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Abstract

Previous studies suggest that protective immunity against Schistosoma haematobium is primarily stimulated by antigens
from dying worms. Praziquantel treatment kills adult worms, boosting antigen exposure and protective antibody levels.
Current schistosomiasis control efforts use repeated mass drug administration (MDA) of praziquantel to reduce morbidity,
and may also reduce transmission. The long-term impact of MDA upon protective immunity, and subsequent effects on
infection dynamics, are not known. A stochastic individual-based model describing levels of S. haematobium worm burden,
egg output and protective parasite-specific antibody, which has previously been fitted to cross-sectional and short-term
post-treatment egg count and antibody patterns, was used to predict dynamics of measured egg output and antibody
during and after a 5-year MDA campaign. Different treatment schedules based on current World Health Organisation
recommendations as well as different assumptions about reductions in transmission were investigated. We found that
antibody levels were initially boosted by MDA, but declined below pre-intervention levels during or after MDA if protective
immunity was short-lived. Following cessation of MDA, our models predicted that measured egg counts could sometimes
overshoot pre-intervention levels, even if MDA had had no effect on transmission. With no reduction in transmission, this
overshoot occurred if protective immunity was short-lived. This implies that disease burden may temporarily increase
following discontinuation of treatment, even in the absence of any reduction in the overall transmission rate. If MDA was
additionally assumed to reduce transmission, a larger overshoot was seen across a wide range of parameter combinations,
including those with longer-lived protective immunity. MDA may reduce population levels of immunity to urogenital
schistosomiasis in the long-term (3–10 years), particularly if transmission is reduced. If MDA is stopped while S.
haematobium is still being transmitted, large rebounds (up to a doubling) in egg counts could occur.
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Introduction

Urogenital schistosomiasis (caused by the blood fluke Schisto-
soma haematobium) remains a prevalent tropical disease, infecting

over 100 million people in sub-Saharan Africa [1,2]. Recent

control efforts have focussed upon mass drug administration

(MDA) using the antihelminthic drug praziquantel [3,4], with the

principal aim of reducing morbidity, although MDA can

significantly reduce both population infection levels [5,6] and

transmission rates [5,7]. To maintain low infection levels

treatments must be repeatedly administered for an indefinite time

period [8,9].

MDA reduces infection levels directly through killing worms,

and indirectly through reducing transmission. Acquired immunity

enhances treatment efficacy, and influences subsequent infection

dynamics [10]. Previous modelling work, which assumed protec-

tive immunity was stimulated by live worms, suggested that

repeated population-level treatment would disrupt the develop-

ment of acquired immunity by removing the antigenic stimulus

[10,11]; if treatment ceased, then under some circumstances,

infection levels could ‘overshoot’ to exceed pre-treatment levels

[10].

Protective immunity to schistosomes appears to develop slowly,

with children in endemic areas experiencing repeated re-infection

while adults experience much lower levels of infection, even with

high exposure [12,13]. Infection intensity peaks at an earlier age in

areas with more intense transmission [14], and this is mirrored by

immune responses associated with protection [15], suggesting that
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protective immunity is related to cumulative exposure to infection

rather than age-related physiological factors. Earlier studies have

shown that age-related changes in reinfection rates are explained

by protective antibody levels [16], and that the development of

resistance is dependent upon exposure history [17]. Several studies

have demonstrated that praziquantel treatment boosts schisto-

some-specific antibody responses to S. mansoni and S. haemato-
bium [18–20], and accelerates isotypic changes which occur more

gradually with age [21,22]. Praziquantel kills adult worms,

enhancing serological recognition of S. haematobium antigens

[23]. Increased exposure to antigens released from dying worms is

thought to be responsible for stimulating these immunological

changes following praziquantel treatment. Several of the responses

boosted by praziquantel treatment, including IgE, IgG1, and

cytokines IL-4 and IL-5, have been associated with protection

against re-infection in other studies [16,20,24,25], and some

studies have shown that responses boosted by treatment are

associated with protection against re-infection in the same

population [26,27], suggesting that treatment enhances protective

immunity.

