

Edinburgh Research Explorer

Naturally Embedded Query Languages

Citation for published version:
Tannen, V, Buneman, P & Wong, L 1992, Naturally Embedded Query Languages. in Database Theory —
ICDT '92: 4th International Conference Berlin, Germany, October 14–16, 1992 Proceedings. Springer Berlin
Heidelberg, pp. 140-154. DOI: 10.1007/3-540-56039-4_38

Digital Object Identifier (DOI):
10.1007/3-540-56039-4_38

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Database Theory — ICDT '92

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-56039-4_38
https://www.research.ed.ac.uk/portal/en/publications/naturally-embedded-query-languages(1f8de3e2-5498-4d52-8ffe-6b682077b549).html

University of Pennsylvania
ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

June 1992

Naturally Embedded Query Languages
Val Tannen
University of Pennsylvania, val@cis.upenn.edu

Peter Buneman
University of Pennsylvania

Limsoon Wong
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_reports

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-47.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_reports/508
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Tannen, Val; Buneman, Peter; and Wong, Limsoon, "Naturally Embedded Query Languages" (1992). Technical Reports (CIS). Paper
508.
http://repository.upenn.edu/cis_reports/508

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/508?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_reports/508
mailto:repository@pobox.upenn.edu

Naturally Embedded Query Languages

Abstract
We investigate the properties of a simple programming language whose main computational engine is
structural recursion on sets. We describe a progression of sublanguages in this paradigm that (1) have
increasing expressive power, and (2) illustrate robust conceptual restrictions thus exhibiting interesting
additional properties. These properties suggest that we consider our sublanguages as candidates for "query
languages". Viewing query languages as restrictions of our more general programming language has several
advantages. First, there is no "impedance mismatch problem; the query languages are already there, so they
share common semantic foundation with the general language. Second, we suggest a uniform characterization
of nested relational and complex-object algebras in terms of some surprisingly simple operators; and we can
make comparisons of expressiveness in a general framework. Third, we exhibit differences in expressive power
that are not always based on complexity arguments, but use the idea that a query in one language may not be
polymorphically expressible in another. Fourth, ideas of category theory can be profitably used to organize
semantics and syntax, in particular our minimal (core) language is a well-understood categorical construction:
a cartesian category with a strong monad on it. Finally, we bring out an algebraic perspective, that is, our
languages come with equational theories, and categorical ideas can be used to derive a number of rather
general identities that may serve as optimizations or as techniques for discovering optimizations.

Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-47.

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/508

http://repository.upenn.edu/cis_reports/508?utm_source=repository.upenn.edu%2Fcis_reports%2F508&utm_medium=PDF&utm_campaign=PDFCoverPages

Naturally Embedded Query Languages

MS-CIS-92-47
LOGIC & COMPUTATION 47

Val Breazu-Tannen
Peter Bulleman
Limsoon Wong

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

June 1992

Naturally Embedded Query Languages

Val Breazu-Tannen, Peter Buneman and Limsoon Wong*

June 11, 1992

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA

Abs t rac t

We investigate the properties of a simple programming language whose main computational engine
is structural recursion on sets. We describe a progression of sublanguages in this paradigm that (1) have
increasing expressive power, and (2) illustrate robust conceptual restrictions thus exhibiting interesting
additional properties. These properties suggest that we consider our sublanguages as candidates for
"query languages". Viewing query languages as restrictions of our more general programming language
has several advantages. First, there is no "impedance mismatchn problem; the query languages are
already there, so they share common semantic foundation with the general language. Second, we suggest
a uniform characterization of nested relational and complex-object algebras in terms of some surprisingly
simple operators; and we can make comparisons of expressiveness in a general framework. Third, we
exhibit differences in expressive power that are not always based on complexity arguments, but use the
idea that a query in one language may not be polymorphicolly expressible in another. Fourth, ideas of
category theory can be profitably used to organize semantics and syntax, in particular our minimal (core)
language is a well-understood categorical construction: a cartesian category with a strong monad on it.
Finally, we bring out an algebraic perspective, that is, our languages come with equational theories,
and categorical ideas can be used to derive a number of rather general identities that may serve as
optimizations or as techniques for discovering optimizations.

1 Introduction

We have recently proposed [4] a programming language for manipulating complex object databases, whose
fundamental computational construct is based on structural recursion on sets. Its main virtue is that while
i t maintains most of the flexibility of a general purpose programming language, it can be explained with
much economy of concepts [6]. Consequently, the language scales from flat relations up effortlessly, and holds
good promise for optimizations.

As part of a larger program for investigating the properties of this programming paradigm, we concen-
trate here on identifying various sublanguages that arise as conceptually robust restrictions of the general
paradigm. Such sublanguages are "query languages" because they may have simpler semantic complexity,
because they may be more easily optimizable, because these optimizations may be easier t o discover, or be-
cause they may have simple and natural syntactic representation within the language. But most importantly,

'The authors were partially supported by grants ONR NOOO-14-88-K-0634, NSF CCR-90-57570, NSF IRI-8610617 and
ARO DAAL03-89-C-0031PRIME. Peter Buneman was also supported by a SERC visiting research fellowship at Imperial College,
London.

"embedding" these sublanguages in the general language does not require semantical changes or worrying
about compatibility, because these constructs are already definable! They are nothing more than syntactic
sugar. Hence "impedance mismatch" is not an issue, and "seamless integration" comes for free.

The idea of the passage from flat relations to nested relations/complex objects is to let product and set con-
structions combine in every possible way, an orthogonality principle. However, in the choice of fundamental
operations for manipulating these data structures, most previous work has concentrated on extensions of well
understood languages such as relational algebra and datalog, even though it is not clear that the concepts
that can be justified as basic in the case of flat relations, remain basic for nested relations. Moreover, the
extensions made, especially in the study of nested relational algebra have a somewhat ad-hoc flavor; it is not
clear which operations are really needed and for what.

In contrast, we have found it rewarding to use an orthogonality principle not only in the description of
the structure of the data but also in the choice of fundamental operations that manipulate the data. The
result is that a small number of semantic ideas are sufficient for explaining and analyzing the expressive
power of remarkably rich languages. An equally important principle is that we should think of the various
languages as parameterized by a primitive signalure - a collection of types, constants and functions whose
interpretation is external to the languages we shall describe; and many of the considerations we make are
independent of this signature.

We have also found it very profitable to use some basic ideas of category theory in organizing the semantics
and even the syntax of our languages. In particular, structural recursion comes out of certain adjunctions,
and the core of the sublanguages we consider is based on monads. Because of its finitary character the
semantics can be often "internalized" and we can use typical categorical ideas to derive useful syntactic
properties such as identities that can serve for optimizations.

