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Abstract

We draw on our experience of implementing a semi-automated guesstimation application
of the Semantic Web, gort, to draw four lessons, which we claim are of general applicability.
These are:

1. Inference can unleash the Semantic Web: The full power of the web will only be realised
when we can use it to infer new knowledge from old.

2. The Semantic Web does not constrain the inference mechanisms: Since we must anyway
curate the knowledge we extract from the web, we can take the opportunity to translate
it into what ever representational formalism is most appropriate for our application.
This also enables the use of whatever inference mechanism is most appropriate.

3. Curation must be dynamic: Static curation is not only infeasible due to the size and
growth rate of the Semantic Web, but curation must be application-specific.

4. Own up to uncertainty: Since the Semantic Web is, by design, uncontrolled, the accuracy
of knowledge extracted from it cannot be guaranteed. The resulting uncertainty must
not be hidden from the user, but must be made manifest.

1 Introduction

As a result of the advocacy of the Semantic Web and Linked Data in, for instance, [Berners-
Lee et al, 2001, Bizer et al, 2009], new data is being added to The Web of Linked Data at an
exponential rate. If we add to this data that that can be mined from semi-structured, web-based
sources, then the amount of potential data is even larger. For instance, the KnowItAll Project
[Etzioni et al, 2011] claims to have formed a 6 billion item ontology by extracting rdf triples and
rules from English statements on the web with a 90% accuracy1.

Existing applications of this wealth of data have only scratched the surface of the possibilities.
The purpose of this paper is to emphasise some of the previously unexplored potential directions.
This potential is illustrated by an unusual application to the solving of guesstimation problems:
the system gort (Guesstimation with Ontologies and Reasoning Techniques). More details about
gort, including a discussion of its version history, can be found in §2.3.

∗The research reported in this paper was supported by ONR project N000140910467 and EPSRC project
EP/J001058/1. We would like to thank two SWJ referees: Simon Scheider and an anonymous referee.

1This is an estimate of the number of original English assertions that have been correctly formalised, not the
accuracy of the original source information.
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2 Guesstimation Using the Semantic Web

Guesstimation is the task of finding an approximate answer to a quantitative problem based on
a combination of intuition, facts, and reasoning [Weinstein & Adam, 2008, Santos, 2009]. Such
problems are sometimes called Fermi problems, after Enrico Fermi who had been known to use
the technique.

An example guesstimation problem is:

• How much would it cost to meet all the uk’s electricity demand by solar panels?

• What area would they cover?

The number of solar panels required can be guesstimated by dividing the uk’s electricity demand
by the capacity of a typical solar panel. The cost can then be guesstimated by multiplying this
number of panels by the cost of a typical panel. The area can be guesstimated by multiplying the
number of panels by the area of a typical panel. More examples can be found in Table 1 in §2.3.3.

Traditionally, human guesstimators have to supply facts, such as the uk’s electricity demand,
and the capacity and area of a typical solar panel from their own background knowledge. We are
now in the lucky position, however, that many of these facts can be retrieved from the Semantic
Web using a search engine, such as sindice[Tummarello et al, 2007].

2.1 The Formalisation of Guesstimation

Guesstimation requires a new calculus for both representing the restricted kind numbers permitted
in answers and to reasoning with these numbers to infer new approximate answers from old ones. In
this section we define this calculus, which we call the SingSigDig Calculus [Abourbih et al, 2010].

2.1.1 The Single Significant Digit Calculus

According to [Weinstein & Adam, 2008], the normal form for guesstimation answers is a number,
in si units, in single significant digit form, d × 10i, where d is a digit from 1, . . . , 9 and i is an
integer. Where quantities are not originally in this normal form, non-si units must be converted
to si and numeric values must be approximated to the form d× 10i .

Definition 1 (SingSigDig Normal Form)

• Let R∼ = {d.10i|d ∈ {1, . . . , 9} ∧ i ∈ Z} be the type of normal form numbers.

• Let nf∼ : R 7→ R∼ be the function that converts a real number into its nearest single
significant digit normal form.

• Let U be the type of si units.

• Let P be the product type R×U and P∼ be the product type R∼×U, i.e., P and P∼ are pairs
of numbers and units. Note that P∼ is a subtype of P.

• ∀〈r, u〉 : P.nf∼(〈r, u〉) ::= 〈nf∼(r), u〉.

For instance, nf∼(3.142) = 3.100. We will usually write 〈r, u〉 : P∼ as ra, e.g., 4.101w instead of
〈4.101, w〉, where w is the symbol for watts. For dimensionless quantities the unit will be omitted.

Definition 2 (SingSigDig Formulae) Formulae in the SingSigDig Calculus are first-order ex-
pressions whose domain of discourse consists of pairs of type P∼, plus everyday objects and sets
of such objects.

Any function f (or predicate p) defined on P can be abstracted into a function f∼ (or predicate
p∼) defined on P∼.
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Suppose, without loss of generality, that all arguments of type P of function f (predicate p) are
initial, i.e., that:

f : Pm × τ1 × . . .× τn 7→ P
p : Pm × τ1 × . . .× τn 7→ bool

where τi is the type of the ith non-P argument of f and n ≥ 0.
For every such function f (predicate p), we define a corresponding f∼ : P∼m×τ1×. . .×τn 7→ P∼

(p∼ : P∼m × τ1 × . . .× τn 7→ bool) as follows:

f∼(r∼1 , . . . , r
∼
m, t1, . . . , tn) ::= nf∼(f(r∼1 , . . . , r

∼
m, t1, . . . , tn))

p∼(r∼1 , . . . , r
∼
m, t1, . . . , tn) ::= p(r∼1 , . . . , r

∼
m, t1, . . . , tn)

For instance,

2.1011w ÷∼ 3.101w/m2 = nf∼(2.1011w ÷ 3.101w/m2))

= nf∼(
2
3
.1010m2)

= nf∼(
2
3
.1010)m2

= nf∼(7.109)m2

In particular, we define the equality predicate =∼: P∼2 7→ bool by abstracting =. Where the
context makes clear that an approximate function (predicate) is being used, we will usually drop
the ∼ superscript.

