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Incremental Evaluation of Schema-Directed XML Publishing

Philip Bohannon
Bell Laboratories
bohannon@research.bell-labs.com

Abstract

When large XML documents published from a database are
maintained externally, it is inefficient to repeatedly recom-
pute them when the database is updated. Vastly preferable
is incremental update, as common for views stored in a data
warehouse. However, to support schema-directed publish-
ing, there may be no simple query that defines the mapping
from the database to the external document. To meet the
need for efficient incremental update, this paper studies two
approaches for incremental evaluation of ATGs [4], a formal-
ism for schema-directed XML publishing. The reduction ap-
proach seeks to push as much work as possible to the under-
lying DBMS. It is based on a relational encoding of XML trees
and a nontrivial translation of ATGs to SQL 99 queries with
recursion. However, a weakness of this approach is that it
relies on high-end DBMS features rather than the lowest com-
mon denominator. In contrast, the bud-cut approach pushes
only simple queries to the DBMS and performs the bulk of
the work in middleware. It capitalizes on the tree-structure
of XML views to minimize unnecessary recomputations and
leverages optimization techniques developed for XML pub-
lishing. While implementation of the reduction approach is
not yet in the reach of commercial DBMs, we have imple-
mented the bud-cut approach and experimentally evaluated
its performance compared to recomputation.

1. Introduction

XML publishing by middleware [11, 8, 16] or with direct
DBMS support [7] has been well studied, and techniques
from this work are rapidly being introduced into commercial
products [25, 28]. In some applications, small portions of
a database are extracted into “disposable” XML documents,
for example the messages needed to execute or respond to re-
quests using a web-services protocol. However, in many ap-
plications including mediation, archiving and web site man-
agement, large XML documents may need to be exported. In
this case, the cached XML document can obviously be seen
as a view of the database instance. For all the reasons that
efficient incremental maintenance of views in the database
(see, e.g., [14]) is important, it may also make sense to incre-
mentally update published XML documents, even when they
are externally cached by a middleware system. However, to
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Figure 1: Incremental evaluation

our knowledge, no previous work has considered incremental
update of XML documents published from relational data.

In this paper, we consider the particular case of incremen-
tal update of XML documents created by schema-directed
XML publishing middleware. The idea of schema-directed
publishing is to extract data from a relational database and
construct an XML view that conforms to a predefined schema,
in this case a DTD. The need for this is evident in practice:
enterprises typically agree on a common schema for data
exchange; thus, a specification for publishing views that en-
sures schema conformance is an obvious benefit for develop-
ers. In response to this need, the ATG (Attribute Translation
Grammar) formalism has been developed [4]. An ATG is a
mapping o : R — D associated with a relational schema
R and a predefined (possibly recursive) DTD D. Given an
instance I of R, o computes an XML view T = o(I) such
that T conforms to D. To accomplish this transformation,
D is treated as a set of productions. Each production is
annotated by o with a set of semantic rules, and a single
semantic attribute is defined for each element type. These
rules govern the production of child elements for each ele-
ment based on the data present in the attribute.

To discuss incremental update, we assume that a set of
changes to an XML tree T' can be encapsulated as AT, and
that an operator @ represents the application of these up-
dates. Given these assumptions, the incremental evaluation
problem for ATGs can be stated as follows: given an ATG
o : R — D, a relational instance I of R, the XML view
T = o(I), and changes AT to I, compute XML changes AT
to T such that T@® AT = o(I® AI). These relationships are
illustrated in Fig. 1. Note further that, if o is correct, TOAT
is trivially guaranteed to conform to the predefined pTD D.
In contrast to recomputing the new view from scratch, in-
cremental evaluation of ATGs can, in principle, improve per-
formance substantially by applying only the changes AT to
the old view T'. To realize the improvement requires a) an
efficient algorithm that computes the XML changes AT in
response to relational changes AI, and b) an efficient imple-
mentation of the tree-update operator &.

