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ABSTRACT

ATRX and MeCP2 belong to an expanding group of
chromatin-associated proteins implicated in human
neurodevelopmental disorders, although their gene-
regulatory activities are not fully resolved. Loss of
ATRX prevents full repression of an imprinted gene
network in the postnatal brain and in this study
we address the mechanistic aspects of this regula-
tion. We show that ATRX binds many imprinted do-
mains individually but that transient co-localization
between imprinted domains in the nuclei of neu-
rons does not require ATRX. We demonstrate that
MeCP2 is required for ATRX recruitment and that de-
ficiency of either ATRX or MeCP2 causes decreased
frequency of long-range chromatin interactions as-
sociated with altered nucleosome density at CTCF-
binding sites and reduced CTCF occupancy. These
findings indicate that MeCP2 and ATRX regulate gene
expression at a subset of imprinted domains by main-
taining a nucleosome configuration conducive to
CTCF binding and to the maintenance of higher order
chromatin structure.

INTRODUCTION

ATRX is a chromatin remodeling protein with key func-
tions in brain development and tumor suppression (1,2).
Inherited mutations in the ATRX gene cause ATR-X
syndrome, a severe intellectual disability disorder (3–5).
The ATRX protein contains an N-terminal ADD domain
that promotes heterochromatin binding and a C-terminal
SWI/SNF domain that confers translocase and chromatin

remodeling activities (6–12). It is targeted to specific ge-
nomic regions via other chromatin-bound proteins or spe-
cific histone modifications (10,13,14). Genome-wide stud-
ies have shown that ATRX is enriched at GC-rich and
repetitive sequences including telomeres, many of which are
predicted to form secondary deoxyribonucleic acid (DNA)
structures called G-quadruplexes (15–17). ATRX has im-
portant functions in dividing cells, influencing processes like
meiosis, mitosis, and DNA replication (17–21). Disruption
of these activities may contribute to microcephaly and other
developmental abnormalities associated with ATR-X syn-
drome.

ATRX deficiency alters gene transcript levels in both di-
viding and non-dividing cells (22). In the testes, ATRX was
demonstrated to interact with the androgen receptor to reg-
ulate RhoX5 gene expression (23). However, the molecular
mechanisms that underlie transcriptional control by ATRX
in other tissues has not been addressed. ATRX interacts
with several chromatin proteins including death domain as-
sociated protein (DAXX), heterochromatin associated pro-
tein 1 (HP1) and methyl-CpG binding protein 2 (MeCP2).
MeCP2 targets ATRX to pericentromeric heterochromatin
in the mouse central nervous system (13,24). In humans,
mutations in the MeCP2 gene cause Rett syndrome, a pro-
gressive neurodevelopmental disorder characterized by de-
velopmental regression beginning at 6–18 months of age
(25). The timeline of Rett syndrome etiology has been at-
tributed to the level of MeCP2 protein in the brain, which
is low in the embryonic period and increases progressively
after birth (25). We previously reported that ATRX and
MeCP2 proteins bind the maternal allele of the H19 im-
printing control region (H19 ICR), and that loss of ATRX
prevented the repression of maternal H19 transcription, as
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well as other co-regulated imprinted genes in the postnatal
brain (24).

The present study addresses the molecular mechanism
that could explain ATRX-mediated repression of imprinted
genes in the neonatal brain. Our findings reveal that ATRX
binds to differentially methylated regions (DMRs) includ-
ing imprinting control regions (ICRs) at many imprinted
domains. MeCP2 is required for ATRX binding, and loss
of ATRX or MeCP2 results in increased nucleosome occu-
pancy over CCCTC-binding factor (CTCF) binding sites.
This failure to maintain an extended linker region neces-
sary for stable CTCF binding explains reduced CTCF bind-
ing and the altered long-range chromatin interactions and
gene expression at two imprinted regions, H19/Igf2 and
Dlk1/Gtl2. We propose a model where ATRX and MeCP2
cooperate to control nucleosome positioning at specific
CTCF binding sites, thus enabling local chromatin looping
configurations and repression of imprinted gene expression
in the neonatal brain.

MATERIALS AND METHODS

Animal husbandry

The Atrx gene was conditionally deleted in the mouse fore-
brain as previously described (26). The AtrxloxP line was
provided by D. Higgs and R. Gibbons (Weatherall Institute
of Molecular Medicine, John Radcliffe Hospital, Oxford,
UK). For allele-specific expression studies, pups were ob-
tained by mating 129Sv female mice with Mus musculus cas-
taneus males (CAST; The Jackson Laboratory). MeCP2null

mice were generated by crossing MeCP2loxP females (Jack-
son Laboratories Stock #007177) with a ubiquitous Cre line
driven by the EIIa promoter (Jackson Laboratories Stock
#003724). Animal studies were conducted in compliance
with the regulations of The Animals for Research Act of the
province of Ontario, the guidelines of the Canadian Council
on Animal Care, and the policies and procedures approved
by the University of Western Ontario Council on Animal
Care.

Circular chromosome conformation capture (4C)

The 4C protocol was based on that previously reported
by Gheldof et al. (27). Briefly, following 3C library prepa-
ration, DNA was digested with MseI (NEB) overnight at
37◦C. The enzyme was deactivated for 25 min in 1.3%
Sodium dodecyl sulfate (SDS) at 65◦C and DNA recov-
ered by standard phenol/chloroform extraction. Digestion
efficiency was confirmed to be ≥96% by real-time PCR
across five sites throughout the genome. DNA was resus-
pended in 7 ml ligation buffer with 50 U T4 DNA lig-
ase (Roche Diagnostics) and 1 �M adenosine triphosphate
(ATP) and incubated at 16◦C for 5 days. DNA was puri-
fied by phenol/chloroform extraction and amplified with
the Expand Long Template PCR system (Roche Diagnos-
tics) and site-specific primers. PCR products were resolved
on a 1% agarose gel, and extracted in three aliquots using
a QIAquick gel extraction kit (Qiagen); undigested band,
<230 and >230 bp. The >230 bp fraction was sheared enzy-
matically using the Ion Shear Plus Reagents, and then com-
bined with the <230 bp fraction and 1/6th of the undigested

self-ligation fragment before barcoding with the Ion Xpress
Barcode Adapters 1–16 kit. Sequencing was performed us-
ing the Ion Torrent Personal Genome Machine (Life Tech-
nologies) with 318 chips and 200 bp sequencing chemistry
according to manufacturer’s protocols.

