
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editorial

Citation for published version:
Acar, UA, Cheney, J & Weirich, S 2012, 'Editorial: Special issue dedicated to ICFP 2010' Journal of
Functional Programming, vol. 22, pp. 379-381. DOI: 10.1017/S0956796812000287

Digital Object Identifier (DOI):
10.1017/S0956796812000287

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Functional Programming

Publisher Rights Statement:
Cambridge Journal Open Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0956796812000287
https://www.research.ed.ac.uk/portal/en/publications/editorial(144a644d-876a-4f06-b1c4-7c1b31381db1).html


Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Editorial

UMUT A. ACAR, JAMES CHENEY and STEPHANIE WEIRICH

Journal of Functional Programming / Volume 22 / Special Issue 4-5 / September 2012, pp 379 - 381
DOI: 10.1017/S0956796812000287, Published online: 15 August 2012

Link to this article: http://journals.cambridge.org/abstract_S0956796812000287

How to cite this article:
UMUT A. ACAR, JAMES CHENEY and STEPHANIE WEIRICH (2012). Editorial. Journal of
Functional Programming, 22, pp 379-381 doi:10.1017/S0956796812000287

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 129.215.224.11 on 11 Aug 2014



JFP 22 (4–5): 379–381, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000287

379

Editorial

Special issue dedicated to ICFP 2010

UMUT A. ACAR

Programming Languages and Systems Group, Max Planck Institute for Software Systems, Germany

(e-mail:)umut@mpi-sws.org)

JAMES CHENEY

Laboratory for Foundations of Computer Science, University of Edinburgh, Edinburgh, UK

(e-mail:)jcheney@inf.ed.ac.uk)

STEPHANIE WEIRICH

School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA

(e-mail:)sweirich@cis.upenn.edu)

The 15th ACM SIGPLAN International Conference on Functional Programming

(ICFP) took place on September 27–29, 2010 in Baltimore, Maryland. After the

conference, the programme committee, chaired by Stephanie Weirich, selected several

outstanding papers and invited their authors to submit to this special issue of

Journal of Functional Programming. Umut A. Acar and James Cheney acted as

editors for these submissions. This issue includes the seven accepted papers, each

of which provides substantial new material beyond the original conference version.

The selected papers reflect a consensus by the program committee that ICFP 2010

had a number of strong papers that link core functional programming ideas with

other areas, such as multicore, embedded systems, and data compression.

In “Lazy tree splitting,” Bergstrom et al. adapt a technique for parallelisation

called lazy binary splitting to a functional, nested data parallel language called

Parallel ML. A key advantage of this approach is that performance is robust, in that

good performance does not depend on tuning parameters such as block size. This

represents a significant contribution to the use of functional programming languages

for programming multicore architectures.

In “Fortifying macros,” Culpepper describes a new macro system for Scheme-like

languages. The approach allows the programmer to specify macros that generate

syntactic transformations and error-detecting codes, which help to discover and

report programming mistakes. In practice, the new system can reduce the need for

ad hoc validation and error-reporting code, improving the conciseness, robustness,

and maintainability of macros.

In “The impact of higher-order state and control effects on local relational

reasoning,” Dreyer, Neis, and Birkedal investigate the tradeoffs between the power

of the programming language and the properties that can be proved using local

relational reasoning. Their goal is to understand when two programs are equivalent,

to be used, for example, to reason about the correctness of program transformation.



380 U. A. Acar et al.

This paper applies the modern technique of step-indexed Kripke logical relations

to this old problem of reasoning about program equivalence in the presence of

expressive language constructs, such as recursive types, abstract types, general

references, and continuation objects. It also discusses how reasoning ability changes

under restrictions to the language, giving example properties that are true only if the

language lacks higher-order state or control effects such as throwing a continuation.

Although the mathematical machinery necessary for this work is highly technical,

much of the presentation is given in an informal, pedagogic style based on clean

“visual” proof sketches.

In “Every bit counts: the binary representation of types, data and programs,”

Kennedy and Vytiniotis propose question–answer games for binary encoding and

decoding of typed data and typed programs. This paper takes critical advantage of

types and functional programming to construct codes for λ-calculi, and proves that

codes derived from games never encode two distinct values using the same code. The

authors formalize relevant interesting properties of their proposed framework and

prove them using the Coq proof assistant. This paper originally appeared in ICFP

2010 as a pearl but has been extended significantly to include a full formalization

in Coq.

In “The Reduceron reconfigured and reevaluated,” Naylor and Runciman present

an approach to compilation from a lazy functional language to the Reduceron, a

Field-Programmable Gate Array (FPGA) implementation of a processor specifically

designed to implement graph reduction. A particular highlight of this paper is its

detailed comparison with other approaches to functional language implementation

on special-purpose hardware, including a direct comparison that shows that the

Reduceron (running at 96 MHz) offers an order of magnitude speedup compared

to compilation to a conventional, pipelined RISC architecture (running on the same

FPGA at 210 MHz), and is only four times slower than conventional compiled

code running at 3 GHz. These results are timely in that future developments in

computer architecture may rely upon increasing performance per clock cycle in

order to conserve energy.

In “A unified treatment of syntax with binders,” Poulliard and Pottier present

a new technique for programming with syntax involving bound names in Agda

or other dependently typed languages. The paper combines ideas from their

ICFP 2010 paper and Poulliard’s subsequent ICFP 2011 paper, which improved

and extended the first paper. A central idea is to index the types of terms

with worlds, which allows both nominal and de Bruijn implementations while

facilitating a proof of correctness for each approach using logical relations involving

renamings.

In “Systematic abstraction of abstract machines,” Van Horn and Might propose

a methodology for transforming abstract machines into sound abstract interpreta-

tions, making it possible to systematically develop static analyses for programming

languages. The process maps the abstract machine into a non-deterministic fine-

state transition systems by a series of refactorings that thread operations such as

variable look-up and continuation-retrieval through a finite store. The papers shows



Editorial 381

the effectiveness of the techniques by considering several abstract machines for

higher-order programming languages.

We thank the authors and referees of these papers for their efforts producing

and reviewing these papers within the strict time limits imposed by the special issue

publication constraints. We also gratefully acknowledge the support of the JFP

editors-in-chief and editorial office.