These definitions ensure that f∼ (p∼) is uniquely defined on its first m numeric arguments. In
order to ensure uniqueness for the next n non-numeric arguments, we need to make the following
assumption.

Assumption 1 Similarity Assumption:
For all functions f∼ (predicates p∼) and sets S, to ensure that f∼(. . . , S, . . .) (p∼(. . . , S, . . .))

is uniquely defined, we assume that:

∀s1, s2 ∈ S. f∼(. . . , s1, . . .) =∼ f∼(. . . , s2, . . .)
(∀s1, s2 ∈ S. p∼(. . . , s1, . . .) ⇐⇒ p∼(. . . , s2, . . .))

For instance, if Solar is the set of all solar panels, then power∼(Solar) is uniquely defined iff
any pair of solar panels in Solar have equal power∼s, i.e., their outputs in watts are equal up
to one significant digit. If this is not the case then guesstimates based on their power may be
inaccurate.

We will frequently want to describe a typical element of a set. To formalise this2, we will
designate εS to be a typical representative element of the set S. All we are allowed to know about
εS is that εS ∈ S, not which specific element it is. ε is used in the methods law of averages,
energy, rate of change, arbitrary objectand generalisation.

We will use upper-case letters to represent sets and lower-case letters to represent objects. We
will sometimes use polymorphic functions which apply to both objects and sets of those objects.
If S is a set, the semantics of f(S) is f(εS). An exception to this semantic rule is the function
‖. . .‖ : Set(τ) 7→ P∼ where ‖S‖ returns the approximate number of elements in the set S.

2Our notation is borrowed from Hilbert’s ε operator [Hilbert & Bernays, 1939], which he introduced as an
alternative to quantification and an aid to proving consistency. Technical knowledge of this operator is not needed
in this paper.
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2.1.2 Guesstimation Methods

To solve guesstimation problems, gort uses a set of proof methods which reason over the SingSigDig
Calculus. All the methods were developed by gort developers by abstracting from the solutions
to guesstimation problems provided in [Weinstein & Adam, 2008] and similar sources.

Each method is represented as a second-order, conditional, approximate, rewrite rule of the
form:

Cond =⇒ LHS  RHS,

where  is an oriented version of =∼. Such rewrite rules are applied to guesstimation goals as
follows. If Cond is true and LHS matches a sub-expression of the current goal with substitution
σ, then replace this sub-expression with RHSσ to form the next goal.

We divide the methods into primary and secondary. Primary methods are called by the user
using the gui described in §2.3.2. Secondary methods are applied automatically by gort to solve
the sub-goals created by the secondary methods. This section only describes the primary methods
in detail. For more information on the secondary methods see [Abourbih et al, 2010].

The Count Method: The count method has been generalised from its original restricted defi-
nition in [Abourbih et al, 2010]. It is now a general method for dividing one quantity by another.
An example is: What area of solar panels would be needed to meet the UK’s electricity consump-
tion? Here, Y is the UK’s electricity consumption measured in watts, Z is the power per area of
a typical solar panel measured in watts per square metre and Y

Z is the answer we require in square
metres.

We can formalise the count method as:

Definition 3 (The count method)

Z 6= 0 ∧X.Z =∼ Y =⇒ X  
Y

Z
·

The Total Size Method: The total size method is applicable in cases where a guesstimation
question requires the sum of some function f over a set S. An example is: What is the total cost
of a set of solar panels?, e.g., the set required to meet all of the uk’s electricity demand. Here, S
is the set of solar panels and f(s) is the cost of a solar panel s.

We can formalise the total size method as:

Definition 4 (The total size method)∑
s∈S

f(s)  f(S)× ‖S‖,

where S is a set of non-numeric objects of type τ and f is a function f : τ 7→ P∼.

The Law of Averages Method: The law of averages3 method uses the fact that, on average,
the proportion of times an object has a given property is equal to the proportion of objects in a
larger population with that property at a given time. For example, the proportion of time that an
average person spends asleep is equal to proportion of people on Earth asleep at any time, where
S is the set of people, T is a finite set of equal time intervals in a day, and φ(s, t) asserts that
person s is asleep during time interval t.

The law of averages method can be formalised as:

Definition 5 (The law of averages method)

S 6= ∅ ∧ T 6= ∅ =⇒ ‖t ∈ T |φ(εS, t)‖
‖T‖

 
‖s ∈ S|φ(s, εT )‖

‖S‖
·

Using this method, information about a wider population at a particular time can be found from
an arbitrary, representative object over a period of time.

3This name is adopted from [Weinstein & Adam, 2008]. The normal pejorative use of this phrase is not intended.
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The Distance Method: The distance method is a domain-specific technique for calculating
the distance between two locations on Earth. It applies in the case of a problem such as, How
much time would it take to drive from London to Manchester?, where two locations are given and
a distance is required.

The distance method can be formalised as:

Definition 6 (The distance method)

∆σ̂  2 arcsin

(√
sin2

(
∆φ
2

)
+ cosφs cosφf sin2

(
∆λ
2

))
·

For two points 〈φs, λs〉 and 〈φf , λf 〉, where the φs represent latitudes and λs represent longitudes,
the planar angle between the points is calculated from the above formula as ∆σ̂. Then the distance
along the surface of the Earth is r ·∆σ̂, where the single significant digit approximation of r, the
radius of the Earth, is 6× 104 km.

Simon Scheider has suggested using navigation services, such as The Google Directions API4,
to improve the accuracy of distance measures. This is an interesting suggestion, which we plan to
investigate as further work.

The Energy Method: The energy method is used to calculate the total kinetic, potential,
chemical or latent energy of a set of objects S.