Our first contribution is a reduction framework for incre-
mental maintenance of XML views defined by ATGs. For a
given ATG definition o, the framework consists of a) a set
of virtual relations associated with the semantic attributes
of o, b) queries defining the recursive relationship of these
virtual relations to encode ATG-produced XML documents,
¢) a mapping based on these recursive queries from ATGs to
SQL 99 queries with linear recursion [24], and d) mechanisms
for computing XML changes AT from relational changes AI



and for updating the external view T with AT.

Previous work [11, 8] for XML publishing has developed
mappings from XML view queries to SQL queries that com-
pute root-to-leaf paths in a relational encoding of the XML
tree. These techniques, however, cannot be directly ap-
plied to generating or updating ATG-generated documents
due to a lack of support for recursion. In the context of XML
shredding, the authors of [17] showed that linear recursion of
SQL 99 is sufficient to support XPath queries over shredded
XML data, even when the shredding schema is recursive, and
suggested that this approach could be applied for publishing
queries. The reduction framework extends the prior work
by showing the connection between the recursive XML views
needed for schema-directed publishing and sQL 99 views.

Much as [11, 8] seek to push XML publishing work to the
DBMS, a primary goal of the reduction framework is to push
incremental work to the DBMS, thereby taking advantage
of sophisticated capabilities for query optimization, execu-
tion and incremental view update. However, three practical
issues complicate the use of DBMS resources in support of
incremental work. The first issue involves the DBMS fea-
tures required for the reduction approach. Middleware that
seeks to work with a wide variety of products supporting
the ODBC interface must take a “lowest common denomina-
tor” approach to the functionality required from the DBMS.
But sQL 99 recursion and incremental update of views are
separate, advanced features of only the most sophisticated
commercial products; furthermore the reduction approach
also depends on incremental update of materialized views
defined using SQL 99 recursion; in other words, a combina-
tion of both features. Second, to effectively push down the
work required to incrementally update an external view, one
must have access not only to a materialized view, but more
importantly, to a stream of updates to that view. One way
to obtain this functionality would be to define triggers on
the materialized view, but this is disallowed by at least one
commercial DBMS with materialized view support, and needs
not be supported in general for the pBMS to function well.
Finally, if the publishing queries are even mildly complex,
the combined recursive queries may become extremely com-
plex. As a result, they may not be effectively optimized
by all platforms supporting with...recursive for the same
reasons that not all DBMS platforms can effectively optimize
complex non-recursive publishing queries [11].

In response to this, our second contribution is to propose
an alternative approach, referred to as the bud-cut approach
to incremental ATG evaluation, that requires less sophisti-
cation from the DBMS. Further, we develop certain opti-
mization techniques which capitalize on the tree-structure
of XML views. The bud-cut mechanism propagates rela-
tional changes to XML in three phases: generation, comple-
tion and garbage collection. The bud-cut generation phase
determines the impact of AT on existing parent-child rela-
tions in the XML view, i.e., insertions (buds) and deletions
(cuts), by evaluating a fixed number of incrementalized SQL
queries. Following this, the bud completion phase iteratively
computes newly inserted subtrees top-down by pushing sQL
queries to the relational engine. Finally, deleted subtrees
are removed by a garbage collection process.

The bud-cut approach has several properties. a) 7' can be
updated in parallel with ongoing computation of AT dur-
ing bud completion, b) It minimizes unnecessary recompu-
tations via a caching strategy not considered in prior work

for maintaining recursive views, such that each new subtree
in the XML view is computed at most once no matter how
many times it occurs in the XML view, and furthermore, the
computation maximally reuses subtrees of the old XML view.
¢) It incorporates optimization techniques that have proved
effective in XML publishing but are not supported by DBMSs,
e.g., query merging [11]. d) Since the tree is computed level-
by-level in this phase, it is possible to return partial results
to a user navigating the tree while computation is ongoing,
and such computation can even be deferred according to a
lazy evaluation strategy [7]. e) It does not require materi-
alization of the view in the DBMS. Finally, of course, the
bud-cut approach does not require the DBMS to support ei-
ther sQL 99 or incremental view updates.