Ion Torrent sequence reads were aligned by TMAP Suite
3.2.1. A library of mouse genome EcoRI fragments was
generated and the number of unique reads that mapped
to each interval calculated. Because the ratio of reads in
any interval to the total was very small, standard statisti-
cal techniques were used to construct a robust estimator
of the underlying proportions (28). Specifically, underlying
proportions were estimated using a multinomial-Poisson
model in a Bayesian context using a minimally-informative
reference prior (29,30). Because fold-change is the usual
measure of effect-size, all expectations were taken with re-
spect to log2-proportions (31). For compatibility with the
UCSC genome browser, the expected log2-proportions were
mapped back to linear-space and multiplied by an arbitrary
integer-scaling factor. Strongly positive interactions are de-
fined by the top 10% of interacting sites. 4C data sets have
been deposited in GEO DataSets.

Chromosome conformation capture (3C)

3C libraries were prepared essentially as previously de-
scribed (32), with the same controls. Samples that lacked
either the EcoRI or T4 DNA ligase enzymes were prepared
in parallel. Digestion efficiency was confirmed to be ≥96%
by real-time PCR across five sites spanning the H19/Igf2
domain. Library amplification and quantification was con-
ducted as described previously (32), with the same controls.
Briefly, PCR reactions, primers and probes were optimized
on a library of randomly ligated BAC DNA containing the
H19/Igf2 domain and XPB. All primer combinations am-
plified in linear correlation with the amount of BAC DNA
and within 2 Cts. 3C data was corrected to primer efficiency
and calculated relative to XPB/ERCC3 amplification (33).
3C templates obtained from P0.5 ATRX-null and littermate
control forebrains were amplified in duplicate with Taq-
man Universal PCR Master Mix (Applied Biosystems) on
a Chromo-4 thermocycler (BioRad) as per manufacturer’s
instructions. A negative bait site located approximately 100
kb downstream of H19 was also used, to confirm specificity
of ICR interactions.

DNA FISH and immunofluorescence microscopy

Neonatal brains were fixed overnight in 4% paraformalde-
hyde (Sigma-Aldrich), equilibrated in 30% sucrose–
phosphate buffered saline (PBS), frozen in O.C.T. (Tissue
Tek) and sectioned at 8 �m. Antigen retrieval was
performed using 0.3% sodium citrate (Sigma-Aldrich)
for 1 h. Slides were dehydrated in an ethanol series of
70% for 2 min, 90% for 2 min, and 100% for 5 min,
followed by denaturation in 70% formamide/2× SSC
for 5 min at 65◦C. Slides were again dehydrated as de-
scribed above and then incubated with 0.05 �g of DIG
and/or biotin-labeled probe/hybridization buffer [83%
formamide (Sigma-Aldrich), 3.3× SSC (Sigma-Aldrich),
0.02 �M dextran sulfate and 30 �g salmon sperm DNA
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(Sigma-Aldrich)] overnight at 37◦C in a humidified
chamber. Probes were prepared by nick translation
of BAC DNA (H19/Igf2:RP23-50N22, Gapdh:RP23-
319C23, Peg10/Sgce: RP23-327D3, Dcn:RP23228L10,
Slc38a4:RP23-304B5, Grb10:RP23-298L21, Dlk1:RP23-
385B6, Zac1:RP23-259L24, Mest:RP23-269K7) using
the Biotin and DIG-Nick Translation Kits (Roche Diag-
nostics) and purified using the High Pure PCR Product
Purification Kit (Roche Diagnostics) as per manufacturer’s
instructions. Slides were washed in 50% formamide/2×
SSC for 2× 5 min and 2× SSC for 2× 5 min. Sections
were incubated with the primary antibody for 1 h at room
temperature, washed for 15 min in PBS and incubated
with the secondary antibody for 1 h. Sections were coun-
terstained with 4’,6-diamidino-2-phenylindole (DAPI)
(Sigma-Aldrich; D9542) and mounted in Slowfade Gold
Antifade Reagent (Invitrogen). The primary antibodies
used were as follows: anti-ATRX H-300 (1:250; Santa Cruz
Biotechnology), anti-DIG (1:100; Roche Diagnostics) and
anti-Biotin (1:500; Abcam). Secondary antibodies used
were as follows: goat anti-rabbit Alexa 594 (1:800; Invit-
rogen) and goat anti-mouse Alexa 488 (1:800; Invitrogen).
Images were taken at 0.3 �m intervals across the 8 �m
section using the Olympus FV1000 confocal microscope
and FV10-ASW 2.1 image acquisition software (Olympus).
Volocity software (PerkinElmer) was used to compile 3D
images and distances were measured using Volocity 3D
measurement tools. For co-localization analysis, FISH
signals with a center-to-center distance of <1 �m were
considered to be interacting (34).

ChIP analysis

Chromatin immunoprecipitation (ChIP) was conducted as
previously described (24) with anti-ATRX (H300; Santa
Cruz Catalog #sc-15408), anti-CTCF (Cell Signaling Cata-
log #2899), anti-H3.3 (Millipore Catalog #17-10245) and
anti-H2A (Cell Signaling Catalog #2578). DNA–antigen
complexes were retrieved by incubation with protein A
agarose beads (Cell Signaling). Quantification was con-
ducted as previously described (24).

