ve wll, e v
vz e{bvit, e 1 -y

Since by Lemm&BlI5[¢] C v we have by induction that' ~,, v, and using LemmaBl6 we can conclude that’ ~, £ v, as desired.
Suppose the slicing derivation is of the form:

Plaom(ey): .01\ p1,€1,p1 Plaom(@,): .02\ p2, €2, 2
P, 201 W02\ p1 U pa,ep, pr¥ps

and suppose that, z € vo, ® ~* v where® 2 01 W O,. Suppose that’ ~,, 1, v andvy ~p,wp, vo andey J eo are given, where
v, x € vy, en I v'. We need to show that <, v.

Sincev), ~p,wp, Vo, itis straightforward to show that there must existvs, v1, v5 such that; Wovs = vo, v} Wvh = v), v1 ~p, v1 and
vy ~p, v2. Furthermore, by Lemmés .1 and D.1 we know that € v;, © ~A* w; andy, z € v}, ey |* w; for somews, wa, wi, ws.
Therefore, we can conclude that:

* * / / ! * / / / / * /
v,z €v1,0 N wy 7T € V2,0 N wa v,z €vy, e wy v, x € vy, ep b wo

/ !/ / / / /
T E v Wua, ® AT wi W ws x € vy W, eq I wl Ww
))) 1 25 C0 1 2

Furthermore, since; & v = v, by determinacy we know that; & w2 = v and similarlyw] & ws = v’. By induction sincep; C v;

and®; C O, we know thatw; Pl dom(o,) Wir SOWe know that

! ! !l —
v = w; Wws ~Pldom(©;)¥Pldom(@,) W1 Wwz =v.

19

To conclude, sincg T wi W w2 anddom(01) < wi anddom(O2) < wo, it follows thatp = plaom(e,) ¥ Pldom(e,), SO We can
concludew; W ws ~, w} Ww} as desired.

This exhausts all cases and completes the proof. a

20