We have implemented the bud-cut approach. We use the
implementation to investigate the impact of |I| and |AI|
on the performance of incremental update, as well as the
improvement obtained over full recomputation for small up-
dates. Further, we investigate the impact on performance
of the subtree reuse optimization mentioned above, and find
that its impact is greatest when only a portion of I is pub-
lished in T', and when there is a moderate degree of locality
in the updates appearing in AI. Unfortunately but not sur-
prisingly, the reduction approach is unrealizable since cur-
rent commercial relational systems do not implement incre-
mental update of recursive queries.

The algorithms and the bud-cut mechanism can be ex-
tended to accommodate multiple data sources, i.e., for XML
integration studied by [3], which is a generalization of ATGs
by supporting multi-source SQL queries and XML constraints.
They can also be used for incremental maintenance of XML
views generated by other systems, such as [11, §].
Organization. Section 2 reviews ATGs. Section 3 describes
data structures for external XML views. Section 4 provides
the reduction approach, followed by the bud-cut approach in
Sect. 5. Section 6 presents experimental results. Section 7
addresses related work and Sect. 8 concludes the paper.

2. Background

In this section we first introduce a running XML publishing
example used in the rest of the paper. We then review DTDs
and present a refinement of ATGs as defined by [4].
Example 2.1: Consider a registrar database specified by
the relational schema Ry below (with keys underlined):

course(cno, title, dept),

student(ssn, name),
prereq(cnol, cno2).

project(cno, title, dept)
enroll(ssn, cno),

The database maintains student data, enrollment records,
course data classified into regular courses and projects,
and arelation prereq, which gives the prerequisite hierarchy
of courses where a tuple (c1, c2) in prereq indicates that
c2 is a prerequisite of c1.

The office of registrar maintains an XML view for the CS
department, which contains data of CS courses registration,
extracted from the registrar database. The view is re-
quired to conform to the DTD Dy below (the definition of
elements whose type is PCDATA is omitted):

<!ELEMENT db (course*)>

<!ELEMENT course (cno, title, type, prereq, takenBy)>
<!ELEMENT type (regular | project)>

<!ELEMENT prereq (course*)>

<!ELEMENT takenBy (student™)>



db

course course course

cno titte prereq  YP€  takenBy

course course project student student student

LI ssn name

Figure 2: XML view

<!ELEMENT student (ssn, name)>
<!ELEMENT regular (empty)> /* similarly for project */

An xML view conforming to Dy is depicted in Fig. 2. It
consists of a sequence of course elements, which represent
all the CS courses and projects. Each course has a cno
(course number), a course title, a type indicating whether
it is a course or project, a prerequisite hierarchy, and all the
students who have registered for the course.

The registrar database is updated constantly. Examples
of (group) updates [14] include: (1) insertion of a new CS
course to the course relation, along with insertions of its
prerequisites to prereq and insertions to enroll for the stu-
dents who have enrolled in the course, (2) deletion of a CS
course from the course relation, along with deletions from
prereq and enroll accordingly, and (3) updates of the name
fields of some student tuples.

As will be seen shortly the XML view can be defined with
an ATG that guarantees the view to conform to Dy. Incre-
mental evaluation of the ATG is to update the materialized
XML view in response to updates to the registrar database.
Note that since the ATG is defined on a recursive DTD, rela-
tional updates may cause insertions, deletions and structure
changes at an arbitrary depth of the XML view, which cannot
be decided at compile time. O

2.1 DTDs

Without loss of generality, we formalize a DTD D to be
(E, P, r), where E is a finite set of element types; r is in E
and is called the root type; P defines the element types: for
each A in E, P(A) is a regular expression of the form:

,Bn|Bi+...+ B, | B

where € is the empty word, B is a type in E (referred to as
a child type of A), and ‘+’, ‘) and ‘*’ denote disjunction,
concatenation and the Kleene star, respectively (we use ‘+’
instead of ‘|’ to avoid confusion). We refer to A — P(A) as
the production of A. A DTD is recursive it has an element
type that is defined (directly or indirectly) in terms of itself.