ChIP-sequencing analysis

Raw sequencing data for ATRX embryonic stem cell ChIP-
sequencing was downloaded from the NCBI Sequence Read
Archive (accession number: GSE22162), and aligned to the
mouse genome using Bowtie version 0.12.8 in the −n align-
ment mode. During alignment duplicate sequences were re-
moved, up to three mismatches were allowed, and reads that
aligned to more than one location were discarded. Genome-
wide data tracks were generated using custom Perl scripts to
extend reads to their fragment lengths and normalized to 20
million reads. Data was visualized in the UCSC Genome
Browser.

Nucleosome density analysis

Neonatal mouse forebrain was dissected, rinsed in 37◦C
Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-
Aldrich) and passed through a 70-�m cell strainer (BD Fal-
con) to ensure single cell suspension. The cell suspension

was incubated at 37◦C for 30 min to equilibrate. Cells were
fixed in 1% formaldehyde (Sigma-Aldrich) for 5 min and
rinsed three times with cold PBS containing protease in-
hibitors (Roche Diagnostics). Cells were resuspended in ly-
sis buffer [0.34 M sucrose, 60 mM KCl, 15 mM Tris–HCl, 15
mM NaCl, 0.5% NP-40 and 1× protease inhibitors (Sigma-
Aldrich)] and flash-frozen and thawed three times, nuclei
were centrifuged and resuspended in micrococcal nuclease
digestion buffer (NEB). Micrococcal nuclease (2 U; NEB)
was added and incubated at 37◦C for 5 min, then quenched
with EDTA. Cells were lysed with 1% SDS and cross-links
reversed by incubation at 65◦C for 5 h, followed by RNAse
and PK digestion and phenol/chloroform extraction. DNA
was subsequently digested with McrBC enzyme (NEB) for
2 h at 37◦C. DNA was amplified in duplicate with iQTM

SYBR R© Green master mix (BioRad) on a Chromo-4 ther-
mocycler (MJ Research) using the following conditions: 35
cycles of 95◦C for 30 s, 57.5◦C for 30 s, and 72◦C for 1 min.
Quantification was achieved using the Ct method of quan-
tification and normalized to amplification of Gapdh and
Beta-actin.

RESULTS

ATRX does not influence the co-localization of imprinted do-
mains in the nuclei of neurons

The H19 ICR that regulates imprinting at the H19/Igf2
domain was previously reported to interact with other im-
printed domains located on other chromosomes (34,35) in
a process requiring the CTCF chromatin organizer (34,35).
Given that in the mouse brain, ATRX is required to achieve
normal CTCF occupancy at the H19 ICR (24), we pro-
ceeded to investigate whether ATRX co-regulates the im-
printed gene network by promoting interchromosomal in-
teractions. We examined the pattern of chromatin fiber in-
teractions mediated by the H19 ICR using circular chro-
mosome conformation capture with sequencing (4C-seq),
a chromosome conformation capture (3C)-based technique
that identifies genome-wide interactions in vivo from a single
bait sequence (reviewed in (36)). 3C libraries were generated
from neonatal (P0.5) forebrains with an EcoRI digestion.
Following a second restriction digest with MseI, genomic
fragments were self-ligated to form circular recombined
molecules. PCR amplification was performed with primers
directed from the H19 ICR ‘bait sequence’ across interact-
ing fragments and sequenced using Ion Torrent technol-
ogy to provide an unbiased representation of genome-wide
interactions. 4C analysis was conducted in two biological
replicates and revealed that the H19 ICR makes many con-
tacts in the mouse forebrain. We identified 1951 and 2450
interactions in replicates 1 and 2, respectively. Among these
sites we identified 20 interchromosomal (trans) and 29 in-
trachromosomal (cis) regions that were common between
the two replicates (Figure 1a and b, and Supplementary
Table S1). The large majority of intrachromosomal con-
tact sites occur within a 1 Mb distance from the H19 ICR
(28/29 sites), with 11 interactions occurring within 50 kb
of the bait. Local contacts include the Ins2, Igf2os and
Igf2 genes, Igf2 differentially methylated region 1 (DMR1),
matrix-attachment region 3 (MAR3), centrally conserved
domain (CCD) and the H19 promoter (Figure 1c and d).
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Figure 1. 4C-sequencing analysis of chromosome interactions of the H19 ICR bait sequence in neonatal mouse forebrain. (a) 3C libraries were gener-
ated from neonatal forebrain utilizing EcoRI, then re-digested with MseI and self-ligated to form circular 3C recombined molecules. The samples were
then amplified with primers directed from the H19 ICR ‘bait sequence’ across the interacting fragments and sequenced. Venn diagrams show the number
of common sequences between 4C-seq biological replicates. Interactions of the H19 ICR in trans are represented on the left and interactions in cis are
represented on the right. (b) Analysis of genomic distribution of H19 ICR interacting fragments on each chromosome reveals that the majority of repro-
ducible interactions occur within chromosome 7 while trans interactions are distributed across the genome. (c) Representative 4C interaction profile across
chromosome 7 (top) and the H19/Igf2 imprinted domain (bottom). Local interactions are observe with the Igf2 DMR1, MAR3, CCD and downstream
enhancers. The 4C-seq data was aligned to an EcoRI digested genome and the H19 ICR bait sequence is highlighted in yellow.

These regions were previously reported to interact with the
H19 ICR in other cell types, validating our approach and
confirming that very similar chromatin loops are formed in
the neonatal forebrain (37–41). The imprinted genes regu-
lated by ATRX were not included in the list of most robust
interactions with the H19 ICR bait. However, analysis of
the data after binning sequences into 1 Mb intervals (Sup-
plementary Figure S1a) showed interactions within 1 or 2
Mb of imprinted genes including Grb10, Dlk1, Gtl2, Zac1
and Mest. Genomic intervals that include other imprinted
gene network members also showed some enrichment, but
failed to reach our threshold. The observation that inter-
actions occur across a broad region surrounding imprinted
genes, as opposed to specific restriction fragments, might re-
flect the dynamic nature of these interactions and transient
co-localization of this network of imprinted genes.