Thus, to the traditional complexity-theoretical and logical perspectives in query languages we want to add an
algebraic perspective. The hope is that this perspective will prove to be equally significant, and that it will
interact fruitfully with the other two. For example, quantifiers can be expressed in the proposed languages,
and these languages can be seen as embodying a simple set theory, with bounded quantification and no
axiom of infinity1. Moreover, the algebraic perspective emphasizes equational theories, and provability in
these theories can make both checking optimizations, and the search for optimizations more systematic, with
a potential for partial automation. Finally, while we do not discuss operational semantics in this paper, there
is clearly an intimate connection here with the equational theories that waits to be explained.

1.1 Overview

Our core language (subsection 2.1) combines in an orthogonal fashion constructs for manipulating functions-
first-order lambda abstraction and application, tuples-pairing and projection, and sets-the operations
of the set monad in "extension form". Since the last ingredients give most of the flavor, we call it the
monad calculus. This apparently very restricted language can already express interesting manipulations of
nested relations. Our first result is that the monad calculus is equivalent, both semantically and in terms
of equational theories, to a monad algebra which is the language of cartesian categories with a strong (or
"internalizable") monad (subsection 2.2). In addition to explaining expressive power, this result is technically
useful since the monad algebra is indeed an algebra-it has no bound variables, and hence is easier to use
in proofs. The equivalence can be parameterized by an arbitrary signature of additional primitive types,
constants and functions, and hence applies to most of the languages considered later.

In the next (section 3), we show that it is the same thing add to the monad core enriched with emptyset
and union, any of the following operations: set intersection, equality, set difference, subset, membership in
a set, and relational nesting, since any of these is definable in terms of any other of them. We also add a

'Representing logical theories in the lambda calculus was the original motivation for inventing the latter, and the first
successful example of this kind was Church's simple theory of types (1941).

conditional operation and we show that the resulting language is polynomially bounded. This complexity
bound and its remarkable versatility and expressive power, make this language an excellent candidate for
the "right" concept of nested relational algebra.

The power of the complex-object algebra introduced by Abiteboul and Beeri is obtained by adding the
powerset construct (section 4). The presence of powerset adds a lot to the expressive power, including the
ability to compute certain least fixed points, but at the price of suggesting intractable algorithms for certain
tractable queries. Intuitively, this is due to a lack of programming flexibility. We succeed in formalizing one
aspect of this by proving that this algebra cannot define a polymorphic cardinality function.

The most powerful language we consider (section 5) consists of the lambda calculus and products part of the
core, singleton set, emptyset, set union, and structural recursion on the insert presentation of sets, as well as
equality (equivalently: intersection, or difference, or etc .). We show that all the other previously considered
constructs are definable here, and that we can define a polymorphic cardinality function. Moreover, we
formalize the intuition that structural recursion is a least fixed point and hence could be simulated in the
Abiteboul-Beeri algebra, but this simulation is not polymorphic and cannot accomodate additional primitive
functions.

The last section tries to exploit the categorical perspective in discovering identities that can be useful in
optimizations. In particular, we show that the meanings of closed polymorphic expressions are actually
natural transformations, and that the naturality can be expressed as identities in the language.

In the remainder of the introduction, we review some previous work on nested relational and complex-object
languages; in the last subsection we give an introduction to structural recursion on sets.

1.2 Nested Relation and Complex-Object Languages

The first two of these languages have been well-studied in the database literature and require little introduc-
tion; their intent is to operate on relations that are "non-first-normal-form"; values stored in a relation may
themselves be relations. One of the first descriptions of Nested Relational Algebra was given by Schek and
Sholl [19], who discuss operations for nesting and unnesting and a generalized form of projection that allows
projection to be carried out on inner relations. However operations such as join can only be carried out at
the top level; and [9, 101, for example, adds a further operation that allows a nested join. However it is not
clear that this is all that is needed. As we shall see, it greatly simplifies the description of Nested Relational
Algebra if we include a m a p operation together with the ability to define first-order functions. With this,
even nesting and unnesting become derived operations.

A Complex-Object algebra was described by Abiteboul ei al [I, 21 which introduces a powerset operation. One
of the major findings of this work is that a calculus, an algebra and a form of datalog augmented with certain
predicates on sets, have equal expressive power. However this augmentation of nested relational algebra takes
it out of polynomial time. For example, transitive closure can be expressed in the algebra, but the obvious
program requires the construction of the powerset of the values in the input relation. Interestingly, this
algebra does include a m a p , but it is presented in conjunction with a "replace specification" which, in a
rather complicated fashion, manages to avoid explicit A-abstraction.

1.3 Monads and Comprehensions

The syntax and semantics of some of the sublanguages we shall consider are inspired by the categorical notion
of a monad. The idea that monads could be used to organize semantics of programming constructs is due to
Moggi [16]. Wadler [23] showed that they are also useful in organizing syntax, in particular they explain the
"list-comprehension" syntax of functional programming. Moreover Trinder and Wadler [22] showed that an
extension of comprehensions can implement the (flat) relational calculus. Trinder and Watt [21, 241, have

also sought after a uniform algebra for several different bulk types; in particular they have proved a number
of optimizations using categorical identities.

1.4 Introduction to Structural Recursion on Sets

Types . First, we have the o-types (for object types) given by the following context-free grammar

a ::= b I a x a I unit I {a)

where b ranges over an unspecified collection of primitive types (such as ant or string).

0-types are syntax, and they denote sets of complex objects, with the obvious interpretation. For instance,
{a) denotes the set of all finite subsets of the set denoted by a (which need not be finite). Examples:
{int x (string x int)} - a type of "flat" relations; {{int) x (unit x {string))} - a type of "nested relations";
unit is a base type corresponding to the zero-ary cartesian product so only the empty tuple () has type unit.
When convenient, we will confuse syntax and semantics, namely o-types a with the sets of complex objects
they denote, [a], even writing q : a when q is a complex object belonging to the denotation [a] of a.

Note that rather than following the common relational database practice of using n-tuples, we use pairs. An
n-tuple can be encoded as a nested pair of type (al x (a2 x (. . .a , . . .))) and a n-column relation as a set
of such tuples. For most of this paper, we will consider languages whose expressions denote either complex
objects, or functions mapping complex objects to complex objects. Hence, all the types we will use are either
o-types a or the simplest kind of function types

where u and r are o-types.