To calculate the total energy, the method requires two parameters and a constant. Both
parameters and the constant depend on the type of energy measured. The constant must be set
to c = 1 when calculating latent or chemical energy, c = 1

2 when calculating kinetic energy and
c = 10m/s2 when calculating potential energy. Furthermore, a fourth parameter, ‖S‖, is required
to be supplied which indicates the size of the set S. These four parameters are multiplied together.

For example, the following set of substitutions could be used to answer the question How much
potential energy does an average skyscraper have?, where potential energy is calculated using the
formula E = mgh.

• c = 10m/s2, which is gravitational acceleration (g) on the Earth’s surface;

• f(εS), which is the mass of an typical skyscraper;

• g(εS), which is the height of the centre of mass of a typical skyscraper, which can also be
defined as half of the height of the skyscraper;

• ‖S‖ = 1, which stands for the number of skyscrapers we are interested in. If we were
interested in finding the potential energy of all skyscrapers in Manhattan, then the number
of skyscrapers in Manhattan would be used instead.

The energy method can be formalised as:

Definition 7 (The energy method)

E  c× f(εS)× g(εS)× ||S||·

Rate of change method: The rate of change method is used to calculate the rate of change,
when the size and the duration of the whole task is known. Alternatively it can be used for
calculating the duration of the task when the size of the whole task and the rate of change is
known. An example is How long would it take to fill St Paul’s Cathedral with water using a
bucket?. Here S would be a set of bucket loads of water needed to fill the Cathedral, f(s) would
be the time taken to pour one bucket load of water, s, into the Cathedral and g(s) would be the
volume of a bucket load of water, so

∑
s∈S g(s) is the volume of the Cathedral.

The rate of change method can be formalised as:
4https://developers.google.com/maps/documentation/directions/
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Definition 8 (The rate of change method)

∑
s∈S

f(s)  
f(εS)×

∑
s∈S g(s)

g(εS)
·

Get Data: The methods above break an initial question into sub-questions. Eventually, they
reach questions that can be retrieved from the Semantic Web, e.g., using a semantic web search
engine. This is done by the get data method. It constructs an rdf query consisting of a subject,
predicate and a variable for the object. During data retrieval, the object is instantiated to the
answer to the question. The latest version of gort version 4.0, uses the sindice search engine.

The User Input Method: Unfortunately, the solution to a guesstimation question may require
data that sindice cannot find on the Semantic Web. The user input method then asks the user
for the required value.

Secondary Methods In addition to these primary methods, a set of secondary methods are
applied automatically by gort. These secondary methods are used to solve open subgoals arising
from the primary methods. The secondary methods are just briefly mentioned below. More details
can be found in [Abourbih et al, 2010, Sasnauskas, 2012].

The Arbitrary Object Method uses the ε operator to convert the value of some function of a
set into the value of that function on a typical member of that set. This is formalised as:

f(S)  f(εS)

For example, S might be the set of humans and f(s) the height of the human s.

The Average Value Method guesstimates a numeric value for some f(εS) by computing the
arithmetic mean of all f(s), s ∈ S: This is formalised as:

S 6= ∅ =⇒ f(εS)  

∑
s∈S f(s)
‖S‖

·

The Aggregation over Parts Method guesstimates the value of an attribute of a large object
composed of many non-overlapping parts by summing the values for each of these parts.
This is formalised as:

f(o)  
∑

p∈Parts(o)

f(p),

where Parts(o) is a function that returns the set of all non-overlapping parts of o.

The Generalisation Method guesstimates the average value of an attribute of the objects in
a set by returning the average value of the attribute in a superset. This is formalised as:

S ⊂ T =⇒ f(εS)  f(εT )

The Geometry Methods calculate one attribute of a physical object from its other attributes.
For instance, the circumference, Circ(s), of a circular object, s, can be calculated from of
its radius, Radius(s) by:

Circ(s)  2πRadius(s)
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2.2 Worked Example

To illustrate the rewriting process used by these methods we apply them to the guesstimation
problem:

What area of solar panels would be needed to meet the UK’s electricity consumption?

The goal can be formulated as eleccons(uk)
powperarea(solpanel) , where eleccons(uk) is the UK’s electricity

consumption measured in watts and powperarea(solpanel) is the power per area of a typical solar
panel measured in watts per square metres. As discussed in §2.1.2, in the preamble to Definition
3, the count method is applicable to problems of this sort and rewrite rule (3) can be instantiated
to:

powperarea(solpanel) 6= 0 ∧

area.powperarea(solpanel) =∼ eleccons(uk) =⇒ area  
eleccons(uk)

powperarea(solpanel)
·

The user is currently required to confirm the correctness of the two conditions and assumption 1
in this case.

The get data method can now be used to find the values of both eleccons(uk) and
powperpanel(solpanel), which are returned as 3.1012w and 1.102w/m2, respectively. The cal-
culation can then be continued.

area  
eleccons(uk)

powperarea(solpanel)

 
2.1011w

1.102w/m2

 2.109m2

to give the required answer, i.e., about two billion square metres.
Questions 8 and 9 in Table 1 are variants of this question, both requiring a second application

of the count method. Question 8 is also used as the example in the illustration of gort’s gui in
Figure 1.