Given that 4C data sets represent a snapshot of the
combined chromatin interactions of millions of cells, we
also examined the localization of H19/Igf2 and other im-
printed domains in single brain cells in vivo. 3D-DNA fluo-
rescent in-situ hybridization (FISH) of neonatal forebrain
cryosections showed that imprinted genes exhibiting in-

creased expression in the ATRX-null forebrain (Slc38a4,
Grb10, Dlk1, Dcn, Zac1, Mest and Peg10/Sgce) co-localize
with H19/Igf2 in neocortical cells with the exception
of Peg10/Sgce (Supplementary Figure S1c and d). The
co-localization frequencies are characteristic of transient
events and are consistent with previously reported co-
localization data (34). Importantly, no significant differ-
ences in the frequency of co-localization were detected in
the absence of ATRX by DNA-FISH (Supplementary Fig-
ure S1d). These results indicate that imprinted domains co-
localize transiently in cells of the mouse forebrain, but that
these interactions do not require the ATRX protein.

ATRX is required to maintain long-range chromatin interac-
tions at the H19/Igf2 imprinted domain

In addition to the H19 ICR, ATRX binds a DMR found
in the Gtl2/Dlk1 imprinted region (24), and we wondered
whether ATRX might directly bind each affected imprinted
domain. To address this question, we analyzed ATRX
ChIP-sequencing data previously obtained from embryonic
stem cells (15). Analysis of the data revealed that ATRX
indeed binds to many imprinted domains and that several
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binding sites overlap known DMRs and ICRs (Figure 2a).
We were able to confirm that ATRX occupies the same ge-
nomic sites in the mouse forebrain by ChIP qPCR at Zac1,
Sgce/Peg10, Cdkn1c, Mest, Grb10, Ndn and Nnat (Fig-
ure 2a).

The localization of ATRX at individual imprinted do-
mains suggested that it might act in cis to regulate gene
expression, rather than promoting the spatial proximity of
imprinted domains in the nucleus. Furthermore, reduced
occupancy of CTCF at the H19 ICR in the ATRX-null
forebrain might cause changes in chromatin looping at the
H19/Igf2 domain, which is known to affect gene expres-
sion. To address this possibility, we used quantitative chro-
mosome conformation capture (3C) analysis, with primer
design guided by the results of the 4C experiment. The ap-
proach included an EcoRI primary digestion, which divides
the 140 kb H19/Igf2 region into 45 fragments stretching
from the Ins gene to the H19 enhancers (Supplementary
Figure S2a). We designed a forward primer and Taqman
probe to the H19 ICR (EcoRI restriction fragment used as
bait), and 32 reverse primers in other EcoRI fragments cov-
ering negative intergenic regions as well as key genomic el-
ements identified by 4C. Confirmation of interaction fre-
quencies at a subset of sites was obtained by designing a
second primer at the other end of the restriction fragment.
To verify that our 3C experiments yield reliable data, we
first tested the approach using neonatal liver. The results
were comparable to those obtained by Qiu et al. (42) and to
the interaction profile that we next generated using neonatal
forebrain (Supplementary Figure S2b). As a negative con-
trol, we also designed a bait sequence located 100 kb down-
stream of the H19 ICR, and this bait did not interact across
the H19/Igf2 region (Supplementary Figure S2b). We ob-
served minimal or no interaction with a number of other
sites (A, C, D, G, J, M, N, O, P, R, S), substantiating the
specificity of the identified interactions. We then repeated
the 3C analysis in control and ATRX null neonatal fore-
brain tissue isolated from littermate-matched pups. In fore-
brains lacking ATRX protein, we detected fewer interac-
tions across the H19/Igf2 domain, with significant reduc-
tions specifically at the Igf2 DMR1 (region E/F: P = 0.001
and 0.0003), MAR3 (region I: P = 0.0052 and 0.0038),
CCD (region L: P = 0.0001 and 0.0001) and the endoder-
mal enhancer (region Q: P = 0.0004 and 0.0105) (Figure
2b). Conversely, interactions with Ins2 (region B), the inter-
genic site between MAR3 and the CCD (region K) and the
region downstream of the H19 enhancers (region T) were
not affected (Figure 2b). Importantly, the observed changes
in interaction frequencies parallel the maternal-specific ef-
fects caused by CTCF deficiency in other cell types (40). For
a subset of samples, expression analysis was performed in
tandem with the 3C experiments to verify that gene expres-
sion and chromatin interaction frequencies were altered in
the same samples (Supplementary Figure S2c and d).

ATRX regulates nucleosome positioning at CTCF binding
sites

The repression of imprinted genes by ATRX is temporally
regulated (24). To further explore this we first wanted to es-
tablish the state of ATRX and CTCF binding at the H19

ICR before and after birth in the brain. ChIP analysis of
ATRX shows that it does not bind to the H19 ICR at E13.5,
but does occupy this site at P0.5, indicating that ATRX is re-
cruited to the H19 ICR in the late gestational/neonatal pe-
riod (Figure 3a and b). CTCF is bound to the ICR at E13.5
and P0.5 (Figure 3c) but in the ATRX-null samples, CTCF
binding is undisturbed at E13.5, but significantly reduced
at P0.5 (Figure 3d), corresponding to the recruitment of
ATRX. This suggests that CTCF binding is independent of
ATRX in the embryonic brain, but requires ATRX at a later
stage. However, the mechanism by which ATRX regulates
chromatin architecture and CTCF binding is still unclear
and we hypothesized that ATRX stabilizes CTCF binding
to chromatin. It was previously proposed that ATRX tar-
gets tandem repeat sequences that form G-quadruplexes,
and that ATRX helps to deposit histone H3.3, at least at
telomeres and pericentromeric heterochromatin (9,15,43).
Based on these reports, we investigated whether these mech-
anisms contribute to ATRX-mediated CTCF occupancy
at the H19 ICR. Imprinted domains are enriched for tan-
dem repeats, but analysis of the H19/Igf2 region revealed
that repeat sequences are located outside of the H19 ICR
and cannot explain ATRX targeting to this site (44). Ad-
ditionally, the H19 ICR sequence is not particularly GC-
rich and is not predicted to form G-quadruplexes (45). Sur-
prisingly, ChIP of H3.3 in neonatal forebrains showed that
ATRX-deficiency induces a small increase in H3.3 within
the H19 ICR, in contrast to the decreased enrichment seen
at ATRX-deficient telomeres (43) (Supplementary Figure
S3a). However, a parallel ChIP of histone H2A yielded sim-
ilar results, suggesting that elevated H3.3 ChIP signal at the
ICR is not caused by increased H3.3 deposition, but rather
might reflect differences in nucleosome occupancy (Supple-
mentary Figure S3b).