Universality proper t ies t u r n e d in to syntax. The set of all finite subsets has two different algebraic
structures that satisfy universality properties. For the first one, let us denote the empty subset by {), and
inserting an element x in a set S by x 7 S . It is not hard to verify that for any T, any e : r and any
i : a x T 4 r satisfying

there exists a unique g : {a) --t r such that

For the second universality property, denoting singleton sets by {x), and union by U, it is again not hard to
verify that for any r , any e : r , any f : a -+ r and any u : r x r --+ r satisfying

(in other words, (r , u, e) is an idernpotent commutative monoid), there exists a unique h : {a} -+ r such that

We say that g and h above are defined by structural recursion on the insert, respectively union, presentation
of sets. Each of the two universality properties can be taken as a basis for a programming construct. Here
are the corresponding rules for expression formation.

e : r i : a x r - + r
s+(e,i) : {a) -t r

e : ~ f : a + r U : T X T - + T

sru(e, f , u) : {u) -+ T

Actually, sru(.) is immediately definable in terms of sri(.) (see section 5) and the converse is also true albeit
with the use of some higher-order types that we chose to avoid in this paper (see [6]).

This, as we hope to demonstrate, provides a rather powerful programming language for sets. For example,

all = sm(true, Ax.x, A) Are all elements of the input set true?
map f = sru({),Ax.{fx),U) Map the function f over the inputse t

but, in fact, everything in this paper can be expressed with structural recursion, as we explain in section 5
(and see also [4]).

The somewhat delicate aspect of using structural recursion on sets is that in order for, say, sru(e, f , u) to
have a meaning, the semantic conditions (3), (4) and (5) must be satisfied. For example the "bad count"
function sru(0, Ax.1, +) : {a) + nut doesn't have a meaning because + is not idempotent (see section 5 on
how to count). The situation can be complicated by global variables appearing in e and u. In [6] we discuss
the precise semantics of programs with such constructs in them, in the presence of lambda abstraction, as
well as a logic for proving that a program is well-defined (has a meaning).

As we mentioned before this paper is concerned with various restrictions to the use of structural recursion,
in particular restrictions for which the semantic conditions for meaning existence are automatically satisfied.
We first investigate the restriction

ext(f) = s m (O , f , ~)

where f : a + {r) hence ext(f) : {a) + (7). Note that ext(f) S maps f over each member of S and then
"flattens" the resulting set of sets into a set. (This is analoguous to Lisp's flatmap operation on lists.) It
turns out that this is already a rather powerful construct. To illustrate this, suppose that we can also make
use of a little lambda abstraction, we can form pairs (el, e2), and we can take left and right projections (al
and n2) from pairs. This very simple language already allows us to define a number of familiar functions,
for example

def
p = ext(AS.S) has type {{a)) -t {a) and "flattens" a set of sets

map(f) sf exi!(Ax.{fx)) applies f to each element of its argument. I f f : a + r then map(f) : {a) -+

{TI.
def d ef nl = map(Ax..rrlz) and 112 = map(Ax.n2x) are relational projections. They project out the left

and right columns of (binary) relations.

def
eartprod(S1, Sz) - ext(Axl.map(Axz.(xl, 22)) S2) S1 takes the cartesian product of two sets. If
S1 : {a) and S2 : {r) then cartprod (S1, S2) : {a x r) .

d ef
unnestz = ext(p2) where p2(z, S) %f map(Xy.(x, 9)) S is a "pairwith" function. unnest2 is the right-
unnesting operation of nested relational algebra. It takes a right-nested relation of type {a x {r)) and
yields a relation of type {a x 7).

This suggests that there may be a relationship between this limited use of structural recursion and relational
query languages. In fact [4] shows such a relationship with the (flat) relational algebra by considering
some highly restricted syntactic forms. We were therefore drawn to consider the power of the ext(.) when
orthogonally combined with other constructs and this leads inevitably to the notion of a monad.

2 The monad calculus and algebra

2.1 The monad calculus MC

We define a first-order lambda calculus with products, with a singleton set construct {.}, the "flatmap"
construct ext(.) that we have discussed earlier, everything being parameterized with unspecified primitive
constants and functions. Note that union and empty set are not in this language.

Expressions. We assume given an infinite collection of variables, and, for simplicity, each is assigned once
and forever an o-type, z : Type(x). (Variables can range only over complex objects-an important restriction
that excludes higher-order functions.) The expressions and their types are given by the following rules (here
el el , ez range over expressions, x over variables, and u, T over o-types):

x : Type(x) c : Type (c) P : DTYP~(P) + CTYP~(P)

e l : o e 2 : r e : u x ~
(el ,e2) : a x r r l e : a ?r2e : T () : unit

e : u e : u -+ {T}

{el : I U I ext (e) : {a} -+ {T}

where c ranges over an unspecified collection of primitive constants, each with an assigned o-type Type(c),
and p ranges similarly over primitive functions, each with an assigned function type DType(p) -+ CType(p).
Each expression has a unique type.

Nota t iona l convention. We find it convenient sometimes to use a curried notation, as syntactic sugar.
For example we may write the "pairwith" function p2 : a x {T) --, {u x T} as Xx.XS.ezi(Xy.{(z, y))) S rather
than the clumsier "official" notation Xw.exi(Xy.{(?rl w, y)})(r2w).

For a given primitave signature C = {b,c,p) of primitive types, constants, and functions, we denote by
MC(C) the resulting calculus.

2.2 The monad algebra M A

Keeping with our source of inspiration for these languages, category theory, we will call the expressions in
MA-morphism expressaons or simply morphisms. Their types are function types, i.e., only of the form
a -+ T where a, T are o-types. Given a primitive signature C for MC, we will have a corresponding primitive
signature for MA, as follows. The primitive functions p of M C of are also primitive morphisms in M A .
The rest of the primitive morphisms of MA, K c , correspond one-to-one to the primitive constants c of MC.
For simplicity, we denote the primitive signature of MA also by C. The variable morphisms K x of M A
correspond one-to-one to the variables x of MC.

I<x : unit --+ Type(%) Kc : unit -+ Type(c) P : DTYP~(P) -+ ~ T Y P ~ (P)

f : a - - + T g : r - - + v
g o f : a - + v i do : a -+ a

f i : (T --+ 71 f 2 : a + 72

(f l , fz) : a -+ (71 X 7 2) fst,,, : u x T --+ u snd,,, : a x T --, r

Nota t iona l conventions and syntact ic sugar. We omit type subscripts whenever there is no possibility

for confusion. If f l : ul --+ TI and f2 : a 2 -+ 72 we will use the shorthand fi x f2 !Ef (fi o fst, f 2 o snd) :
U1 X 6 2 -+ 71 X 72.

map(.), p , and p2 have been explained earlier. q is denotes the singleton set function and t denotes the
constant empty tuple function. As examples of expressions in M A consider the functions defined in the
introduction:

def d ef n1 - map(fst) and 112 = map(snd) are relational projections (on sets of tuples.)

pl = map((snd, fst)) o p2 o (snd, fsl}. pl is like p2, but pairs to the left.

def cartprod = p o map(pl) o p2.

def unnest2 = p o map(p2)

It is interesting to note that FQL [7], a language designed for the pragmatic purpose of communicating with
functional/network databases was based roughly on the same set of operators as M A .