2.3 The gort System

gort (Guesstimation with Ontologies and Reasoning Techniques) is a semi-automatic guesstima-
tion system implemented in SWI-Prolog and Java. It has been developed in successive stages via
four student projects.

gort 1.0: In his 2008-9 MSc project [Abourbih, 2009], Jonathan Abourbih built the initial ver-
sion. It used locally stored rdf ontologies for looking up facts. Queries for the system had
to be provided in the Prolog language, which limited the usability of the system.

gort 2.0: In his 2009-10 UG4 project [Blaney, 2010], Luke Blaney added a web front-end, which
allowed constructing queries by using a drag-and-drop interface. Furthermore, he replaced
the majority of local data sources with remote rdf databases accessible via sparql end
points. [Abourbih et al, 2010] describes gort 2.0.

gort 3.0: In his 2010-11 MSc project [Wang, 2011], Yanyang Wang introduced new proof meth-
ods, which were able to solve a larger variety of problems. Furthermore, new compound
units were constructed from atomic ones, e.g., m/s from m and s.

gort 4.0: In his 2011-12 UG4 project [Sasnauskas, 2012], Gintautas Sasnauskas improved the
data retrieval by switching to the sindice search engine and adding a query decomposition
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module that broke queries into sub-queries. sindice retrieved more data, but this included
more noisy data, so answer filtering was used to deals with multiple, possibly conflicting,
values. Since units were often missing from rdf triples, he developed a method for guessing
missing units. Subsequently, he has implemented a method for assigning an uncertainty
value to the guesstimates.

2.3.1 The sindice Semantic Web Search Engine

The sindice Semantic Web search engine [Tummarello et al, 2007] was chosen for data retrieval in
gort 4.0 because is gives access to data from a large variety of sources. Furthermore, the sindice
api presents rdfs grouped into documents or small ontologies covering single topics. This allows
gort to not only look for individual triples but also for documents containing information about
an object using keyword search. An assumption was made that all rdf triples in a document
which was found using keyword search describe the keyword. Following empirical observations,
this assumption was found to be correct in the majority of cases.

2.3.2 The gui

Users interact with gort using a drag and drop, graphical user interface, which is illustrated in
Figure 1. Users build up a query as a tree structure in which each node corresponds to a primary
method, whose daughters provide its inputs, if any. The user builds this tree by dragging and
dropping methods from the left-hand margin. In the case of the get data and user input methods,
the user is prompted to supply additional information, namely subject plus predicate and value
plus unit, respectively. As each method receives its inputs, it asynchronously updates itself and
any methods that it is inputting too, allowing users to work on other parts of the tree in parallel.
Completed methods turn from black to green and display their respective results. Results are
presented in nodes as the preferred value, e.g., 2.1011w , together with:

• their error bounds, indicated as an interval, e.g., [2.108, 3.1012], and

• for get data method nodes, the number of data points in that interval, e.g., 10 and 7 in
Figure 1, which we call the rarity value.

The preferred value of get data method nodes is either the mode, if a threshold is exceeded,
otherwise the median (see §3.3.1 for more details). The preferred value of non-leaf nodes is
calculated from the preferred value of their daughters. For more discussion of these values see
§3.4. Sample queries are supplied on the right-hand side, to give the user exemplars of gort’s
working. Commands are also supplied on the right-hand side for providing help, saving queries,
resetting the system and closing it.

2.3.3 Evaluation of gort

gort 4.0 was evaluated on a test set of 12 examples [Sasnauskas, 2012]. Earlier versions of gort
were similarly evaluated on different test sets [Abourbih, 2009, Blaney, 2010, Wang, 2011]. The
list of problems is given in Table 1 and the results are summarised in Tables 2 and 3.

There are inherent problems of fragility and non-reproducibility of results when evaluating a
system such as gort. The results depend on what sindice finds on the internet, which is in
continual flux. Consequently, the same query made at different times may return different results.
Also, the results depend on the exact form of the queries. For instance, the area of the UK and
the area of the United Kingdom may return different data points, medians and/or ranges.

Since gort 4.0 is an interactive system it is only meaningful to give timing data for sub-
processes that are fully automated, such as queries to the sindice api. The subsequent calculations
made with the retrieved data are just simple arithmetic and are negligible compared to the retrieval
times. An initial call is made to sindice’s Search API. This, typically, takes an average of 2
seconds, and returns a list of up to 20 relevant records, which sindice caches. To complete its
get data queries, gort typically retrieves about 8 of these records, via sindice’s Cache API, each

8



Figure 1: The gort gui: The screenshot shows an intermediate stage in the solution of question
8 from Table 1. The left-hand margin contains buttons for each of the primary methods. The
centre contains a tree representing the current query. Each node represents a proof method whose
calculation, when complete, consists of the preferred value, the error interval and, for get data
method nodes, the rarity value expressed as the number of data points found. The right-hand
margin contains various commands and some example queries.

of which takes about 0.5 seconds. The complete retrieval procedure, therefore, typically takes
about 6 seconds. Queries involving query decomposition usually take longer because they require
a larger number of sindice calls. gort 4.0 is much slower than gort 3.0, because sindice is able
to access far more sources of data than sparql. Some sample complete sindice query timings
are summarised in Table 4.

3 Lessons Learnt

In this section we draw some lessons from the experience of automating guesstimation. We argue
that these are general lessons that apply to other applications of the Semantic Web, so should be
taken into account by the developers of these applications.

3.1 Lesson 1: Inference can Unleash the Semantic Web

The Text Retrieval Conferences (trec) (http://trec.nist.gov/) host a number of workshops,
each focusing on a different information retrieval (ir) research area. At each conference com-
petitions are run for information retrieval in each of these areas. The task in each competition
is, given some search term, to find just those online documents that are relevant to the search
term. Scores are based on recall and precision measures, i.e., the percentages of all and only
the relevant documents found. Note that information is merely retrieved in the form that it was
originally stored. There is no attempt to discover new information by old combining information
from different sources.

It used to be the case that the field of question answering did infer new information from old.
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ID Question
1 How many cars would we need for a bumper-to-bumper traffic jam from Edinburgh

to Glasgow? (assuming one-lane highway)
2 How many baths of water are there in Loch Ness?
3 How many buffalo equivalent of meat does a typical dog eat in his lifetime?
4 How much fuel per person is used flying a Boeing 767 from London to New York?
5 How many cups of water would it take to fill a double decker bus?
6 How much peak electricity could we generate if we covered the entire Sahara desert

with solar panels?
7 What proportion of the uk would need to be covered by solar panels to cover all

the uk’s electricity needs?
8 How much would it cost to meet all the uk’s electricity needs with solar panels?
9 What proportion of the uk would need to be covered by wind turbines to cover all

the uk’s electricity needs?
10 How many wind turbines would we need to cover the electricity needs of the uk?