CTCF binds within an extended linker region between
nucleosomes (46,47) and in vitro studies showed that irreg-
ular placement of a nucleosome within a CTCF binding
site prevents the association of CTCF with that region (48).
We thus speculated that ATRX, using its ATP-dependent
chromatin remodeling activities, might regulate the position
of nucleosomes at the maternal H19 ICR, perhaps creat-
ing a larger linker region to facilitate CTCF binding. Be-
cause ATRX and CTCF bind the maternal allele of the
H19 ICR, we devised a strategy to test allele-specific nucle-
osome occupancy. Chromatin from control and ATRX-null
forebrains was digested with micrococcal nuclease and then
with McrBC, an enzyme that degrades methylated DNA
and should eliminate the highly methylated paternal H19
ICR (Figure 3e). The allele-specificity of this assay was
validated using brain samples obtained from 129Sv/CAST
polymorphic mice that have sequence differences between
the paternal and maternal alleles (Figure 3f). Using this
approach, we were able to compare nucleosome protec-
tion of the maternal H19 ICR in control and ATRX de-
ficient neonatal forebrains. In the ATRX-null samples, we
observed increased nucleosome protection in the region of
the maternal ICR corresponding to the ATRX-dependent
CTCF-bound area (primer pairs B and C, Figure 4g). In
the absence of ATRX, abnormal nucleosome placement is
predicted to impede CTCF binding, providing a mecha-

 by guest on A
ugust 4, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2014, Vol. 42, No. 13 8361

Figure 2. 3C analysis of control and ATRX-deficient neonatal forebrain shows that ATRX is required for long-range chromosomal interactions mediated
by the H19 ICR. (a) Analysis of ATRX ChIP-sequencing data in mouse embryonic stem cells (15) shows ATRX occupancy at several imprinted domains
(left panels, UCSC views). ATRX enrichment at these sites in neonatal mouse forebrain was confirmed by ChIP, as shown in the graphs on the left (n
= 3, error bars represent SEM, p = peak, adj = adjacent). (b) Schematic representation of the H19/Igf2 genomic region, the position of EcoRI sites
(gray vertical lines) and the primers used for 3C analysis (black arrows). Gray boxes represent the position of genes and black boxes demarcate regulatory
elements. Numbers indicate the relative nucleotide position from the start of the H19 ICR. The H19 ICR bait sequence is highlighted in yellow. 3C analysis
was performed with the H19 ICR bait and primers across the H19/Igf2 domain in control and ATRX-null forebrains (n = 5 littermate pairs) and was
quantified by PCR with a forward primer (red arrow), Taqman probe to the H19 ICR (asterisk), and reverse primers. Graphed data represents the mean
fold change of interaction frequencies, and error bars depict SEM. A two-tailed t-test was used to assess significance. *P < 0.05, **P < 0.01, ***P <

0.0001.

nistic explanation for aberrant chromosomal looping and
H19/Igf2 gene expression.

MeCP2 is required for ATRX recruitment and chromatin
looping at H19/Igf2

One question remaining was the reason for ATRX recruit-
ment to the H19 ICR specifically after birth in the brain.
MeCP2 was a prime candidate for promoting ATRX bind-
ing because it associates directly with the ATRX protein

(13) and it co-localizes with ATRX at the H19 ICR and Gtl2
DMR in the neonatal brain (24). Furthermore, MeCP2 is
required in neurons for the localization of ATRX at DAPI-
rich heterochromatin bundles in the nucleus (49,50). To test
whether MeCP2 is required for ATRX binding to the ICR,
we performed ChIP for ATRX in control and MeCP2-null
forebrain. Whereas ATRX was present at the H19 ICR in
control brains, it was not detected at this site in the absence
of MeCP2 (Figure 4a and b), providing the first evidence

 by guest on A
ugust 4, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


8362 Nucleic Acids Research, 2014, Vol. 42, No. 13

Figure 3. ATRX regulates nucleosome occupancy and CTCF binding at the H19 ICR. (a) Schematic representation of the H19 ICR and alignment of
primers used for ChIP-qPCR (top) and nucleosome occupancy analysis (bottom). Gray boxes indicate the positions of CTCF binding sites and a red box
marks the ATRX-binding site. Numbers indicate the relative position from the start of the H19 ICR. (b) ChIP of ATRX in E13.5 and P0.5 forebrains shows
binding of ATRX in the middle portion of the H19 ICR (H19-3) at P0.5, as observed previously, but not at E13.5, indicating that ATRX is recruited to the
H19 ICR in the late embryonic/neonatal brain. (c) CTCF ChIP at E13.5 and P0.5 shows binding of CTCF at both time points at previously identified areas
of occupancy (H19-2 and H19-4). (d) ChIP of CTCF in control and ATRX-null forebrain tissue at E13.5 and P0.5 reveals that ATRX binding is required for
CTCF binding at P0.5, but not at E13.5. Graphs in (b), (c) and (d) represent mean values, n = 3 for each and error bars depict SEM. (e) Diagram depicting
the methodology used for allele-specific micrococcal nuclease digestion. Empty circles indicate unmethylated CpGs and black circles indicate methylated
CpGs. (f) Validation of allele-specificity of nucleosome occupancy protocol, in which the methylated paternal H19 ICR sequence is digested by McrBC. In
F1 polymorphic 129Sv (maternal)/castaneous (paternal) forebrain samples, MfeI digests 129Sv maternal DNA and McrBC digests methylated paternal
DNA. Following digestion, DNA was amplified using primers spanning the MfeI restriction site. (g) qPCR of micrococcal nuclease and McrBC-digested
DNA reveals increased protection at the 5′ end of the maternal H19 ICR in the ATRX-null samples. A significant increase in nucleosome occupancy was
observed at regions B (P = 0.016) and C (P = 0.05) of the H19 ICR and a significant decrease at adjacent site G (P = 0.001). Graph shows mean fold
change and statistical analysis was performed by a two-tailed t-test (n = 3, errors bars depict SEM). *P < 0.05.

that MeCP2 is required to recruit ATRX at specific genomic
sites other than pericentromeric heterochromatin, at least at
early stages of postnatal brain development.