Translat ion f r o m MC(C) t o MA(C). An MC(C)-expression e : a is translated into an MA@)-expression
A[e] : unit --+ a, while an MC-expression e : a --, r is translated into an MA(C)-expression A[e] : u -i r.
With the exception of lambda-abstraction, a description of the translation is given below.

A[x] dsf K x : unit -+ Type(+) A[c] gf K C : unit -+ Type(c)

def .
A[p] dsf p : DType(p) + CTYP~(P) A[()] = zd : unit + unit

A [e ~] : u - - + r A [e z] : u n i t + a A[el] : unit + o A[e2] : unit + r

A[elez] '%f A[el] o A[e2] : unit 4 r A[(el, ep)] sf (d[el], A[e2]) : unit -, a x r

Are1 : unit -+ u x r
def d ef

A[rle] = fst 0 A[e] : unit -+ a A[-el = snd o A[e] : unit + T

A[e] : unit -+a A[e] : a 4 {T)

A[{e)] dzf o A[e] : unit -+ {a)
def

A[ext(e)] = p o map(A[e]) : {a) -, {r}

In order to translate lambda-abstraction we show that MA(C) enjoys a combinatorial (or functional) com-
pleteness property [15]. Specifically, one can express "abstraction of variables" as a derived operation as
follows. For any morphism expression h : a -t T and for any MA-variable K x : unit -+ E (equivalently, for
any MC-variable x : t) , we define a morphism expression K X . ~ : [x a + r by

def K X . ~ - h o snd if h does not contain K x
def

KX.KX gf fst ~ x . (g o f) = (~ 2 . g) o (f s t , ~ x . f)
def d ef

~ x . (f i , f 2) - (~ x . f i , ~ 2 . f ~) ~ x . m a p (f) = m a p (~ x . f) o p2

This operation satisfies a property that corresponds to the P-conversion rule for lambda-abstraction: (A2.e) x =
e. That is, in the equational theory of M A (C) (see appendix A) we can prove (rcz.h) o (K x o t , id) = h.

With this, if the translation of e : T is A[e] : unit -+ r , then Xx.e translates t o A[Ax.e] Zf (rcx.A[e])o(id, t) :
Type(z) -, T .

Translation from M A (C) to MC(C) . An MA-expression f : a --+ T is translated into an MC-expression
C [f : a + T . A description of the translation is given below.

def C[I<x] - Xu.x d* C[I<c] - Xu.c
def

Cbl - P
def

C[g 0 f gf Ax.C[!?l(C[flx)
C[id] - Xx.x def

def
C [(f l , f 2) I - Xz.(C[f1lx, CIfzlx)

CVst] - X%.7rl% def C[snd] = Xz.nzz

C[t] 2f Ax.() def

def
c[map(f 11 - ezt(Xx.{C[fIxl)

c [~ l - XX.{X} C b] ef ezt(L5.S)
cbZ] def - ~ w . e x t (X y . { (~ l w , ~))) (7 r zw)

Theorem 2.1 For any closed f : a -+ T in M A (C) , C [f] and f denote the same function. For any closed
e : a -+ T in M C (C) , A[e] and e denote the same function. For any closed e : a in M C (C) , A[e] and Xu.e
denote the same function, where u : unit is arbitrary. Hence, the translations preserve semantics.

We conclude that M A (C) and M C (C) are equally expressive, written

Actually, there is a deeper result that shows that there exists an intimate connections between the equational
theories for the calculus and the algebra (see appendices B and A) namely we can show that the translations
preserve and reflect these theories:

Theorem 2.2

(9 M A t A[C[fII = f
(ii) M C t C[A[e]] = e if e has function type, and M C k C[A[e]] = Xu.e if e has o-type (u not free in e).

(iii) M C t el = ea i f l M A t A[e l] = A[e2].

In fact, one can even extend this by adding arbitrary closed axioms. Similar results hold for the connection
between simply typed lambda calculi and cartesian closed categories [5].

One immediate benefit of the equivalence of the algebra and the calculus via the translations, is that we
can write "mixed expressions" that use constructs from both formalisms. For example, we have m a p (f) =
ext(q o f) as well as pz = Xx.XS.map(Xy.(x, y))S. The resulting total language

can be thought of as an extension by syntactic sugar of either the algebra or the calculus, or it can be thought
of as a single formalism, whose equational theory is obtained by joining the theories of the algebra and the
calculus and adding the equations that define the two translations. The result is a very rich, semantically
sound, equational theory in which optimizing transformations can be validated. It is convenient to use all of
M , knowing that in order t o derive results about M , we only need to prove them for one of the equivalent
sublanguages M C or M A .

3 Nested Relational Algebra

We now turn to other operations suggested by (nested) relational algebra. We have already seen that the
(relational) projection operations Ill, I l 2 , cartprod, and the unnesting operations unnest l , unnest2 can be
expressed in MC.

Union a n d emptyse t . Straightforward reasoning about the structural transformations achievable in M ()
shows that neither binary union nor emptyset is expressible in that language. We therefore add these as
primitives at all types.

00 : (6) union, : {a) x {a) -+ {a) Mu ef M({),union)

def def def We use the shorthand notations el U e2 - union(e1, ez), el re2 = {el) U e2 and {el, e2,. . . , en) -
(. . . ({e l) u Ie2)) u u {en).

Selection. Selection (filtering) normally requires a boolean type. We will stay within the realm of the already
introduced complex object types by simulating booleans as follows. We represent tme as {()) and false as
(1, which are the two values of type {unit). Note that union provides disjunction on this representation.
With this, selection is definable in M u as

select(p) = ext(Xx.IIl(cartprod({x), p x)))

where p : a --+ {unzt) and select(p) : {u) -+ {a). The trick here is that if p x is false (i.e., empty), then
carfprod({x),px) is empty, and z does not contribute t o the result.