Recent mathematical modelling for S. haematobium showed

that post-treatment boosts in antibody responses associated with

protection are most consistent with protective antibody being

stimulated by dying worms and reducing worm fecundity [28].

This study suggested that if protective antibody were mainly

stimulated by antigens from other life stages (including cercariae,

live worms, or eggs) then a boost in antibody would not be seen

following treatment [28]. No models have previously looked at

long-term effects of MDA upon the dynamics of protective

immunity and measured egg output when such immunity is

stimulated by dying (rather than live) worms. While treatment is

expected to increase antigenic exposure and boost protective

immune responses in the short term through worm killing, a

period of reduced exposure to dying worms will follow the initial

reduction in worm burden since treatment causes worms to die

sooner than they naturally would. Exposure will be further

reduced if population-wide treatment reduces transmission rates,

decreasing re-infection. The long-term implications of mass

treatment for the development of protective immunity are not

fully clear [29].

Here, using a model with protective immunity stimulated by

antigens released from dying S. haematobium worms, we assess the

expected impact of MDA upon the development of acquired

immunity, and upon measured egg output, both during and after a

mass treatment campaign.

Methods

The model
We used a stochastic individual-based model which describes

changes in worm burden, egg output and a protective antibody

response with age for people living in an area with endemic

schistosome infection. This model has been fully described

previously [28]. Briefly, the model tracks the number of worms

an individual harbours between their birth and 34 years of age.

Individuals acquire new worms through contact with water

containing infective larvae. As suggested by field studies, rates of

water contact change with age [30] and vary between individuals

[31].The number of cercariae acquired per water contact is

independent of population infection levels and remains constant

over time (unless reduced transmission is assumed during MDA).

Note that transmission of parasites between humans and snail

intermediate hosts is not explicitly modelled. Acquired cercariae

develop into adult worms (with approximately Gaussian-distribut-

ed survival, following earlier modelling studies [32]), which

produce eggs. The number of eggs within the host is assumed to

be proportional to current worm burden but reduced by protective

antibody. It is also assumed that egg output per worm is constant

regardless of worm age. Measured egg output is calculated as the

average of three ‘samples’ drawn from a negative binomial

distribution around the number of within-host eggs. The

protective antibody response is relatively long-lived (decay rate

of 0.008–0.8 year21, equivalent to a half-life of 10 months–87

years), as suggested by earlier model fitting [28]; no direct

estimates are available for the longevity of protective immunity

against schistosome parasites in humans, but these estimates fall

between the decay rates estimated for antibody responses to other

pathogens [33], and for memory B cells [34]. Protective antibody

is stimulated by antigens from dying worms and reduces worm

fecundity, as suggested by previous comparison of model output

with field data [28], and as demonstrated for the leading

schistosome vaccine candidate, a 28 kDa glutathione S-transferase

[35]. Most of the models used here include an ‘antigen threshold’,

a level of cumulative antigen exposure which must be exceeded

before a protective antibody response is mounted, as suggested by

previous model fitting, but we include models without an antigen

threshold which have also been found to fit the data [28].

Model parameterization and fitting
In earlier work, this model was parameterised using data from