Table 1: Questions used in evaluation of gort 4.0.

If the Wikipedia overview of this field (http://en.wikipedia.org/wiki/Question_answering)
is accurate, however, then it too has degenerated into document and fact retrieval. Even the much
celebrated ibm Watson system [Systems & Group, 2011] focuses only on fact retrieval (see §3.5.1).

Information retrieval systems mostly search over online documents written in natural language.
To enable inference on the information in these documents they need to be formalised, e.g., into
rdf triples or description logic. There are several projects that are attempting to do this on a
large scale, e.g., the KnowItAll Project [Etzioni et al, 2011], which claims to have automatically
constructed an ontology of six billion triples, with 90% accuracy, from online natural language
sources.

The Semantic Web consists of a huge number of formalised ontologies, using databases, tax-
onomies, rdf triples, description logics, etc. It thus has the potential to support inference to infer
new information from old. Most Semantic Web search engines, however, such as sindice, are
also restricted to fact retrieval5. Most inference systems are restricted to reason over individual
databases or ontologies, custom-built for a particular application.

Of course, it’s very useful to be able to access any of the information that other people know
and have stored online. How much more wonderful, though, to discover information that no one
knows, by combining known information from diverse sources in new ways. gort is one of several
systems that show that this is possible. Some similar systems are discussed in §3.5.

Some of gort’s discoveries are novel only because no one would seriously be interested in
knowing them, e.g., the number of cups of water needed to fill a double decker bus. But, as some
of the questions in Table 1 illustrate, guesstimation can also be used, for instance, to give ball-park
estimates of the environmental and financial impact of diverse solutions to the energy and climate
crises. As MacKay has argued, [MacKay, 2009], more widespread knowledge of these estimates
are essentially to better inform the debate. Indeed, Mackay’s book inspired us to tackle these
guesstimation problem.

3.2 Lesson 2: The Semantic Web does not Constrain the Inference
Mechanisms

rdf triples and the owl description logic are both w3c standards. Most ontologies on the
Semantic Web are formalised as databases or rdf and many of the rest in owl. This has created

5Data-mining is an exception in that it does try to discover new information by looking for patterns in old
information. The machine learning techniques used for data-mining are, however, outside the scope of the current
discussion.
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ID
Correct
Answer

gort 4.0
Answer

Range Comments

1 2.104m 2.104m [ 2.104m, 3.104m] Average car length is accurately guessti-
mated at 5m based on 9 data points,
which are given in a variety of units, none
explicitly defined.

2 4.1010 4.1010 [ 1.10−2, 7.1010] Wide range arises from Loch Ness related
products when guesstimating its volume.
Bathtub volume available in gallons and
litres, none explicitly defined.

3 5.10−1 5.10−1 [ 1.10−1, 5.105] Weight of the heaviest recorded buffalo
was retrieved. Average lifespans of dif-
ferent breeds of dogs are available. User
assumes a dog eats one portion of “dog
food” a day and inputs the number of
hours a day has.

4 1.103 1.103 [ 1.103, 2.103] Value directly unavailable, must decom-
pose into passenger capacity, fuel capac-
ity and range. Fuel capacity directly un-
available; must rely on manual discovery.

5 5.106 1.100 [ 1.10−1, 2.100] Cup volume directly unavailable; must
decompose into height and diameter. Bus
volume directly unavailable; must decom-
pose into width, height and length. Vol-
ume of toy double decker bus is retrieved.

Table 2: Evaluation results for gort 4.0. Part 1. The answers to the first five questions in
Table 1 are given together with correct answers, which were derived manually from a variety of
publicly available sources.

a presumption that inference over the Semantic Web will be conducted using a logic based on sql,
rdf or in owl. The gort Project illustrates, however, that this need not be the case. gort uses
second-order, SingSigDig Calculus proof methods §2.1.2 to reason about SingSigDig formulae
§2.1.1. These proof methods work by a second-order, rewriting process that would be very difficult,
if not impossible, to formalise in a description logic. This is despite the use of sindice to collect
the atomic facts in the form of rdf triples. What is going on?

gort mines the Semantic Web for the information it needs, curates that information and
then uses it dynamically to custom-build a local ontology tuned to the guesstimation problem it
is currently trying to solve. It takes this opportunity to reformalise the rdf into SingSigDig
Calculus format, so that it can be reasoned with by SingSigDig methods.

This solution is a general one. Developers of applications using the Semantic Web are free
to use whatever inference engine best suits their application. Standard web search engines can
be used to collect data in source formats. Dynamic curation §3.3 can then be used to create a
custom-built, domain-specific ontology in the target format.

3.3 Lesson 3: Curation must be Dynamic

The information stored in the Semantic Web is noisy. There is no central control over who enters
information into it and it would defeat its raison d’être to try to impose such control. Although
there are w3c representation standards, information be represented in a wide variety of formats.
Errors can occur due to carelessness, omission, ignorance, deliberate misinformation, etc. In
addition, errors may be introduced during the retrieval process.
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ID
Correct
Answer

gort 4.0
Answer

Range Comments

6 9.1014w 3.1013w [ 2.1013w, 2.1014w] The area of the Western Sahara only is
retrieved, leading to under-guesstimate.
Watts per area of a solar panel is not
directly available but is a little under-
guesstimated by decomposing into watts
and area, then area into width and height
from 7 data points.

7 2.10−3 1.10−2 [ 1.10−5, 2.10−1] Electricity consumption of uk under-
guesstimated at 2.1011w/yr from
10 data points with wide range
[2.108w/yr,3.1012w/yr] and no explicitly
defined units. Units guesstimated to be
Watts, Megawatts and kWh per year.