In te rsec t ion . Again, this cannot be derived. To see this, define an ordering 3, on complex objects of type
7, for all o-types, inductively:

9 db 4' for any q E [b], b base

(~ 1 ~ 4 2) ~ T ~ x ~ ~ (7'1, 7'2) if ql iT1 r~ and 92 i,, rz
& <{TI R i f V q ~ Q 3 r ~ R q 3 , r

It can be checked that all the functions definable in Mu are monotone with respect to this ordering, while
intersection is not. We could also consider various other augmentations of M u For example M u (=) is Mu
augmented with an equality functions eq, : a x o + {unit). Similarly, we should consider augmentations
with difference (set difference), subset (a subset predicate), member (a membership predicate) and nest, a
relational nesting operation. The last of these consists of one of two mutually definable operations nestl and
nestz. For example nest2 is the right-nesting operation of type {a x r) + {a x {r)) . Remarkably, all these
are interdefinable. A similar result was proved by Gyssens and Gucht for a nested relational algebra [Ill.
However, they needed a powerset operator while we do not require anything so drastic.

T h e o r e m 3.1 Mu(f l , C) 2: Mu(=, C) 11 Mu(di8erence, C) E Mu(subset, C) N Mu(member, x) Mu(nes l , x)
with C an unspecified additional primitive signature.

Proof . To show this we simply have to exhibit translations between these functions. In the course of this,
we shall also provide the usual complement of boolean functions.

Given equality, define v ~ (x , Y) = 111 ,u(cartprod({x), eq(x, y))). qn(x, Y) returns the singleton set {x) if
eq(x, Y) is true and {) otherwise. Intersection is now obtained by "flat-mapping" this function over the
cartesian product.

n = ext(Vn o cartprod)

Conversely, equality may be defined from intersection by eq(x, y) = map(Ax.()) (f l ({~) , {y))) Thus M u (= , x) =
M u (n , c)

Negation and quantification. We can now implement the boolean operators. Union and intersection
directly implement or and and. Negation is a little more complicated. Consider the relation NEG
{ ({ I , {()I), ({()), {I)), which pairs false with true and true with false. From this we may select the tuple
whose left component matches the input and project out the right component:

not x = ,u(Il2(select(Xy.eq(x, nl Y)) NEG))

We can use these to implement existential and universal quantification: exists(p) = ext(p) and forall(p) =
not o (exists(not o p)) . Thus, for example, if P is a predicate with a free variable x , we can represent the
predicate calculus notation 3 x E S .P as exists(Xx.P)S

This now brings us t o the implementation of diflerence:

Noting that n is easily obtained from dafference we have Mu(f l , C) Mu(difference, C) .

Equality can be obtained from membership by eq(x , y) = member(x, { y)) ; membership is obtained from
equality by member(x ,S) = exists (Xy.eq(x , Y)) S ; and the mutual dependence of member and subset is
immediate; so we have Mu(=, C) = Mu(member , C) = Mu(subset , C).

Finally, we examine nest2 , which can be derived from equality as follows. First consider a function f of type
a x { a x r) + { r) . f(x,S) returns the set { y J (x , y) E S) . It can be written f (x , S) = I12(seleci(Ay.eq(x, y)) S) .
nes t2 (R) is obtained by pairing each member of the left column of R with the whole of R and mapping f
over the relation so formed: nesta R = m a p (f) (p l (n l R, R)).

Conversely, we show that difference may be derived from nest2. To compute difference(R, S) , observe that
(m a p (((n l , Ax.{)) , ~ 2)) o nestl o nestz o un ion) (p l (R , {)), p l (S , (0))) is a set containing possibly the following
three pairs and nothing else:

Call this set U . Now we need a way to select the second pair. To accomplish this, let W be the set

Then (D l o nestl o union)(U, W) gives us a set consisting of three sets:

This set is further manipulated by applyiiig the function ,u o map(map(nl x r2)) o map(cartprod o (id, id)) to
obtain the set V consisting of the following pairs:

Using the fact that the product of any set with the empty set is empty, we apply cartprod to each of these
pairs to obtain the desired difference: (IIl o p o map(cartprod))(V). This completes the proof. CI

Conditional. We also find it useful to have a conditional cond(., ., .) of type {unit} x T X T -+ T which returns
the second argument if the first is a nonempty set and the third argument otherwise. This function is not
definable in Mu(=) at all types 7. The techniques used in the proof of theorem 3.1 allow us to define it when
T does not contain primitive types, and also when r = {T'}, but one can show that it cannot be defined when

d*
T is a primitive type. We will occasionally use as syntactic sugar if B then el else ea - cond(B, e 1, ez).

Discussion. The nested relational algebra was originally conceived as an extension of the relational algebra
with nest and unnest (e.g., Thomas & Fischer [20] and Paradaens & Gucht [IS]) .

However, these two operations are not, by themselves, adequate for a number of obvious manipulations. The
exception is when the relations are suitably partitioned, or when an indexing function and null values are
available. Under these circumstances, it is possible to bring a deeply nested relation to the top level and to
nest it back after operating on it. However, it is unrealistic to assume that relations are partitioned. It is
also quite complicated to program. To alleviate this difficulty, Schek and Scholl [19] proposed a recursive
projection operation for navigation. Colby went further by making all his operators recursive [9, 101. These
methods are ad hoc in the sense that they required individual definitions of what recursive means for each
operators. Our m a p construct permits all operations to be performed at all levels of nesting; thus completely
eliminating the need for restructuring through nest and unnest. It is arguably more uniform than Colby's
approach.

The authors claim that Mu(=, cond) may be profitably considered as the "right" nested relational algebra.
The important difference from the approaches cited above is that a map(.) construct has been added together
with a limited amount of lambda-abstraction, which at once simplifies and extends the power of the language.
For example, nested joins and nested projections require no special treatment. Moreover,

Theorem 3.2 If the functions denoted by the primitive function symbols are computable in polynomial time
with respect to the size of their input then any functions that are definable by morphism expressions in
Mu(=, cond) are computable in polynomial time with respect to the size of their input. (This, of course, for
any reasonable definition of complex object size).

Proof. For any morphism expression f , a time-bound function I f) : IN -, IN is given by

if f is (g ! h)
i f f i s g o h
i f f is n a p (g)
if f is a primitive function p, bound is by assumption
otherwise

In fact this result can be strengthened by showing that the implementation suggested by the operational
semantics of structural recursion is also polynomial.

From a practical standpoint, this definition of NRA has two advantages. First, as we have already remarked,
the categorical algebra gives us a very good handle on the optimizations that may be performed in this
setting. Second, no special additions are needed to deal with the group-by operations that are common in
practical query languages. Suppose that f is a function (such as COUNT, AVERAGE, SUM etc.) of type
{a} + T . Then group-by,(f) : {y x a) -+ {y x T) is simply defined as

4 The Abiteboul-Beeri Algebra

In view of theorem 3.2, powerset is not definable in M u (= , cond). If we add for each o-type a the primitive
powerset, : {a} -t {{u)) we obtain a formalism equivalent to the complex object algebra introduced by
Abiteboul and Beeri [2]. For the purposes of this paper, let us define

A&B Ef M u (= , cond, powerset)

Abiteboul and Beeri show how to express transitive closure of a relation R in A&B, by selecting from
powerset(cartprod(&R,IIzR)) those relations which are transitive and contain R and then taking their
intersection. The intersection of a set of sets, is readily defined, even in Mu(=, cond), via complements:

0s der diflennce(p S, p(map(Xs.diflerence(p S, a)) S))

We remark that a test for equal cardinality can also be expressed in A&B because given sets S and T we can
construct powerset(cartprod(S,T)) and then test whether it contains a bijection between S and T. Then,
we can test for parity of the cardinality of a set S by testing whether for some subset T E S the sets T and
S\T have equal cardinality.