It has been shown in [4] that all DTDs can be converted to
this form in linear time by introducing new element types
and performing a simple post-processing step to remove the
introduced elements. To simplify the discussion we do not
consider XML attributes, which can be easily incorporated.

An xmL document (tree) T conforms to a DTD D, if (1)
there is a unique node, the root, in T labeled with r; (2) each
node in T is labeled either with a type A € E, called an A
element, or with str, called a tezt node; (3) each A element
has a list of children of elements and text nodes such that
they are ordered and their labels are in the regular language
defined by P(A); and (4) each text node carries a string
value (str) and is a leaf of the tree.

a u= str|e| By,...

2.2 ATGs

The idea of attribute translation grammars (ATGs) is to
treat the DTD as a grammar and recursively fire productions
from the grammar to create an XML document. We now
briefly review the syntax and semantics of ATGs (see [4]).

An ATG 0 : R — D specifies a mapping from instances of
the source relational schema R to documents of the target
DTD D as follows. a) For each element type A of D, o defines
a semantic attribute $A whose value is a single relational
tuple of a fixed arity and type; intuitively, $A controls the
generation of A elements in the XML view, and is used to pass
data downward as the document is produced. b) For each
production p = A — « in D, o specifies a set of semantic
rules, rule(p). These rules specify the computation of the B
children of an A element for each type B in a.

Given a database I of R, the ATG ¢ is evaluated top-down
starting at the root r of D. A partial tree T is initialized
with a single node of type r, and this node is marked un-
erpanded; we refer to unexpanded nodes as buds. The tree
T is then grown by repeatedly selecting a bud b (of some
element type A), evaluating the semantic rules associated
with A, and marking b ezpanded. Specifically, we find the
production p = A — « in D, and generate the children of
b by evaluating rule(p) and using the value of the attribute
$A of b. The rules rule(p) are defined and evaluated based
on the form of a as follows:

(1) If @ is By, ..., By, then a node tagged B; is created for
each ¢ € [1,n] as a child of b. The tuple value of $B; as-
sociated with the new B; child is determined by projection
from $A. That is, $B; = ($4.a},...,$A4.af) is in rule(p) for
i € [1,n], where af is a field of the tuple $A.

(2) If ais B1 + ... + By then rule(p) is defined by
(8B:1, $Bs, ..., $B,) =
case f($A) of
1: ($4, null,...,null)
n: (null,...,null, $A)
where f is a function that maps $A4 to natural numbers
in [1,n]. That is, based on the conditional test, a node is
created for exactly one child, B;. The value of the parent
attribute $A is passed down to that child. No Bj; child is
created if 7 # j, and $B; (the special value null) is ignored.
We assume that the function f is simple enough to deter-
mine whether it is in the range [1, n].

(3) If ais B, then rule(p) is defined by $B + Q($A), where
Q is an SQL query over a database of R, and it treats $A4 as
a constant parameter. For each distinct tuple ¢ returned by
Q($A), a B child is generated, carrying ¢ as the value of its
$B attribute. To help ensure that only finite documents are
created, only references to attributes and constants, but not
expressions, are allowed in the select-list of Q.

(4) If a is str, then the rule specifies formatting of the val-
ues of $B for presentation (string/PCDATA). Such rules are
not shown or discussed further.

(5) If v is €, then no r(p) is defined and no action is taken.