studies in Zimbabwe and elsewhere, and fitted to population data

on pre- and post-treatment S. haematobium egg counts and specific

antibody responses from several rural sites in Zimbabwe with

endemic infection [28]. A grid-search of parameter space was

performed to identify parameter combinations which were

consistent with field data, varying the following parameters

simultaneously: mean population infection rate, worm life span,

antibody strength, immune response decay rate, and antigen

threshold level. This grid-search was repeated, varying each of the

following parameters separately: aggregation of contacts, rate of

Author Summary

Urogenital schistosomiasis, caused by schistosome blood
flukes, infects more than 100 million people in sub-Saharan
Africa. Current control efforts involve regularly treating all
school-aged children with the drug praziquantel, which
kills schistosome worms. Earlier work by our group
suggests that protective immunity against schistosomes
is mainly stimulated by dying worms, and that in the short
term, praziquantel treatment boosts immunity through
killing worms. The longer-term impact upon the develop-
ment of protective immunity is unknown. In this paper, we
used a mathematical model which was able to replicate
short-term patterns of infection and antibody to predict
the long-term changes in antibody and infection levels
that would occur during and after a 5-year treatment
programme. We found that the longevity of protective
immunity was particularly influential. Short-lived protec-
tive immunity was associated with levels of protective
antibody declining below pre-treatment levels in the long
term, and also with an increase in measured infection
levels (eggs in urine) to peak above pre-treatment levels
after the treatment programme finished. Antibody de-
clines and infection peaks post-treatment were also
predicted if treatment programmes reduced schistosome
transmission. These results highlight the possible negative
consequences of ceasing mass treatment programmes
once they have commenced.
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changing contact rate, aggregation of acquired cercariae, number

of eggs per worm, and aggregation of egg output. Parameter

combinations from all of these grid-searches which were able to

reproduce cross-sectional egg output and antibody patterns and

short-term post-treatment egg output and antibody dynamics were

used in the current analysis to estimate the long-term impact of

treatment.

Population structure
A population of 175 individuals was simulated, with 5

individuals in each yearly age group from 1 to 34 years old at

the time of the baseline survey. Individuals were simulated up to

their respective ages before the initial baseline egg count and

antibody levels were recorded and the first round of treatment

applied. Individuals were then simulated for a further 15 years

after this initial survey, during and after MDA (see next section for

treatment schedules). When individuals reached the age of 34, they

were replaced by 1 day old infants with no worms or antibody, to

maintain a constant population size.

Treatment schedules
Six treatment schedules were used which vary treatment

frequency, target population, coverage and reduction in transmis-

sion (table 1). For the standard treatment schedule (schedule 1),

treatment was given to school-aged children, defined as those aged

6–15 years old, as recommended by the WHO and implemented

by the Schistosomiasis Control Initiative (SCI) [3,4]. Treatment

was applied annually for five years (five treatments in total).

Annual treatment is advised for, and used in, high-prevalence

communities [3,4]. In the standard treatment schedule, coverage

was assumed to be 75%, in line with WHO targets and achieved

coverage in several countries [3,36,37], and it was assumed that

treatment did not affect transmission.

In each of the other treatment schedules, one parameter was

changed from the standard schedule (table 1). In schedule 2,

biennial treatment (i.e. treatment every two years) was given over a

five year period (three treatments in total). Biennial treatment is

advised for, and used in, areas with moderate prevalence [3,4].

Schedule 3 had 90% treatment coverage (as achieved in some

countries [38,39]). In schedule 4, the whole population over the

age of 5 was treated, as recommended and implemented for high

risk populations [3,4]. In schedules 5 and 6, it was assumed that

treatment reduced transmission by 100% or 50% respectively. For

simplicity, treatment was assumed to reduce transmission as a step

change to a fixed level, from the day after the first treatment up

until one year after the final treatment, when transmission

returned to its original level.

For all treatment schedules (1–6), treatment was applied over a

five year period and each treatment was applied the day after egg

counts and antibody levels were recorded. Treatment was applied

randomly across the eligible population at the required coverage

level (75% or 90%) at each round of treatment, meaning that an

individual’s chance of being treated in each round was indepen-

dent of whether they had been treated in previous rounds.

Treatment was assumed to be given independently of worm

burden or egg output, in line with the usual MDA strategy of

giving treatment to all school-aged children [3]. For all schedules,

a treatment efficacy of 90% was assumed (90% of worms were

killed), which gave reductions in egg output of 87–98%, in line

with field studies [40].