We have not discussed operational semantics for the languages we have considered, but clearly such expres-
sions suggest exponential algorithms for these queries (when in fact the queries are obviously polynomial).
However, it turns out that cardinality, as a function into a primitive type nut of natural numbers, is not
definable, no matter what arithmetic functions we take as primitives. Indeed, let A&B&IN be the extension
of A&B with a primitive type nut and an arbitrary primitive arithmetic signature

We must be careful in what we mean by cardinality not being definable, because for each o-type T not
containing nut there is a specific and trivial cardinality function of type {T) -+ nut. That is because all the
sets of type {T) are "known" and definable in the language, so we can just compare the argument with each
of them. Of course, these expressions do not depend uniformly on the type. It is precisely such a uniform,
"parametric", or "polymorphic" definition that does not exist.

To describe precisely polymorphic definitions, we introduce type variables a ,B , etc. and consider o-type
expressions

6 ..- ..- a I b I 6 x 19 1 unit ((6)

To avoid technical problems with the type variables occurring in the type of usual variables, free or bound, we
consider only MA(C)-expressions2 , since they do not have bound variables, and moreover we are interested
only in closed, hence variable-free, such expressions, call them polymorphic expressions. Type variables may
occur in polymorphic expressions, namely in the subscripts of id, fst, snd, t , 3, p , p z , K {) , union, eq and
powerset, and we can do substitutions in them, e.g.,

We say that cardinality is polymorphically definable if there exists a polymorphic expression card : {a) -t nut,
where a is a type variable, such that for each o-type u , the expression card[u/a] : {u} -+ nut denotes the
cardinality function from {a) to IN.

Theorem 4.1 Cardinality is not polymorphically definable in A&B&N.

2 ~ h i c h we can do without loss of generality in view of Theorem 2.1 whose proof is "polymorphic" hence not affected if we
work with type expressions.

12

Proof. For any complex object q, let maxq to be the largest natural number that occurs in q (0 if none
occurs). We show

Lemma 4.2 For each polymorphic expression f of A&B&IN there exists an increasing map cpf : IN + IN
such that for any instantiation f^ obtained by substituting o-types for all Ihe type variables in f we have

To prove the theorem now, assume a polymorphic cardinality exists card : {a} + nut, and let M = pcard(0).
Let T be an o-type not containing nut such that [{r)] has more than M elements (for example T can be
of the form {. . . {unit). . .}). Then, by the lemma, cad[r /a] cannot denote the cardinality function of type
{ T) to IN.

def def def d g def In the proof of the lemma, we can take pid = cpfsi = . . . - 'Pcond - Ppozuerset - the identity on
IN, which explains why cpf gives a bound for all instantiations of f . For the arithmetic primitives, we take,

def
e-g.7 e (n) = m a ~ z ~ n , ~ < n I b l l (x l Y).

As we shall see in the next section, structural recursion allows a polymorphic definition of cardinality.
Another interesting undefinability example, that we shall only sketch in this extended abstract, arises when
we add to A&B a primitive signature consisting of a type sl , a constant I : sl, and a binary operation
U : sl x sl --+ sl. It turns out that it is not possible to define in A&B(sl, l, U) an expression U : {sl) + sl
which (uniformly) denotes the function that computes the join of a finite set of elements in each model in
which (sl, I, U) is interpreted as a join-semilattice with least element. Again, this can be done immediately
via structural recursion.

5 The Power of Structural Recursion

We now consider our most powerful language, which uses the structural recursion construct ST+(., .) that we
have explained in subsection 1.4. Let SR be MC without ext(.) but with sn'(., .), as well as {} and union,
and moreover eq.

We proceed to show that everything else we have mentioned so far is already definable in SR.

sru(e, f , U) = sri(e, Ax.Xz.u(f x, z)), and, as in subsection 1.4 ext(f) = sru({), f , union). The conditional is
definable as well: cond = XB.Xx.Xy.sn'(y, Xu.Xz.x) B . Hence SR is a t least as expressive as Mu (=, cond),
our candidate for nested relational algebra.

Moreover, we can define the powerset operator by

fun powerset {) = {{))
I powerset (z FS) = (powerset S) U map(XT.x tT)(powerset S)

in other words powerset = sn'({{}), Xx.XW. W U map(XT.x t T) W).

Therefore, SR is a t least as expressive as A&B. However, SR offers a more flexible programming style that
allows for example expressing efficient algorithms for transitive closure as we have shown in [4]. We illustrate
the point here with parity. Define a polymorphic expression even : { a) --+ {unit) by

fun even{) = true
1 even(x t S) = if member(+, S) then even S else not(even S)

Notice that this is not quite a use of structural recursion as we have defined it, but a more general form
gensn'(e, j) : {u) - r where e : T but j : u x { u) x r + T. Using a trick that goes back t o Kleene, gensri(., .)

can be obtained from a simple structural recursion sn'(., .) : {a) + {a) x T . The semantic conditions (1)
and (2) are readily ~er i f ied .~

Moreover, cardinality is, as promised, polymorphically definable in SR. Define card : {a) -, nat by:

fun card{} = 0
(card(x r S) = if member($, S) then card S else 1 + (card S)

This is again a generalized structural recursion and it is justified in the same way.

While we have explained through theorem 4.1 and the remark at the end of section 4 in what sense SR is
strictly more powerful than A&B, we still want to explain the intuition that since A&B can do certain least
fixed points, in fact enough to simulate a Datalog-like language with predicates on sets [2], it will be able to
express the maps defined by structural recursion, which are also least relations given appropriate properties.
It will turn out that we can justify this intuition formally, but our reduction from S R to A&B will not be
polymorphic.

The difficulty in formalizing this intuition comes from the fact that in order to express such least relations
with powerset and intersections of sets of sets, we need some kind of "universe" that collects all the elements
that could be involved in the computation of the least fixed point. This was simple to get in the case of
transitive closure, it was simply all the elements occurring in the relation. Our situation is more general and
we quickly realize that nothing can be done in the presence of primitive functions.

