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Abstract. We present FINESSE, a system that forms
optimal plans for declarer play in the game of Bridge.
FINESSE generalises the technique of proof-planning,
developed at Edinburgh University in the context of
mathematical theorem-proving, to deal with the dis-
junctive choice encountered when planning under un-
certainty, and the context-dependency of actions pro-
duced by the presence of an opposition. In its domain
of planning for individual suits, it correctly identified
the proper lines of play found in many examples from
the Bridge literature, supporting its decisions with
probabilistic and qualitative information. Cases were
even discovered in which FINESSE revealed errors in
the analyses presented by recognised authorities.

1 Introduction

The technique of proof-planning has been developed
by the Mathematical Reasoning Group at Edinburgh
University to find proofs for mathematical theorems
[1]. In this technique, proof construction strategies
are encoded in tactics, which are programs that con-
struct proofs in the spirit of LCF tactics [6]. The
preconditions and postconditions of these tactics are
in turn specified in a meta-language to form methods.
Planning consists of combining methods by reasoning
about their specifications. In practice, the meta-level
search space formed by reasoning about these specified
strategies is many orders of magnitude smaller than
the space at the object-level where proof construction
consists of applying primitive inference rules.

The search spaces
theorem-proving and declarer play in Bridge are sim-
ilar in that although they are both large and unten-

involved in mathematical
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able by humans, experts are remarkably adept at nav-
igating within them, having built up a large variety
of strategies that they can draw upon to successfully
manoeuver. Since proof planning has proved success-
ful in theorem-proving by declaratively capturing such
human problem solving strategies [3], we wanted to
apply the same techniques to Bridge.

Bridge, however, presents new demands on proof-
plans that are not encountered in mathematics, the
most significant being the need to cope with an oppo-
sition. Since cards played may not be retracted once
plan execution has begun, the value of a Bridge plan-
ning system hinges on its ability to judge the most
beneficial course of action to take in any particular
situation. This is not an issue in mathematical proofs,
since one may always backtrack from failed branches
until a successful proof is found. Furthermore, as in-
formation on the distribution of the opponents’ cards
is initially unknown, probabilistic information must be
used to choose among possible plans. It is therefore
the problem of making an informed disjunctive choice
between various possible courses of action that was
successfully tackled in building the FINESSE system.

FINESSE is a modular body of Prolog code consisting
of a pre-planner, a planner, and an interpreter. The
input to FINESSE is a description of a game state in a
single suit'. Prior to actually initiating any planning,
a small amount of pre-computation is carried out by
the pre-planner in order to determine the significant
missing high cards. The planner then takes the combi-
nation of this information with the original game state
and uses proof-planning techniques to produce a plan
that consists of a tree of tactics. These plans are not

1In order to execute a plan successfully in Bridge it
is important to have the leads in the right hands at the
right times. This problem of communication is avoided in
the current FINESSE system by restricting the planner to
producing plans for a single suit only, implicitly assuming
that communication can be maintained by executing plays
in the suits not currently under consideration.



immediately executable, however, since they contain
branching points at which a choice between available
paths will have to be made. In order to make decisions
under these circumstances, the plans are analysed by
the interpreter, which produces qualitative statements
about the subdivisions of the outstanding cards that
would lead to the ‘success’ or ‘failure’ of the lines of
play contained in the plan. This information is used to
calculate probabilities upon which an informed choice
can be made between different available courses of ac-
tion.

FINESSE proved to be a very capable system, consis-
tently identifying a ‘best’® plan that concurred with
the recommended lines of play found in the Bridge
literature. In some cases, FINESSE’s analysis of this
plan even revealed shortcomings in the explanations
presented by recognised authorities. These latter ex-
amples were generally situations in which authors had
overlooked particular subdivisions of the outstand-
ing cards that would lead to the plan succeeding.
These ‘discoveries’ demonstrate the fallibility of hu-
mans, even when they are ‘experts’, in dealing with
problems that involve combinatorial explosion. In FI-
NESSE, as in theorem-proving, this explosion can be
controlled by using proof-planning to combine high
level strategies at the meta-level. In Bridge, this re-
sults in a search space typically four or five orders of
magnitude smaller than the object-level space (i.e., the
space that would result from considering all the possi-
ble ways the declarer could play his cards). With this
reduction, analysis of the entire search space becomes
computationally feasible.