Analysis
For each parameter set, 200 repeat simulations of the whole

population were run, and mean levels of egg output and antibody

for the whole population aged 6–34 years old were calculated pre-

treatment and at yearly intervals during and after the simulated

treatment regime, averaged over the 200 repeat simulations. This

age range was used in order to capture the changes in egg counts

and antibody levels in treated individuals as they aged over the

long follow-up period. Egg output and antibody dynamics were

studied to see how quickly they returned to pre-treatment levels.

The conditions (parameter values or treatment schedules) under

which protective antibody levels fell below pre-treatment levels or

egg counts overshot pre-treatment levels were identified.

Results

Standard treatment schedule (schedule 1)
Importance of immune decay rate and worm life

span. We found that protective antibody dynamics were mainly

determined by immune decay rate and worm life span – this is

illustrated with selected parameter sets which reflect the general

patterns seen (exceptions are noted in the section on overshoots in

egg output). Figure 1 shows how levels of antibody and egg output

varied with immune decay rate for the same worm life span (6.5

years). Protective antibody always increased after the initial round

of treatment, with the greatest relative boost, and greatest

subsequent drop, seen with the most rapid immune decay rate

(figure 1a; note that this figure shows relative changes in antibody

levels. Actual antibody levels are shown for comparison in

supplementary figure S1a). With rapid immune decay, antibody

levels peaked one year after treatment began and declined during

subsequent treatment rounds whereas models with slower immune

decay saw progressive increases in antibody levels over five years of

treatment (figure 1a). For most parameter sets, little difference was

Table 1. Treatment schedules used.

Schedule description Treatment frequency Target population Treatment coverage Effect on transmission

1 Standard Annual Schoolchildren (6–15 years old) 75% None

2 Biennial Biennial Schoolchildren (6–15 years old) 75% None

3 90% coverage Annual Schoolchildren (6–15 years old) 90% None

4 Treat all aged 6–34 years old Annual Schoolchildren and adults
(6–34 years old)

75% None

5 100% transmission reduction Annual Schoolchildren (6–15 years old) 75% 100% reduction

6 50% transmission reduction Annual Schoolchildren (6–15 years old) 75% 50% reduction

doi:10.1371/journal.pntd.0003059.t001

Impact of Treatment on Anti-Schistosome Immunity
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seen in egg output for different immune decay rates (figure 1b,

figure S1b). Levels of egg output fell and then plateaued over the

five rounds of treatment, and then returned to pre-treatment levels

after treatment ceased, over a similar timescale for all immune

decay rates (figure 1b).

Figure 2 shows how levels of antibody and egg output varied

with parasite life span for the same level of immune decay (0.8

year21). Models with a longer parasite life span showed both a

higher boost and a more substantial drop in antibody levels than

those with shorter parasite life span (figure 2a; similar results are

seen for less rapid immune decay, figure S2a,c). Antibody levels

dropped below pre-treatment levels before the fifth round of

treatment if immune decay was rapid (0.8 year21) and worm life

span was short (3 years) (figure 2a). Egg output levels were reduced

to a lesser extent, and returned to pre-treatment levels earlier, with

progressively shorter worm life span (figure 2b, figure S2b,d).

Overshoots in egg output. For the standard treatment

schedule (which assumes no reduction in transmission during

MDA), some parameter combinations were identified which gave

rise to overshoots in measured egg output after MDA ceased

Figure 1. Dynamics of protective antibody and egg output during and after treatment, by immune decay rate. Results are shown for
the situation where there is no reduction in transmission. Treatment was applied at yearly intervals for 5 years to school-aged children (6–15 years
old) with 75% coverage. Treatment was applied the day after surveys marked *. (a) Antibody levels and (b) egg output are shown relative to pre-
treatment levels for selected parameter sets which reproduced cross-sectional and post-treatment patterns in previous analyses. Results are shown
separately for parameter sets with different rates of immune decay: 0.008, 0.08 and 0.8 year21; for all parameter sets, worm life span is 6.5 years.
doi:10.1371/journal.pntd.0003059.g001