If MeCP2 is in fact required for ATRX binding, we pre-
dicted that its absence should cause defects similar to those
seen in the absence of ATRX. We conducted allele-specific
nucleosome occupancy analysis in control and MeCP2-null
forebrains and observed a similar pattern of altered DNA

protection at sites B and C of the H19 ICR, and interest-
ingly found that nucleosome placement is also affected at
the 3′ portion of the H19 ICR (sites I and J) (Figure 4c).
We also observed that CTCF binding is significantly re-
duced in the MeCP2-null neonatal forebrain (Figure 4d) at
the H19 ICR. Finally, 3C analysis detected a significant de-
crease in chromatin interactions mediated by the H19 ICR
in MeCP2-null forebrains. Loss of MeCP2 resulted in re-
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Figure 4. MeCP2 is required for ATRX and CTCF binding to the H19 ICR and the long-range chromatin interactions across the H19/Igf2 domain. (a)
ATRX ChIP was performed in control and MeCP2null neonatal forebrain and shows that MeCP2 is required for ATRX occupancy at the H19 ICR. The
graph shows mean fold change value (n = 4) and error bars depict SEM. (b) Diagram of the H19 ICR and location of the H19-1 and H19-3 primer pairs
used in the ChIP-qPCR in (a). (c) Allelic nucleosome digestion assay of the H19 ICR was performed in control and MeCP2null forebrains and reveals
increased protection at the 5′ end of the maternal H19 ICR in the MeCP2null neonatal forebrain. A significant increase in nucleosome occupancy was
observed within regions B and I (P = 0.042) of the H19 ICR and a significant decrease at site E (P = 0.05). Graphs depict mean fold change and statistical
analysis was performed by a two-tailed t-test (n = 3, errors bars depict SEM). *P < 0.05. (d) CTCF ChIP at the 5′ end of the H19 ICR (H19-2) shows
decreased CTCF occupancy at this site in the MeCP2null neonatal forebrain. The graph shows mean fold change value (n = 3) and error bar depicts SEM.
(e) Schematic representation of the H19/Igf2 genomic region, the position of EcoRI sites (gray vertical lines) and the primers used for 3C analysis (black
arrows). Gray boxes represent the position of genes and black boxes demarcate regulatory elements. Numbers indicate the relative nucleotide position from
the start of the H19 ICR. The H19 ICR bait sequence is highlighted in yellow. 3C analysis was performed with the H19 ICR bait and primers across the
H19/Igf2 domain in control and MeCP2null forebrains (n = 3 littermate pairs) and was quantified by PCR with a forward primer (red arrow), Taqman
probe to the H19 ICR (asterisk), and reverse primers. Graphed data represents the mean fold change of interaction frequencies, and error bars depict SEM.
A two-tailed t-test was used to assess significance. *P < 0.05, **P < 0.01, ***P < 0.0001.

duced interaction frequencies between the H19 ICR (bait)
and the Igf2 DMR1, MAR3, CCD, as well as with the en-
dodermal enhancer, similar to the results obtained in the
ATRX-deficient brain (Figure 4e). Decreased interactions
were also observed with Ins2, and the intergenic regions K
and N (Figure 4e), showing that loss of MeCP2 affects in-
teractions over a larger genomic region compared to loss of

ATRX. These results show that MeCP2 can regulate chro-
matin structure at the H19/Igf2 imprinted domains in the
brain at an early perinatal period, and part of this regulation
involves the recruitment of the ATRX chromatin remodel-
ing protein to the H19 ICR.
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ATRX and MeCP2 control nucleosome positioning and chro-
matin structure at the Gtl2/Dlk1 imprinted domain

We next wanted to investigate whether this mechanism of
gene regulation is restricted to the H19 ICR or occurs at
other imprinted genes. Given that ATRX localizes with
MeCP2 at the Gtl2 DMR within the Gtl2/Dlk1 domain, and
controls CTCF binding at this site (24), we chose this im-
printed region to test whether the loss of ATRX or MeCP2
would have similar effects. We first designed a 4C-seq as-
say to identify interactions mediated by the Gtl2 DMR.
The approach involved an EcoRI primary digestion and a
DpnII secondary digestion. 4C-seq libraries were prepared
in two biological replicates and amplified with primers di-
rected from the Gtl2 DMR bait sequence across unknown
interacting sites. We identified 1191 and 2830 interactions
in replicates 1 and 2, respectively. Among these were 39 in-
terchromosomal and 27 intrachromosomal sites (Figure 5a
and b, and Supplementary Table S2). We validated chro-
matin fiber interactions mediated by the Gtl2 DMR by de-
signing a forward primer and Taqman probe to the Gtl2
DMR bait (Figure 5c). A previous study used 3C to iden-
tify interactions of the Gtl2 intergenic DMR, and suggested
that these sites could represent regulatory regions (51). We
designed 22 reverse primers at sites identified in the 4C anal-
ysis, as well as potential regulatory elements and a number
of randomly chosen fragments throughout the domain. The
results demonstrate that the Gtl2 DMR forms a number of
specific contacts across this very large (∼1 Mb) imprinted
domain, including the Dlk1 gene (regions F and G), inter-
genic DMR (region N), and many intergenic sites (regions
B, D, I, L, P, T and U) (Figure 5d and e). The loss of either
ATRX or MeCP2 significantly reduced chromatin interac-
tion frequencies at specific sites, including the Dlk1 gene (re-
gion F: ATRX P = 0.05, MeCP2 P = 0.0001; region G:
ATRX P = 0.05, MeCP2 P = 0.0011), and intergenic sites
(region D: ATRX P = 0.0451, MeCP2 P = 0.0003; region
I: ATRX P = 0.07, MeCP2 P = 0.043; region L: MeCP2 P
= 0.0013; region T: ATRX P = 0.0.009; region U: MeCP2
P = 0.0057). Interactions with the intergenic DMR were
not significantly affected by the loss of ATRX or MeCP2
(region N). Furthermore, allele-specific nucleosome analy-
sis revealed that loss of MeCP2 or ATRX caused a signif-
icant increase in nucleosome occupancy at the Gtl2 DMR
CTCF biding site (Figure 5f), suggesting that abnormal nu-
cleosome placement may impede CTCF at the Gtl2 DMR.
Together, these data suggest that MeCP2 recruits ATRX to
control local nucleosome positioning, CTCF binding and
chromatin architecture at multiple imprinted domains.