The success of FINESSE provides further support
for the value of proof-planning techniques. Moreover,
it has given us valuable insight as to how this tech-
nique can be extended to ‘adversarial domains’ that
necessitate disjunctive choice based on probabilistic
or uncertain information. In addition, the creation of
FINEssE’s declaratively encoded methods formalised
knowledge which was only previously expressed in the
form of examples in the Bridge literature. This is anal-
ogous to the way in which the study of proof plans at
Edinburgh has lead towards a theory of inductive the-
orem proving, and is in stark contrast to the poverty
of the ‘theories’ underlying existing automated card
players (see Section 6).

The remainder of the paper is organised as follows.
Section 2 describes Bridge-specific tactics. Section 3

2There are competing ways that ‘best’ may be defined.
In the Bridge literature, the most commonly adopted def-
inition is the plan with the highest probability of making
the maximum number of tricks. Hence, this definition is
taken as the basis for our comparison.

describes methods and how they are used in planning.
Section 4 explains how plans can be assessed by a
minimax-like algorithm. Section 5 gives examples of
the use of FINESSE, including a discovery made by the
system of an error in a Bridge textbook, and the final
section discusses related work and draws conclusions.

2 Tactics

Bridge is played with a pack of cards, and requires four
players (North, South, East, and West) who play in
two teams of two (North/South and East/West). The
cards are dealt between the players and they play 13
tricks, each consisting of them laying one card in turn
in a clockwise direction. Before play begins there is
an auction in which one team wins a contract to make
a certain number of tricks. One member of this team
becomes the declarer and the other is the dummy. The
other team are the defenders. For simplicity, we will
always assume that South is the declarer, so North
is the dummy and East and West are the defenders.
Dummy’s cards are laid face up on the table after the
first card is played by West, increasing the information
available to all players. Declarer plays the dummy’s
cards as well as his own, and can use the increased
information to select optimal plays in situations like
the following.
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Here, it is obvious that declarer will win one certain
trick (in a No Trumps contract) when he plays the
Ace. However, if he were to play this card first, his
only chance of making two tricks would be if one of
the defenders held the singleton King, so that it would
fall when the Ace was played. This play of cashing the
Ace will succeed in winning two tricks in only two of
the possible 210 distributions of the outstanding cards.

A better return is offered by entering the South
hand and playing the two. By covering whatever
card West plays, declarer can expect to win two tricks
whenever West holds the King — a 50/50 chance.
This line of play is based on the elementary princi-
ple of card play that the best results can be obtained
by forcing an opponent to play ahead of you. It is a
typical example of a very standard strategy called a
finesse. When planning a hand, human players will
make use of their knowledge of commonly occurring
patterns like the finesse to avoid having to consider all



the possible combinations of plays of single cards. FI-
NESSE attempts to replicate this capability by restrict-
ing declarer’s options at each stage of planning/play
to a pre-determined set of such manoeuvers, or tactics.

The current version of FINESSE has a total of seven
tactics, which it represents using the following Prolog
predicates:

1-4. finesse(Type, Player, Card, Suit) — Type
represents the type of finesse being used (four dif-
ferent types of finesse were identified when design-
ing FINESSE; in the example above, the finesse of
the Queen was a Type 1 finesse); Playeris the de-
fender being finessed; Card and Suit specify the
finesse card.

5. cash(Card, Suit) — represents a trick on which
declarer plays the card specified by Card and Suit
from one hand, and plays a low card (or throws
away a card from another suit) in the other.

6. duck(Suit) — represents a trick on which de-
clarer plays low from both his hands.

7. sequence(Card, Suit) — represents a trick on
which declarer plays the card specified by Card
and Suit (which must come from a sequence of
length 2 or more) from one hand, and plays low
(or throws away a card from another suit) in the
other.

3 Planning with Methods

FINESSE’s tactics do not specify complete lines of play
to be followed for any particular card combination, but
only continuations for the next trick. Lines of play are
built up by the planning algorithm which constructs a
tree of tactics that resembles a minimax tree. In order
to build this tree, the planner must be able to deter-
mine the tactics which are applicable to any state.
This is achieved by specifying the minimal applicabil-
ity preconditions for each tactic, producing a set of
Prolog clauses of the form:
applicable(State, Tactic) :- PreConds.