Figure 2. Dynamics of protective antibody and egg output during and after treatment, by worm life span. Results are shown for the
situation where there is no reduction in transmission. Treatment was applied at yearly intervals for 5 years to school-aged children (6–15 years old)
with 75% coverage. Treatment was applied the day after surveys marked *. (a) Antibody levels and (b) egg output are shown relative to pre-treatment
levels for selected parameter sets which reproduced cross-sectional and post-treatment patterns in previous analyses. Results are shown separately
for parameter sets with different mean parasite life span: 3, 6.5 and 10 years; for all parameter sets, the immune decay rate is 0.8 year21.
doi:10.1371/journal.pntd.0003059.g002

Impact of Treatment on Anti-Schistosome Immunity
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(figure 3). The overshoots were identified by eye from plots, but

were found to correspond to particular parameter values. For

models without an antigen threshold, all of these parameter

combinations had rapid immune decay (0.8 year21); for models

with an antigen threshold, the parameter combinations all had

rapid immune decay (0.8 year21), a low antigen threshold (25

antigen units) and moderate antibody strength (0.256 units per

plasma cell). Of all the unique parameter sets explored, 11/293

parameter sets for models including an antigen threshold, and 4/

12 without an antigen threshold, gave rise to an infection

overshoot. Models without an antigen threshold predicted higher

overshoots (.70% above pre-treatment levels) than models which

included an antigen threshold (where overshoots were around 14–

23%; figure 3).

Treatment schedules 2 to 4 varying treatment frequency,
coverage and targeting

The impacts of separately varying the frequency of treatment

and the coverage and age-range of the target population

(treatment schedules 2–4) are shown for single parameter

combinations (figure 4), but demonstrate trends seen for all

parameter sets. Results are shown for one parameter set that did

and one that did not give an overshoot in egg output for treatment

schedule 1.

With biennial treatment (schedule 2), protective antibody

declined and egg output increased following non-treatment years,

but their levels approached those seen with annual treatment

(schedule 1) one year after each treatment (figure 4). The

overshoot in egg output was less pronounced for biennial versus

yearly treatment (figure 4d). Changing the level of coverage of the

school-aged population (90% coverage (schedule 3) vs.75%

(schedule 1)) made little difference; it gave a slightly greater

increase in antibody and greater reduction in egg output during

treatment, and a slightly more pronounced overshoot in egg

output (figure 4). Treating both adults and children (aged 6–34

years old, schedule 4) rather than just school-aged children (6–15

years old, schedule 1) gave a much larger antibody boost and

greater reduction in egg output during the treatment programme

and greater overshoot in egg output (figure 4).

Treatment schedules 5 and 6 – Reduction of transmission
The effects of assuming that transmission is reduced during

MDA are shown for one parameter set (figure 5), but these trends

were seen for all of the parameter sets examined. If 100%

reduction in (i.e. no) transmission was assumed during MDA

(schedule 5), protective antibody always fell below pre-treatment

levels at some point, before treatment ceased if there was rapid

immune decay (0.8 year21; figure 5a). Egg output was always

reduced to below 5% of pre-treatment levels after five treatment

rounds and overshoots in egg output were always predicted

(figure 5b). Higher infection rates gave rise to higher and earlier

overshoots in egg output (data not shown). With 50% transmission

reduction (schedule 6), antibody levels always dropped below pre-

treatment levels, but more slowly and to a lesser extent than when

100% reduction in transmission was assumed (figure 5a), and for

most parameter sets, egg output was still predicted to overshoot

pre-treatment levels, to a lesser extent than with 100% reduction

in transmission (figure 5b).