DISCUSSION

ATRX and MeCP2 are key chromatin regulators implicated
in ATR-X and Rett syndromes, respectively. Loss of func-
tion of ATRX or MeCP2 in the mouse brain causes alter-
ations in gene expression (22,52); however, understanding
the molecular mechanisms involved has been challenging.
To address this question, we focused on imprinted genes,
which we had previously demonstrated to be altered in the
ATRX deficient brain. An emerging theory proposes that a
subset of imprinted genes are jointly regulated in a cell-type
specific network (24,34,35,53–55). In the nervous system,

this sort of coordinated control of gene expression might
be necessary during cellular differentiation and/or neuronal
maturation, and could be facilitated by close subnuclear
proximity or even direct allelic interactions. CTCF can me-
diate the co-localization of this gene network in spermato-
gonia, but not in liver and ES cells, suggesting that network
control is cell-type specific (35). We now extend these stud-
ies and show that neuronal imprinted gene network (IGN)
members indeed come into close proximity in neurons but
that these transchromosomal interactions occur indepen-
dently of ATRX. Rather, we show that ATRX binds directly
to each imprinted domain and mediates intrachromosomal
interactions and controls gene expression at each domain
in parallel. Interestingly, we find that interchromosomal in-
teractions do not occur with specific genomic elements, but
are enriched in areas surrounding imprinted genes. This re-
sult suggests that these interactions are not functional, but
rather consequences of co-localization within the nucleus,
perhaps at transcription factories. A recent study reported
that Hi-C analysis in single cells shows consistent local in-
teractions between cells, but that interchromosomal interac-
tions are highly variable (56). As such, single cell analysis is
necessary to provide further insights into interchromosomal
interactions of the H19 ICR.

Our findings suggest a multi-step mechanism beginning
with ATRX recruitment by MeCP2 in the post-neurogenic
phase to repress gene expression (Figure 6). Upon bind-
ing to the DNA, ATRX repositions nucleosomes to create
an extended linker region required for CTCF binding. In
view of recent work showing that cohesin and CTCF enable
higher-order chromatin looping within imprinted domains,
and that ATRX alters CTCF and cohesin dynamics at these
sites (24,37–40,57,58), a logical prediction was that the loss
of ATRX would disrupt chromatin looping. We confirmed
that this is indeed the case at H19/Igf2 and Gtl2/Dlk1.
At H19/Igf2, we report that loss of ATRX or MeCP2 re-
sulted in reduced H19 ICR chromatin interactions with
the DMR1, MAR3, CCD and enhancer sequences. The
disruptions in chromatin folding we observed (formation
of an ICR-DMR1-MAR3 complex) parallel the maternal-
specific effects following loss of CTCF (40). Unfortunately,
it is not possible to confirm allele-specific effects by 3C in
our system, as we are not able to obtain surviving poly-
morphic F1 ATRX-null mice (24). Nevertheless, a maternal
allele-specific effect on chromatin interactions is corrobo-
rated by our previous study showing that ATRX, MeCP2,
CTCF and cohesin bind specifically to the maternal H19
ICR, and that loss of ATRX affects the levels of mater-
nal, but not paternal H19 transcripts in the neonatal fore-
brain (24). Furthermore, we show that ATRX or MeCP2
deficiency affects nucleosome occupancy on the maternal
allele. It is unlikely that our observations are caused by al-
tered cell populations, as these are minimal at birth. ATRX
and MeCP2 bind directly to the H19 ICR and Gtl2 DMR,
and at least at H19, the process of transcription or tran-
scripts themselves do not affect chromatin looping (41). A
reduction of chromatin contacts in the absence of ATRX
or MeCP2 might increase gene expression in various ways.
One scenario is that altered chromatin configurations ex-
pose the gene promoter to enhancers, or positions the gene
at a greater distance from repressive elements. A full under-
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Figure 5. ATRX and MeCP2 regulate nucleosome positioning and long-range chromatin interactions mediated by the Gtl2 DMR. (a) 4C-sequencing
analysis using the Gtl2 DMR as bait was performed in wild-type neonatal forebrains. Venn diagrams show the number of common sequences between 4C-
seq biological replicates. Interactions of the Gtl2 DMR in trans are represented on the left and interactions in cis are represented on the right. (b) Analysis
of genomic distribution of Gtl2 DMR-interacting fragments on each chromosome reveals that the majority of reproducible interactions occur within
chromosome 12 while trans interactions are distributed across the genome, with a noted enrichment on the sex chromosomes. (c) Schematic representation
of the Gtl2/Dlk1 genomic region, the position of EcoRI sites (black vertical lines) and the primers used for 3C analysis (black arrows). Gray boxes represent
the position of genes and black boxes demarcate regulatory elements. Numbers indicate the relative nucleotide position from the start of Gtl2. The Gtl2
DMR bait sequence is highlighted in yellow. (d) For 3C analysis, DNA was digested with EcoRI, ligated and quantified by real-time PCR with a forward
primer (red arrow) and Taqman probe to the Gtl2 DMR (asterisk), and reverse primers (black arrows). Analysis was performed in control and ATRX-null
or control and MeCP2-null neonatal forebrains (n = 3 littermate matched pairs each). A significant reduction in interaction frequency is observed at specific
sites including the Dlk1 gene and many intergenic regions. Graphed data represents the mean fold change, and error bars depict SEM. A two-tailed t-test
was used to assess significance. *P < 0.05, **p < 0.01, ***p < 0.0001. (e) qPCR of micrococcal nuclease and McrBC digested DNA reveals increased DNA
protection in the ATRX-null (left) MeCP2-null (right) forebrain overlapping the CTCF binding site in the Gtl2 DMR. Graphs depict mean fold change
and statistical analysis was performed by a two-tailed t-test (n = 3, errors bars depict SEM). **P < 0.01.