To form a plan, an applicable(+State, -Tactic)
goal is used to find a Tactic applicable to the current
State, the possible responses by the defence are gen-
erated, and the post-conditions are determined. This
process is continued recursively for the resulting states
until branches for each applicable tactic have been
generated. In Edinburgh’s theorem-proving system
(CraMm, [14]), the post-conditions and preconditions of

an operator are combined together to form a method
which in essence resembles a STRIPS type operator
[4]. This kind of representation is ill-suited for plan-
ning in Bridge, however, because the results of apply-
ing a tactic depend on the particular response chosen
by the defenders. For example, in the finesse tactic de-
scribed in Section 2, the card played by the third hand
depends on the card chosen by West. Wilkins [17]
points out that such context-dependency often forces
one to provide an operator for every possible situa-
tion in which an action might be taken. To avoid do-
ing this, FINESSE uses a database of rules which, for
each tactic, allows the declarer’s cards to be chosen
and played, taking into account the cards chosen by
the defence. This deduction of context-dependent ef-
fects is very similar to the way STPE [16] uses domain
rules to alleviate problems in operator representation
caused by the STRIPS assumption.

Note that there will in general be more than one tac-
tic applicable to a particular state, and also that the
defenders may make a number of different responses,
leading to the kind of structure illustrated in Figure 1.

Applicable Tactics

Figure 1: Sample Tree

The results presented in Section 5 illustrate that us-
ing tactics as the fundamental planning actions is far
more efficient than considering the most fundamental
operation: the play of a single card. However, the
‘knowledge’ contained in most Bridge books is gen-
erally in the form of examples. Hence, one of the
challenges in constructing the FINESSE system was to
encode the implicit strategies behind these examples
into the form of tactics and to specify these tactics
with preconditions and postconditions at the meta-
level.

4 Interpreting the suit-plans

In order to execute the plans produced by the plan-
ner we need to have some way of selecting branches
at MAX nodes. This is achieved by a bottom-up al-
gorithm which first looks at the number of tricks won
at each leaf node (a node at which no tactic’s appli-
cability conditions are satisifed). The MIN parent of



a leaf node may have several leaf node daughters, but
the defenders are restricted in their choice of which
branch to follow by the actual distribution of the out-
standing cards. For example, East must hold the King
if the defenders are to choose a branch in which East
plays it. Thus, each leaf node may only be reached
under a subset of the possible distributions of the out-
standing cards. FINESSE represents this circumstance
by constructing an interpretation-list at the MIN node
of the form

[0-Fo, 1-F1, 2-F>, -+ ],

where each Fy, is a predicate formula describing the
distributions under which the defenders could give de-
clarer n tricks. There may, however, be some overlap
between the distributions described by the formulae
in an interpretation-list, so next the concept of best
defence (that the defenders will always try to restrict
declarer to as few tricks as possible) is implemented
by updating the list so that all the distributions that
are allowed by a formula F; are removed from any F}
with 7 > 2.

Selection of branches at a MAX node is based on
the probabilities of the distributions described by the
interpretation formulae of its daughter MIN nodes.
The MAX node inherits the interpretation-list from
its ‘best’> MIN daughter and the algorithm recursively
continues its pass through the plan, updating the in-
formation in the interpretation-lists as new cards are
encountered.

An important feature of this algorithm is that it
reasons qualitatively about card distributions, rather
than using bare probabilities. This not only allows
FINESSE to generate textual explanations for its plans’
chances of success, but also keeps open the possibility
of utilising inferences drawn from the bidding or from
the play in other suits, should FINESSE be augmented
by a bidding component, or extended to the task of
planning a whole hand.

5 Sample Results

The following examples illustrate FINESSE’s capabil-
ities. The first row in each of the tables compares
the size of FINESSE’s plans to that of the object-level
search space (olss)g’. This reduction is crucial, since it
allows the interpreter to analyse the entire space.

3The general formula for the minimum size of the search
space when declarer has n1 cards in one hand and ny cards
in the other, with the defence holding d cards in the suit is
nq 'n2'(d -|— 1)'

A6 4 Leaf nodes | plan: 75, olss:1.4 x 10°
Critical .
K
N card e
W E Applicable | Cash the Ace
S tactics Finesse the Queen
Q75 against East (Type 3)
Duck a round

This example differs from the one in Section 2, in
that declarer has additional low cards and the Queen is
now opposite the Ace. Whereas before FINESSE would
select the finesse tactic, this time it selects the cash.
The interpretation formulae correctly show that cash-
ing leads to two tricks not only when East has the
King (a finesse is executed on succeeding trick), but
also when West has the singleton King.