Thus we consider A&B(C) with only4 finitely many constants C %f {el, . . . , c,) of one primitive (base)
type b.

Proof. For each o-type a, we can define in A&B the function FORTH, : a -+ {L) that computes the set of
def d ~ f

all elements of type L that occur in a complex object of type a. Namely FORTH, - 17, FORTHunit -
def def I<{) , FORTHuxT - union o (FORTH, x FORTH,), FORTHlal - ext(FORTH,). Next, we can

define for each o-type a a function BACK, : {I) + {a} which, given a set P of elements of type L , conl-

putes the "universe" of complex objects of type a that can be constructed using elements from P: BACK, %f
def def def

AP.P U {cl) U ... U {c,}, BACKunit - AP.{()), BACKaxr - cartprodo(BACK,, BACK,), BACK{,) -
powerset o BACK,. We verify these definitions by proving

Here, [e]p is the meaning of the expression e , which may have free variables, given an environment p, that
is a mapping from variables to values (complex objects) of corresponding type.

Lemma 5.2 Fix an arbitrary expression P : L, (may have free variables). For any e : cr in SR(C) and any
environment p

(VX, P(X) E IIBACKType(z) PIP) * [eIIP E [BACK, PIP

For any f : a -+ T in SR(C) and any environment p

(VX, P(X) E [BACh'~ype(z) --*. ([~]P)([BACKU PIP) E [BACK, PIP

With some higher-order lambda calculus we can also express an efficient algorithm for testing equality of cardinality.
*For the simplicity of the exposition in this extended abstract.

Now, let e : T and i : a x T --* 7 be closed (for simplicity of the exposition) and suppose that for them we
have semantically equivalent A&B(C) expressions e* and i*. We will suggest how to construct an A&B(C)-
expression that is semantically equivalent to sri(e,i) : {a) --* T. Let s : {a} be a variable. Select out
of

powerset(BACKtul(FORTHIa) s) x BACK, (FORTH{,) s))

only those relations R that satisfy ({I, e*) E R and

then take the intersection of all the selected relations, call it it I. Using the lemma and the universality
property that defines sfi(), we can show that for each value assigned to s, [I] coincides with the restriction
of [sri(e,i)]l to [BACKIul(FORTH~,l s)]. Therefore, select from I all pairs whose left component is s
and project right. The result is an expression Q : {T}, and the A&B(C)-expression As.Q is semantically
equivalent to sri(e, i), modulo the small unpleasantness that it returns instead of the desired result, a
singleton set containing the result. If T is a set type this can be remedied by composing with the flattening
function p. The types of the overall translation must be adjusted to take care of this unpleasantness but
this is straightforward.

The point of this result is not a practical one, since the transformations it suggests are neither polymorphic
nor efficient. In addition t o formalizing certain intuitions about the flavor of these languages, we hope that
we might be able in the future to use it to transfer theoretical results, for example complexity lower bounds,
from A&B(C) to SR(C).

6 Naturality and Optimizations

We can interpret type expressions with n type variables in them as functors SET" -+ SET. Then, taking
closed polymorphic expressions in A&B without eq, we can show that their meanings for various sets assigned
to the type variables are natural transformations. Moreover, the action on morphisms of the functors is
expressible in the language, hence the naturality can be expressed as a family of equations that hold between
expressions.

More precisely, for any list of type variables (a l , . . . , a n) , any o-types al, . . .,a,, TI,. . . , T,, any expressions
gi : ai -+ T ~ , and any type expression B without primitive types and whose type variables are among
(a l , . . . , a n) , define a morphism 8(93 : B[(T'/q 4 19[?/q by induction on 0 as follows:

Now, let f : B1 -+ B2 be a polymorphic expression in A&B without eq, whose type variables are among
(alr . . . ,a,). We have

Theorem 6.1 (Naturality)
f[.'/z] 0 e1(g = e2(s9 0 f [5/4

It appears that this generalizes all the identities about "pushing map(.) through" that we have so far seen
to be used in optimizations, including a couple we proposed in 141.

If the meanings of the g's are injective functions then this holds for eq as well. By taking the semantic
statement and the g's to be bijections we get that all the queries definable in A&B are generic or consistent [8].
(Genericity with respect to additional primitive operations can also be shown by working with bijections
that are homomorphisms for these operations.) These results extend to structural recursion.

This is the place to emphasize that the queries definable in our languages are automatically order-independent.
This is in contrast with the languages considered in [14] whose semantics is on ordered sets. On the other
hand, quite likely not all polynomial-time order independent queries are definable in our languages as we
believe that the lower bound suggested in [14] applies.

7 Further Work and Conclusions

This is an initial report on a research program to investigate the usefulness of structural recursion on sets as
the foundation for database query languages. We have obtained further results that are not included here
and which we hope to publish shortly:

One of us (Limsoon Wong) has shown that Mu(=, cond) (our proposal for a nested relational algebra,
see section 3) is conservative over the usual (flat) relational algebra. Among other things, this implies
that neither parity nor transitive closure are definable in Mu(=, cond).

Trinder and Wadler [22] have observed that the "comprehension" syntax of functional programming
may provide an elegant way of expressing queries, not unlike that of the relational calculus or SQL. We
have investigated the precise relations between the ideas developed in this paper and comprehension
syntax. However, to be consistent with relational databases and database languages that exploit
polymorphic record types [17] we have modified our categorical languages to work with records rather
than products.

The operations we have considered on sets have natural analogues for bags and lists (for structural
recursion see [6]). We have investigated them in a more general setting of collection types, which include
lists, bags and sets, as well as certain trees.

We believe that from a theoretical standpoint our approach provides us a new way of examining relationships
anlong languages; from a practical standpoint it provides us with a better understanding of how to embed
query languages in programming languages in that it suggests more general optimization techniques and a
general syntactic framework. Moreover - but this is a matter of taste - we believe that the account given
here provides a great deal of uniformity to the study of languages for complex objects or nested relations.

Acknowledgements. The authors thank Foto Afrati, Leonid Libkin, Sharnim Naqvi, Hermann Puhlmann,
Jon Riecke, and Steve Vickers for helpful discussions and Paul Taylor for his diagram macros.

References

[I] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht. An Introduction to the Completeness of
Languages for Complex Objects and Nested Relations. In S. Abiteboul, P. C. Fisher, and H.-J. Schek,
editors, LNCS 361: Nested Relations and Complex Objects in Databases, pages 117-138. Springer-Verlag,
1987.

[2] Serge Abiteboul and Catriel Beeri. On the Power of Languages for the Manipulation of Complex Objects.
In Proceedings of International Workshop on Theory and Applications of Nested Relations and Complex
Objects, Darmstadt, 1988.