8 $9.1011 $2.1012 [ $1.109, $6.1013] Price per watt of solar panels not directly
available; decomposed into price and
wattage then a little under-guesstimated
at 10 $/w from 7 data points.

9 2.10−2 2.10−2 [ 4.10−6, 2.10−2] Value directly unavailable; must decom-
pose to the area of UK, the consumption
in UK, the occupied area of a wind tur-
bine and the production value of a wind
turbine. Production value of wind tur-
bines directly unavailable; must rely on
manual discovery.

10 2.106 2.106 [ 4.102, 2.106] Value directly unavailable; must decom-
pose to electricity consumption of UK
and the production value of a wind tur-
bine. Production value of wind turbines
directly unavailable; must rely on manual
discovery.

Table 3: Evaluation results for gort 4.0. Part 2. The answers to the second five questions
in Table 1 are given together with correct answers, which were derived manually from a variety of
publicly available sources.

By way of illustration, in a recent mini-project to detect errors in the automatically constructed
KnowItAll ontology [Etzioni et al, 2011], we discovered triples for the capital of Japan with the
following answers: Tokyo, Kyoto and Paris [Gkaniatsou et al, 2012]. “Tokyo” is the correct answer;
“Paris” came from a tutor on logic and exemplified a false assertion; “Kyoto” used to be the capital
of Japan but was curated to the present tense as a side effect of retrieval. In this case, “Tokyo”
was by far the most popular answer retrieved, so could be selected by taking the mode, giving a
reliable answer from noisy data. This was not always the case. Therefore, before it can be used,
information must be curated to remove errors, put it in a common format, etc. By static curation
I mean the pre-processing of the whole or a large part of the information stored in the Web to
construct an ontology that can then be used for retrieval, such as proposed in [Etzioni et al, 2011].
Static curation is unrealistic for several reasons.

• The Semantic Web is huge: in 2011, the Web of Linked Data was estimated at 32 billion
RDF triples6. Curating it all would be a mammoth under-taking and impossible without

6http://events.linkeddata.org/ldow2012/
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Subject Predicate Time
Automobile length 5.7 sec
Boeing 747 weight 2.9 sec
Cup volume 11.7 sec
Solar panel wattage per area 10.4 sec

Table 4: Some typical complete sindice query timings.

significant automated assistance.

• It is growing very fast: in 2011 The Web of Linked Data was estimated was estimated to
have doubled every year since it’s creation 7. It will be impossible to keep up with this
exponential growth. A (semi-)automated solution that just works in one year will fail in the
next.

• Curation is application-specific. There is no one curation fits all. In §3.3.2, we give an
example of this arising from our project.

The answer is to curate dynamically, i.e., selectively and on an as-needed basis for the current
application in an application-specific way. In §3.3.1, we outline how this was done in the gort
Project.

3.3.1 gort’s Dynamic Curation

gort forms a custom-built, locally-stored ontology for each question. Forming this local ontology
involves the following process, which includes different kinds of dynamic curation.

• The ontology is initialised with gort’s general-purpose proof methods, such as those outlined
in §2.1.2.

• The guesstimation problem is formalised as a goal to be proved and these proof methods are
applied to it in a top-down process to grow the proof as a tree, as illustrated in Figure 1.

• The leaves of this tree are factual queries to be solved by the get data or user input methods.
In the case of get data applications, sindice is used to retrieve the relevant facts and these
are subject to curation with the aim of augmenting the local ontology. Facts input via user
input are also curated and added to the ontology.

• Curation includes:

– normalisation into the SingSigDig Calculus;

– abstraction of some concrete subjects into generic ones; and

– augmentation with additional information.

– where, even after normalisation, sindice provides multiple different values, two forms
of averaging are used to construct one preferred value.

These forms of curation are further discussed in §3.3.2

When multiple values are returned by sindice gort must use them to construct a single
preferred value. Firstly, normalisation to the SingSigDig ensures that minor differences between
values disappear. If there is still a list of multiple values (duplicates included) after normalisation
then two kinds of averaging are attempted in turn: mode and median.

7http://www.readwriteweb.com/cloud/2011/01/the-concept-of-linked-data.php
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Mode: The mode is the number that appears most often in a list of numbers. If one value is
returned at least twice more often than the second most common value, then gort assumes
that this is the correct answer and that the other values are erroneous and can be ignored.

Median: Otherwise the preferred value is the median of the ordered list of returned values. The
median is the value that breaks this ordered list into two equal sized sub-lists. If the list has
an odd number of values then it will be the middle value; it has an even number then it will
be the arithmetic mean of the two middle values. The median is preferred over the arithmetic
or geometric mean because it undervalues outliers. One large outlier can disproportionately
skew either mean. Since outliers are quite likely to be erroneous, then it is better to use the
median.

3.3.2 Application-Specific Curation

As an example of application-specific curation from the gort Project, consider Table 5.

Subject Predicate Value
dbr:Dino automobile dbpp:length 166.25
dbr:Astra (1954 automobile) dbpp:length 114
dbr:Mercedes-Benz W201 dbpp:length 4420
dbr:Ford Taurus (third generation) dbpediaowl:length 5.0165
dbr:Xtra (automobile) dbpp:length 106

Table 5: Lengths of automobiles: The top 5 results from sindice context-sensitive search for
triples in format (∗, length,X) in documents found using the keyword “automobile”.

This table shows some of the information retrieved by sindice to answer the guesstimation
question “How many cars would we need for a bumper-to-bumper traffic jam from Edinburgh
to Glasgow?”. To answer this question it was necessary to guesstimate the length of a typical
car. This kind of generic information is rarely stored directly in the Semantic Web. What is
stored, however, is information on the length of particular makes and models of cars: indeed the
manufacturers are keen to supply this information on their web sites. To obtain this model-specific
information gort takes advantage of the context-sensitive search feature of sindice. Firstly, gort
chooses an appropriate context: automobile in this case. Then gort constructs the wild-card triple
(∗, length,X) and asks sindice to use this as a query in the automobile context.