Leaf nodes | plan: 285, olss:1.4 x 10°

AQ10 -
Critical King, Jack
N cards
W E Applicable | Cash the Ace
g Tactics Finesse the Queen

against West (Type 1)
43 Finesse the 10
against West (Type 1)

FINESSE also copes well with situations in which a
choice of finesses is available. In this example, Fi-
NESSE ‘discovers’ by itself the ‘principle’ that when it
is possible to finesse more than one card in the oppo-
site hand, the best chance of winning most tricks is
by finessing the lower card first. Accordingly, the fi-
nesse of the 10 is chosen as the best play. FINESSE also
produces correct analyses in situations where declarer
holds so many cards in a suit that the ‘principle’ of
finessing the lowest honour does not apply.

Leaf nodes | plan: 470, olss:4.4 x 10°

AJo9
N ccarrlzllscal King, Queen, 10
W E Applicable | Cash the Ace
S Tactics Finesse the Jack
764 a.gainst West (Type 1)
Finesse the 9
against West (Type 1)

Reese [10] and FINESSE both identify the finesse of
the 9 as being the best play in this situation, but dis-
agree on the probability of success. FINESSE’s justi-
fication for its choice is that “This leads to 2 tricks



if West holds at least one of the King or Queen and
West holds the ten, or if West holds both the King or
Queen, East holds the ten, and East holds the remain-
ing four low cards.” This explanation makes it an easy
matter to check that it is Reese who has produced the
incorrect analysis, having overlooked the distribution
where West holds the doubleton King, Queen, thus
introducing an error of 1/27 into his result.

6 Related Work and Conclusions

Throop [13] traces the development of Bridge-playing
programs (both those of a research nature and those
resulting in a consumer product) as far back as 1957.
His survey highlights the fact that the best Bridge-
playing programs are of a low standard, especially
when compared to the most successful chess and
checker programs, which can compete at an interna-
tional level ([5] and [11]).

Bidding seems to be the department of Bridge that
lends itself best to play by computers [15]. Novel ap-
plications such as expert systems [8] and knowledge-
based systems for locating missing high cards [9] do ex-
ist, and have proved successful at their intended tasks,
but computer programs have yet to make any signifi-
cant impact on the problem of card play itself.

Related to this poor performance, we suspect, is
that many of the available Bridge playing programs
are far from principled in their underlying methodol-
ogy. Throop’s description of his own program is typ-
ical in its level of detail, neglecting to enter into any
deeper explanation than the following:

“Behaviour of the program is heuristic in na-
ture. The program evaluates trick objectives,
formulates goals, and executes the play of the
declarer’s and the dummy’s cards. The pro-
gram performs in accordance with heuristic
principles I have always practised in tourna-
ment play and which I incorporated into the
computer program.”

Throop goes on to claim that “the task of writing a
Bridge-playing program that demonstrates a high level
of intelligence is actually more difficult than writing
a similarly intelligent chess program,” — a sentiment
echoed by Stanier [12], who puts forward four grounds
for the rejection of the usual tree-searching approach
when forming plans in Bridge.

Given this context, the results presented in Sec-
tion 5 are particularly encouraging. Maybe the best
way to summarise the design of our system system is
to briefly outline how each of Stanier’s objections is
answered by FINESSE:

1. Stanier argues that any Bridge-playing program
should not ignore the body of knowledge gained
by Bridge-players in the past decades: FINESSE
incorporates this knowledge in the declaratively
encoded preconditions of its Bridge methods.

2. Stanier is concerned that the probabilistic results
returned by an evaluation function would make
minimaxing a complex task: by building up a
qualitative picture of the distributions that would
lead to the success of each line of play in a suit,
FINESSE avoids the loss of information inherent in
a probabilistic approach.

3. The use of the proof-planning paradigm controls
search in a way that avoids unpleasantness such
as the ‘horizon effect’ (there is no horizon, since
the whole tree is searched).

4. Stanier argues that a successful Bridge-playing
program will need to have concepts such as “fi-
nesse the Queen of clubs”: these are exactly what
is represented by the tactics in FINESSE.

From a proof-planning perspective, FINESSE has
also provided us with some valuable insights. To date,
proof-planning ideas have been successfully applied to
the problem of finding proofs for mathematical theo-
rems (CLAM), computer system configuration [7], and
to program verification [2]. In Section 1, however, we
noted that planning in Bridge (unlike in these other
domains) requires an efficient mechanism for making
informed disjunctive choice. With the implementa-
tion of FINESSE, we have developed such a mecha-
nism, and also produced insights into the meta-level
language necessary to deal with context-dependent ac-
tions. Since any attempts to apply the proof-planning
paradigm to real-world problems such as business de-
cision making will be unable to avoid these kinds of
issues, it is to be hoped that the lessons learned from
FINEsSE will aid and direct any such endeavour.
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