[3] Catriel Beeri and Yoran Kornatzky. Algebraic Optirnisation of Object Oriented Query Languages.
In S. Abiteboul and P. C. Kanellakis, editors, LNCS 470: 3rd International Conference on Database
Theory, Paris, France, December 1990, pages 72-88, Berlin, December 1990. Springer-Verlag.

[4] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language. In Pro-
ceedings of 3rd International Workshop on Database Programming Languages, pages 9-19, Nahplion,
Greece, August 199 1. Morgan Kaufmann.

[5] V. Breazu-Tannen and A. R. Meyer. Lambda calculus with constrained types (extended abstract). In
R. Parikh, editor, Proceedings of the Conference on Logics of Programs, Brooklyn, June 1985, pages
23-40. Lecture Notes in Computer Science, Vol. 193, Springer-Verlag, 1985.

[6] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Programming with
Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Colloquium on Automata, Languages,
and Programming, Madrid, Spain, July 1991, pages 60-75. Springer Verlag, 1991.

[7] 0 . P. Buneman, R. Nikhil, and R. E. F'rankel. An Implementation Technique for Database Query
Languages. ACM Transactions on Database Systems, 7(2):164-187, June 1982.

[8] Ashok Chandra and David Harel. Structure and Complexity of Relational Queries. Journal of Computer
and System Sciences, 25:99-128, 1982.

[9] Latha S. Colby. A Recursive Algebra and Query Optirnisation for Nested Relations. In James Clifford,
Bruce Lindsay, and David Maier, editors, Proceedings of ACM-SIGMOD International Conference on
Management of Data, pages 273-283, Portland, Oregon, June 1989.

[lo] Latha S. Colby. A Recursive Algebra for Nested Relations. Information Systems, 15(5):567-582, 1990.

[l l] Marc Gyssens and Dirk Van Gucht. A Comparison Between Algebraic Query Languages for Flat and
Nested Databases. Theoretical Computer Science, 87:263-286, 1991.

[12] R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML, Version 2. Technical Report
ECS-LFCS-88-62, Laboratory for Foundations of Computer Science, University of Edinburgh, 1988.

[13] Richard Hull and Jianwen Su. On the Expressive Power of Database Queries with Intermediate Types.
Journal of Computer and System Sciences, 43:219-267, 1991.

[14] Neil Immerman, Sushant Patnaik, and David Stemple. The Expressiveness of a Family of Finite Set
Languages. In Proceedings of 10th ACM Symposium on Principles of Database Systems, pages 37-52,
1991.

[15] J . Lambek and P. J . Scott. Introduction to Higher Order Categorical Logic. Cambridge University Press,
1986.

[16] Eugenio Moggi. Notions of Computation and Monads. Information and Computation, 93:55-92, 1991.

[17] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database Programming in Machiavelli: A Polymorphic
Language with Static Type Inference. In James Clifford, Bruce Lindsay, and David Maier, editors, Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data, pages 46-57, Portland,
Oregon, June 1989.

[18] Jan Paredaens and Dirk Van Gucht. Possibilities and Limitations of Using Flat Operators in Nested
Algebra Expressions. In Proceedings of 7th ACM Symposium on Principles of Database Systems, Austin,
Texas, pages 29-38, 1988.

[19] H.-J. Schek and M. H. Scholl. The Relational Model with Relation-Valued Attributes. Information
Systems, 11(2):137-147, 1986.

[20] S. J . Thomas and P. C. Fischer. Nested Relational Structures. In P. C. Kanellakis, editor, Advances in
Computing Research: The Theory of Databases, pages 269-307. JAI Press, 1986.

[21] P. W. Trinder. Comprehension: A Query Notation for DBPLs. In Proceedings of 3rd International
Workshop on Database Programming Languages, pages 49-62, Nahplion, Greece, August 1991. Morgan
Kaufmann.

[22] P. W. Trinder and P. L. Wadler. List Comprehensions and the Relational Calculus. In Proceedings of
1988 Glasgow Workshop on Functional Programming, pages 115-123, Rothesay, Scotland, August 1988.

[23] Philip Wadler. Comprehending Monads. In Proceedings of ACM Conference on Lisp and Functional
Programming, Nice, June 1990.

[24] David A. Watt and Phil Trinder. Towards a Theory of Bulk Types. Fide Technical Fkport 91/26,
Glasgow University, Glasgow G12 8QQ, Scotland, July 1991.

APPENDICES

A Axioms Of M A

The axioms of M A are listed below. The reflexivity, symmetry, transitivity, and congruence identities have
been omitted.

f o I (x = g o K z : unit + T K x : unit + a x is fresh
4.

f = g : a + r

That makes M A a category with "enough points."

f : T -+ 6 1 Q : T -+ 6 2
6. fst o (f , g) = f : T - - ,U l

f : T +a1 Q : T --+ 6 2
7. snd o (f , g) = g : T + u 2

(TI - (TI X (12 - 6 2

fst snd

f : T -+ unit
8. f = 1 : T -+ unit

The category is cartesian, i.e., it has been endowed with all finite products.

l o m a p (i d) = id : {o) + {u)

13'
p o 7 = id : {o) - {u)

The above are the monad identities, where map() is the action on morphisms of the set monad functor and
17 and p are natural transformations.

16. (map(snd)) o p2 = snd : unit x {a) --+ {a)

P2
unit x {a) -{unit x a)

l 7 p2 o (id x 77) = 17 : a x r - {a x r }

where i is (fstofst, (sndojst, snd)). 19'
map(i) o p2 = p2 o (id x p,) 0 i : (a1 x 02) x (03) -+ {a1 X (~ 2 X ~ 3))

The monad is made into a strong monad with a natural transformation p2 using the above identities.

B Axioms Of MC

The axioms for MC are listed below. The reflexivity, symmetry, transitivity, and congruence identities have
been omitted.

The above are the three usual rules for lambda calculus.

e : unit
7.

e = () : unit

The above are rules for finite products.

f : u - { T) x : a
8.

ext(f){x)= fx: {r}

9.
s : {a)

ext(Xx.{x))S = S : {a)

s : {a) f : u -+ {a') g : a' - {r)
10.

ext(g)(ext(f)S) = ext(Xx.ext(g)(fx))S : {a) - {T)
These last identities are that of monad in "extension" form.

We leave the equational axiomatization of Mu(=, cond) , A&B, and SR for a future paper.

	University of Pennsylvania
	ScholarlyCommons
	June 1992

	Naturally Embedded Query Languages
	Val Tannen
	Peter Buneman
	Limsoon Wong
	Recommended Citation

	Naturally Embedded Query Languages
	Abstract
	Comments