So, the first step of application-specific curation necessary for gort to make use of this data
is abstraction: all the different car makes and models in the subject heading of Table 5 must
be abstracted to ‘automobile’. This abstraction is application specific because, for a different
problem, it might be important to preserve the details about make and model. Indeed, it might
be necessary to refine it, e.g., by distinguishing the different the years of manufacture of each
model.

Note that the various values in Table 5 are numbers without units. From the diversity of these
numbers it is clear that these lengths are expressed in different units, e.g., centimetres, feet, etc.
The unit used is implicit in the source ontology of the triple, e.g., a particular manufacturer might
always express distances in centimetres. The various numbers cannot be compared unless they
are translated into the same units, e.g., si units, which in this case is metres.

This kind of omission is commonplace in rdf triples. The triple format limits the amount of
information that can be recorded. This limitation could be overcome if compound entries were
normally permitted, e.g., a pair of number and unit, but compound entries are not normally
permitted. Alternatively, there is a standard translation of an n-ary relation into n + 1 triples:
rel(t1, . . . , tn) is represented as (rel0, arg1, t1), . . . , (rel0, argn, tn), where rel0 names this particular
n-ary relation and arg − i is the name of the ith argument of rel. This is the method used by
rdf Schema, but it has not been widely adopted. Ontologies specifically for describing units also
exist, for instance, [vanAssem et al, 2013], but they also are not widely known or used. gort has,
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therefore, been designed to cope when units are absent. In future work, we will explore the use of
unit ontologies, not only because this will reduce uncertainty, but also to encourage their use by
others.

To overcome the omission of units, we have employed a heuristic based on the ratios of the
numbers, especially between imperial and metric units. Note that the ratios between these units
is often unique, e.g., that between centimetres and feet. If we assume (as we do, see Assumption
1) that the normalised values of the length of the different car makes are equal, then we can often
work out what the units must be. Consider, Fig 2. The x-axis8 is a logarithmic scale representing

Figure 2: Clustered values for the length of a car

the car lengths returned by sindice, some of which are given in Table 5. gort scores a variety of
models against such clusters. For the values in Fig 2 the best fitting model is millimetres, inches
and metres. Converting all the numeric values according to this model and then taking the median
gives a typical car length in si units of 3.909 metres. The final stage of curation is to normalise
this value to 4.101 metres.

3.4 Lesson 4: Own up to Uncertainty

As discussed in §3.3, information retrieved from the Semantic Web is inherently noisy.
It is important that users of information retrieved from the Semantic Web know how much trust

to put in the answers. There is an obligation, therefore, to own up to the uncertainty in an answer
and to try to estimate how uncertain it is. In gort we decided to indicate uncertainty by providing
the range and diversity of values that sindice obtained for each fact and the consequences as these
facts were propagated by inference. The range and diversity were summarised in two ways:

• An interval is used to indicate the error bounds, i.e., the minimum and maximum values,
e.g., [2.108, 3.1012].

• A rarity value is used to indicate how many value instances were found.

Ideally, the same (hopefully correct) value will be found many times and no other values (presumed
erroneous) will be found. This ideal situation will be indicated by a high rarity value and an error
bound interval covering only one value, i.e., [n, n]. The wider the interval and the lower the rarity
value the more uncertain the preferred value is to be correct.

This is only a heuristic. For instance, when sindice was used find the diameter of a golf
ball, we got lots of values of 6.10−2, even through the correct answer is 4.10−2. This is because
sindice found lots of references to the diameter of golf ball light bulbs and none to real golf balls.
Never-the-less, the heuristic worked well in most cases.

Other ways of indicating uncertainty are, of course, possible. For instance, we also considered
trying to estimate a probability of correctness. We also thought of giving a distribution, e.g.,
a gaussian, of the values instead of just an interval in order to indicate which values were most
common. In the end we decided that the interval and rarity value provided the best balance
between explanatory content and understandability. Of course, this solution is geared to the
return of numerical values. For more qualitative values, the interval would not work, although the
rarity value would. We only advocate that some uncertainty indication be provided as a basis for
user trust.

8The y-axis is only used to separate the dots and has no significance.
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3.5 Related Work

In this section we compare gort with related systems on the dimensions of:

SW: Whether they retrieve information in a closed way by accessing only fixed, pre-stored knowl-
edge bases (7), or in an open way from the Semantic Web or similar open knowledge source
(4).

Inf: Whether they just retrieve information that is already represented in the knowledge source
(7), or are able to infer new knowledge not already represented (4).

Uncon: Whether they are constrained to the inference mechanisms provided for the formalism in
which their knowledge source is represented (7), or whether they employ additional inference
mechanisms, perhaps by translating the retrieved knowledge to a different formalism (4).

DynCur: Whether the knowledge not curated or is curated statically (off-line) (7), or whether
it is curated dynamically, as required for the current application (4).

Uncert: Whether some measure of the uncertainty is provided for the knowledge retrieved or
inferred (4), or not (7).

These dimensions are based directly on the four lessons which form the claims of this paper. Fol-
lowing the discussion of each related system, the results are summarised in Table 6. Unfortunately,
it is not possible to give a quantitative comparison, as no other system solves the same problems
as gort.

Given the huge number and variety of related systems we have restricted this discussion to
some of the foremost representatives of the principle classes of these systems.

ibm’s Watson: was chosen to represent the class of information-retrieval systems.

BotE-Solver: was chosen to represent the class of guesstimation systems.

QUARK: was chosen to represent the class of question-answering systems.

We believe that the conclusions reached for each representative system also broadly hold for the
class of systems that it is representing.