standing of all genomic elements located within imprinted
domains, and their role in silencing imprinted genes in the
postnatal brain, will be required to understand the relation-
ship between ATRX, MeCP2, chromatin structure and im-
printed gene regulation.

ATRX is thought to bind G-quadruplex DNA and was
proposed to resolve these structures to facilitate DNA repli-
cation and transcription (9,15,43). This mechanism has
been proposed at telomeres (9,15,43) and at some spe-
cific genes (15). We now present a different mechanism of
ATRX targeting and function that is independent of G-

quadruplexes. We provide evidence that MeCP2 recruits
ATRX to the H19 ICR, where ATRX then modulates nu-
cleosome occupancy within the 5′ region that overlaps two
closely positioned CTCF-binding sites. Genome-wide stud-
ies have demonstrated that CTCF binds in an extended
linker region. Binding of CTCF might require specialized
enzymes, such as ATRX, to create the linker space required
for stable CTCF binding. At the H19 ICR, improper place-
ment of a nucleosome within a CTCF binding site abro-
gates CTCF binding (48). Thus, correct positioning of nu-
cleosomes within the ICR is required for CTCF to stably
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Figure 6. Model of ATRX and MeCP2 function. (a) In the wild-type brain, MeCP2 recruits ATRX to the maternal H19 ICR in the late embryonic/neonatal
period. ATRX translocates along the chromatin fiber and alters nucleosome positioning to generate an extended linker region and promote CTCF occu-
pancy. CTCF then dictates intrachromosomal interactions. (b) In the absence of ATRX, increased nucleosome occupancy disrupts CTCF binding, leading
to a loss of intrachromosomal interactions.

bind this site. It is also possible that altered nucleosome
density is a consequence rather than the cause of loss of
CTCF. At the moment, we favor a model where ATRX di-
rectly affects nucleosome density at the maternal ICR based
on its demonstrated remodeling activities. ATRX may bind
DNA adjacent to the CTCF binding sites via its ADD do-
main, which recognizes specific histone modifications. The
SWI/SNF domain located at the end of a long flexible pro-
tein region is likely responsible for the redistribution of nu-
cleosomes along the chromatin fiber (6,12). In the absence
of ATRX, altered nucleosome distribution is predicted to
induce CTCF eviction from the H19 ICR. This mecha-
nism of CTCF regulation is similar to that proposed at the
chicken lysozyme locus (59), and may occur throughout the
genome by ATRX and other site-specific chromatin remod-
elers. It is not yet clear whether this function of ATRX is
limited to imprinted genes, or whether it occurs genome-
wide. ATRX-mediated CTCF binding suggests that a de-
velopmental switch occurs at the H19 ICR in the neonatal
brain to elicit gene silencing. While we still lack a complete
picture of the events at the H19 ICR at this time, H19 si-
lencing on the maternal allele likely requires protein recruit-
ment (including ATRX and MeCP2), epigenetic modifica-
tions and changes in long-range chromatin interactions.

In 2005, MeCP2 binding at the Dlx5/Dlx6 imprinted
domain was proposed to control chromatin looping and
gene expression (60). However, uncertainty remained re-
garding this particular function of MeCP2 as the analysis
was not quantitative, and MeCP2 regulation of Dlx5 was
later contested (61–63). We now provide evidence that the
loss of MeCP2 diminishes chromatin interactions across the
H19/Igf2 and Gtl2/Dlk1 imprinted domains. Compared
to the results in the ATRX-null brain, the loss of MeCP2
has a more severe effect on interaction frequencies and af-

fects more sites. One explanation for this discrepancy is that
MeCP2 recruits other factors (in addition to ATRX) to
regulate chromatin structure at these imprinted domains.
Genome-wide ChIP studies have shown that MeCP2 binds
across the genome in a histone-like manner and affects the
expression of multiple genes (64). In light of our results,
we predict that MeCP2 functions at many genomic sites
to recruit specific chromatin remodeling proteins and con-
trol nucleosome positioning and chromatin architecture.
Importantly, we demonstrate that MeCP2 regulates chro-
matin structure during early brain development, despite rel-
atively low protein levels in the nucleus. It has been pro-
posed that the role of MeCP2 in chromatin compaction
would only become evident during the brain maturation
phase when MeCP2 protein levels are much higher and
when Rett syndrome-like phenotypes become evident. Our
results counter this assumption, and suggest that expand-
ing future studies to earlier developmental stages will help
to fully elucidate the role of MeCP2 in neurodevelopment.

The failure to fully suppress the expression imprinted
genes in the neonatal brain might negatively impact cog-
nitive abilities, given that their misexpression is known to
cause neurodevelopmental syndromes (reviewed in (65)).
Moreover, the identification of CTCF as a key player in this
model is particularly relevant given the recent identification
of human CTCF mutations in individuals with intellectual
disability (66). Continued studies of chromatin dynamics
and imprinted gene regulation in the central nervous sys-
tem could potentially lead to novel therapeutics for children
with intellectual disabilities.
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