Discussion

Several MDA programs for schistosomiasis are currently

underway in Africa [41]. While their immediate impact on

infection and morbidity in affected individuals is unequivocal, their

long-term effects on infection dynamics are not yet fully

understood. Our models predict that population levels of S.
haematobium infection will be substantially reduced by repeated

MDA, while levels of protective antibody will be initially boosted

by treatment, in agreement with patterns seen in the field. We

predict that, in the long-term, levels of antibody could fall below

pre-treatment levels after or even during MDA. More rapid

declines in protective antibody levels are predicted with more

rapid immune decay, shorter worm life span or reduced

transmission. After the initial increased exposure to dying worms

that treatment brings about, the reduced worm burden leads to a

subsequent reduction in exposure to dying worms, leaving

antibody levels strongly influenced by immune decay rates.

Reduced transmission further reduces antigen exposure. Baseline

antigenic exposure rates are expected to be lower in models with a

longer worm life span, and so the reduced antigenic exposure

following treatment will have a more rapid effect in models with

short worm life span, leading to more rapid declines in antibody.

We found that measured egg output could rebound to levels

exceeding pre-treatment levels after cessation of MDA. Our

finding that this was very likely to happen if treatment temporarily

reduced transmission confirms findings from earlier work using

different models [10]. Importantly, we found that it could also

occur in the absence of any reduction in transmission, and was

more likely to occur if the immune response decayed rapidly. The

fact that, without reduced transmission, a rebound in infection

only happened for a restricted set of parameters, highlights how

important it is to estimate these parameters to improve the

accuracy of model predictions. The rate of decay of protective

immunity is particularly important. Some studies (mainly on S.
mansoni) suggest that schistosome-specific antibody levels may

Figure 3. Dynamics of egg output during and after treatment
when an overshoot in egg output occurs. Results are shown for
the situation where there is no reduction in transmission, individually
for only those parameter combinations where an overshoot in egg
output levels is seen after treatment stops. Results are distinguished for
models which include an antigen threshold (solid lines; n = 11) and
models which do not (dot-dashed lines; n = 4). The shaded area shows
the 95% credible interval for all parameter sets in which no overshoot in
egg output is seen (n = 290). For all parameter sets, the immune decay
rate is 0.8 year21. For models including an antigen threshold, antibody
strength is 0.256 per plasma cell and the antigen threshold is 25 antigen
units.
doi:10.1371/journal.pntd.0003059.g003
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PLOS Neglected Tropical Diseases | www.plosntds.org 5 July 2014 | Volume 8 | Issue 7 | e3059



decline below pre-treatment levels following an initial boost,

behaviour predicted for medium- or short-lived antibody respons-

es in our model [42,43], but this is not always seen and more

accurate estimates are required.

Our results suggests that MDA might disrupt the build-up of

protective immunity (or may disrupt existing immunity) against

schistosomes, despite short-term boosting of this protective

response. Interestingly, a reduction in antibody levels below pre-

treatment levels during MDA did not necessarily correspond with

overshooting of egg output after treatment ceased. It should be

noted that, even when overshoots in egg output occur after

treatment stops, the overall impact of the intervention on egg

output (taking the overshoots into account) may still be positive;

the reductions in egg output during the control programme may

be sufficient to offset the increases seen after treatment stops.

We found that increasing the coverage of treatment of school

children from 75% to 90% only increased population antibody

levels and decreased measured infection levels by a very small

amount. The random allocation of treatment at each round meant

that even at 75% coverage, the chances of an individual never

being treated over the five rounds of treatment were very small,

which may account for the comparatively small coverage effect.