A comparison of some of the same related systems on four different dimensions can be found in
[Abourbih et al, 2010], which describes gort 2.0. This previous related work comparison includes
quark and the following four other systems:

Power-Aqua a Semantic Web-based question answering system [Lopez et al, 2008];

CS Aktive Space a system for tracking uk computer science research [Shadbolt et al, 2004];

Cyc a general-purpose ‘common-sense’ reasoning system [Lenat, 1995]; and

Wolfram—Alpha a system that calculates answers to numerical questions on a wide range of
topics9.

3.5.1 IBM’s Watson

Watson was originally built to compete in the US Jeopardy!
TM

competition, where three contes-
tants try to answer general knowledge questions and puzzles [Ferrucci, 2012]. It famously beat
the two best human players in a nationally televised Jeopardy! competition on 14th January 2011.
The underlying technology of Watson is now being applied to more practical challenges, e.g., in
health care.

Watson employs a very wide range of complementary natural language processing and infor-
mation retrieval techniques orchestrated by a massively-parallel architecture, called DeepQA, and

9http://www.wolframalpha.com/
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running on a large bank of high-performance servers. It generates many candidate answers for
each question and assigns each a score, which estimates the probability that this answer is correct.
It buzzes in and provides the highest scoring answer only if it exceeds a dynamically calculated
threshold. The rules of Jeopardy! preclude it from consulting external information sources, so its
knowledge is pre-stirred using a wide range of knowledge bases, i.e., it does not access any open
knowledge source, such as the Semantic Web, although it could probably be readily adapted to
do so. Watson does not currently reveal its degree of uncertainty in the answer, but it could be
easily adapted to do so, if this was appropriate for the application.

Only about 2% of the required answers to questions are found directly in a knowledge source.
So, Watson uses various forms of curation and inference to combine information from different
knowledge sources into the required answers. These inference mechanisms include type coercion,
geospatial and temporal constraints, rule-based reasoning, and statistical and machine learning
techniques, as well as specialised techniques for particular kinds of puzzles, puns and missing links
[Kalyanpur, 2012].

3.5.2 Back of the Envelope Reasoning

The BotE-Solver solves guesstimation problems using seven strategies [Paritosh & Forbus, 2005].
These strategies are based on:

Analogical reasoning: to transform solutions to previous problems into solutions to the current
one, and

Qualitative reasoning: to abstract exact values into order-of-magnitude approximations.

It uses the cyc knowledge base as a source of factual information [Lenat, 1995]. It has been
successfully tested on a corpus of 13 problems. Some of the BotE-Solver’s strategies are similar to
gort’s, e.g., its Mereology strategy is similar to gort’s total size in dividing an object into parts
and summing the attributes of each part. Other strategies are very different, e.g., its Similarity
strategy transforms an object into a similar one, say Australia into Switzerland as a way of
estimating population size.

The BotE-Solver is similar to gort in inferring new information from old and in being un-
constrained in its inference mechanisms. Since it uses a statically curated knowledge base, it does
not need to curate dynamically, as gort does. It does not take advantage of the Semantic Web
in retrieving information. Nor does it assign an uncertainty measure to its results. Instead, users
are recommended to solve each problem in multiple ways in order to estimate the robustness of
the results.

3.5.3 The quark Deductive Question Answerer

quark answers questions posed in English by combining knowledge from multiple sources [Waldinger
et al, 2004]. Although it embodies several novel features, for the purposes of this comparison with
related work, it can be regarded as typical of question-answering systems. It uses the gemini
English parser to translate the input questions into a logical form and then the snark theorem
prover to derive the required answer from pre-stored knowledge. It draws that knowledge from
a variety of third-party ontologies, which include: the Alexandria Digital Library Gazetteer, the
cia Factbook and various nasa sources. It also uses the ascs Semantic Web search engine, but
that appears only to be used to search the above ontologies and not to do unbounded searches
on the Semantic Web. Curation is used to translate between the formalisms of the various source
ontologies and the internal formalism used by snark. The forms of inference used by snark are
resolution, paramodulation and procedural attachment, which calls domain-specific procedures,
e.g., for numeric calculation, on certain goal types. Procedural attachment is also used by snark
to access the various third-party ontologies.

quark is similar to gort in inferring new information from old and in being unconstrained
in its inference mechanisms. Since it uses a statically curated ontologies, it does not need to
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curate dynamically, as gort does. It does not take advantage of the Semantic Web in retrieving
information. Nor does it assign an uncertainty measure to its results.

System SW Inf Uncon DynCur Uncert
Watson 7 4 4 4 4
BotE-Solver 7 4 4 7 7
quark 7 4 4 7 7
gort 4 4 4 4 4

Table 6: Related work summary:

4 Conclusion

In this paper we have argued that to make best use of the Semantic Web we must accommodate
the following four lessons:

1. Factoid retrieval only scratches the surface of what is possible. We want not just to retrieve
known information from the internet, but combine it in novels ways to infer previously
unknown information.

2. We can draw on a wide range of different inference mechanisms to infer this new informa-
tion. We need not be constrained to those inference mechanisms associated with the format
in which the retrieved information is stored, e.g., description logic decisions procedures.
The retrieved information can, instead, be curated into whatever format is required by our
preferred inference mechanism.

3. The curation of information must be dynamic, i.e., done at retrieval time in an application-
specific way. This is not only because the Semantic Web is too big and growing too fast for
static curation to be feasible. It is also because curation has to be application and inference
mechanism specific.

4. The Semantic Web is very noisy. A large amount of its content is inaccurate or downright
false. Uncertain results should not be presented to users as if their truth was guaranteed.
Some measure of their uncertainty must be calculated and made available to the user, so
they can judge how much faith to put into any decisions based on them. This may involve
trying to answer a question in independent ways and comparing the different answers.

We have illustrated these four lessons by describing the gort system, which we claim embodies
all four of them. We have contrasted it with rival approaches. Only ibm’s Watson provides a
comparable illustration.
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