Two previous modelling studies looking at S. haematobium in

Ghana [8] and S. japonicum in China [44] also found little

difference in long-term infection dynamics between biennial and

annual treatment. However, other modelling studies have

Figure 4. Dynamics of protective antibody and egg output under different treatment regimes. Results are shown for the situation where
there is no reduction in transmission. Results are shown for (a,c) antibody and (b,d) egg output, for two different parameter combinations. Treatment
was applied over a five-year period, with treatment frequency, coverage and targeting in the following combinations: blue diamonds - standard;
yellow squares - biennial treatment; pink triangles - 90% coverage; green circles - treatment of 6–34 year olds. Treatment was applied the day after
surveys marked * for all except biennial treatment, where treatment was applied the day after surveys 0, 2 and 4.
doi:10.1371/journal.pntd.0003059.g004

Impact of Treatment on Anti-Schistosome Immunity
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suggested different impacts of biennial versus annual treatment

[9,45]. Treating the whole population rather than just school-aged

children gave a more pronounced boost to population-level protective

antibody and a greater reduction in egg output during MDA, but

meant that any overshooting of egg output after treatment ceased

became more pronounced, suggesting that infection rebounds could

be more serious following more intensive control efforts.

Previous modelling studies which considered the effects of

acquired immunity on the impact of MDA suggest that the

strength and duration of protective immune responses play an

important role in determining infection dynamics [10], which was

also found here. Our results suggest that, without any reduction in

transmission post-treatment, an overshoot in measured infection

levels after treatment stops is most likely to occur with relatively

rapid immune decay rates (half-life of 10 months); in contrast,

Chan et al. (1996) [10] reported overshoots with slow immune

decay rates (half-life of 7 years), and not with more rapid decay.

This discrepancy may arise because they compensated for slow

immune decay rates with higher infection rates [10]. In the current

analysis, when treatment was assumed to reduce transmission,

higher infection rates gave rise to more pronounced overshoots in

egg output.

Our results support the long-term maintenance and monitoring

of existing MDA programmes, to ensure that treatment continues

while transmission is still ongoing. In addition to MDA, other

measures to reduce transmission should also be strengthened,

including the provision of safe water and sanitation facilities, and

good health education [46–48].

In conclusion, our models predict that, with protective immune

responses stimulated by dying S. haematobium worms, repeated

MDA will boost protective immunity initially, but antibody levels

could decline below pre-treatment levels during or after MDA. In

some circumstances, we also predict that post-MDA egg output

could exceed pre-intervention levels. Field data are not currently

available to test these predictions, but they have been made using a

calibrated model which reproduces robust patterns seen in short-

term pre- and post-treatment studies of S. haematobium infection

[28]. While MDA programmes have had substantial impact upon

schistosomiasis infection levels, this analysis highlights the potential

negative consequences of ceasing a mass treatment programme.

Supporting Information

Figure S1 Dynamics of protective antibody and egg
output during and after treatment, by immune decay
rate: Absolute values. The results from figure 1 are shown

using absolute, rather than relative, values. (a) Antibody levels and

(b) egg output are shown for selected parameter sets with different

rates of immune decay: 0.008, 0.08 and 0.8 year21; for all

parameter sets, worm life span is 6.5 years.

(TIF)

Figure S2 Dynamics of protective antibody and egg
output during and after treatment, by worm life span,
for different immune decay rates. Similar results to figure 2

are shown for lower immune decay rates. (a,c) Antibody levels and

(b,d) egg output are shown relative to pre-treatment levels for

selected parameter sets which reproduced cross-sectional and post-

treatment patterns in previous analyses. Results are shown

separately for parameter sets with different mean parasite life

span: 3, 6.5 and 10 years; the immune decay rate is (a,b) 0.08

year21, (c,d) 0.008 year21.

(TIF)
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Figure 5. Dynamics of protective antibody and egg output during and after treatment, for different transmission assumptions.
Treatment was applied at yearly intervals for 5 years to school-aged children (6–15 years old) with 75% coverage. Treatment was applied the day after
surveys marked *. (a) Antibody levels and (b) egg output are shown relative to pre-treatment levels for one selected parameter set which reproduced
cross-sectional and post-treatment patterns in previous analyses. Results are shown with 0, 50 or 100% transmission reduction assumed during MDA
and for 1 year post-treatment. For this parameter set, the immune decay rate is 0.8 year21 and worm life span is 6.5 years.
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