The element children of the node b become new buds and
are also processed. The process proceeds until the partial
tree cannot be further expanded, i.e., it has no unexpanded
node. The fully expanded XML tree do not include attribute
values $ A, which are only used to control the tree generation.

Example 2.2: The ATG 0o given in Fig. 3 defines the
XML view described in Example 2.1. Here rule(course),



db — course*
$course +— Q1

Q1: select distinct c.cno, c.title, 1 as tag
from course ¢
where c.dept = ‘‘CS’’
union

select distinct p.cno, p.title, 2 as tag
from project: p
where p.dept = “‘CS”?

course — cno, title, type, prereq, takenBy
$cno = $course.cno, $title = $course.title,
$type = $course.tag, $prereq = $course.cno,
$takenBy = $course.cno

type — regular + project
($regular, $project) = case $type of
1: ($type, null)
2: (null, $type)

prereq — course*
Scourse « Q2($prereq)
Q2(cl): select distinct c.cno, c.title, 1 as tag
from prereq p, course c
where p.cnol = cl1 and p.cno2 = c.cno

takenBy — student*
$student < Q3($takenBy)
Q3(c): select distinct s.ssn, s.name
from enroll e, student s
where e.cno = ¢ and e.ssn = s.ssn

Figure 3: Example ATG o9

rule(type) and rule(prereq) illustrate the cases (1), (2), (3)
above. Given a registrar database, o9 computes an XML
view as follows. It first generates the root element (with tag
db), and then evaluates the query Q1 to extract courses and
projects of the CS department from the underlying database.
For each distinct tuple c in the output of @1, it generates
a course child v, of db, which is a bud carrying ¢ as the
value of its attribute $course. The subtree of the bud v, is
then generated by using c¢. Specifically, it creates the cno,
title, type, prereq and takenBy children of v., carrying
c.cno, c.title, c.tag, c.cno and c.cno as their attributes,
respectively. It then proceeds to create a text node carrying
c.cno as its PCDATA, as the child of the cno node; similarly
for title. It determines the type of v. by examining c.tag:
if it is 1 then a regular child of type is created; otherwise
a project child is generated. It creates the children of the
prereq node by evaluating the sQL query )2 to find prereqg-
uisites of the course, and again for each tuple in the output
of ()2 it generates a course node; similarly it constructs the
takenBy subtree by evaluating Q)3 to extract student data.
Note that Q2 and Q3 take c.cno as a constant parameter.
Since course is recursively defined, the process proceeds un-
til it reaches courses that do not have any prerequisites,
i.e., when @2 returns empty at the prereq children of those
course nodes. That is, ATGs handle recursion following a
data-driven semantics. When the computation terminates
the ATG generates an XML view as depicted in Fig. 2, which
conforms to the bTD Dy given in Example 2.1. a

As observed by [4], ATGs are more expressive than the view
definition languages of previous publishing systems [11, 8].

Exception Handling. ATGs as defined refine the original
definition introduced in [4]. An ATG of [4] may abort over
a relational database, i.e., it may terminate unsuccessfully
as the XML view it generates may violate the given DTD. In
contrast, our revised ATGs do not abort. However, even our
revised ATGs defined over a recursive DTD may not termi-

nate. For example, oo of Fig. 3 may not converge if the
relation prereq in the underlying database is cyclic, e.g., if
a course is its own prerequisite. Worse still, it is undecid-
able [4] to determine at compile time for an arbitrary ATG
0 : R — D, whether o terminates on all databases of R [4].

To cope with this we introduce an exception handling
mechanism. For an element type A defined recursively, we
consider a mild extension of its production p = A — aq,
namely, p’ = A — o + str. For example, we extend the
production of course in the DTD Dy to be

course — (cno, title, type, prereq, takenBy) + str

In order to ensure termination, we modify tree generation
to stop expanding the tree if a newly created node lv has
the same type and semantic attribute value as one of its an-
cestors, v. In this case, we simply emit the string value of
lv’s attribute as the contents of the new node. It should be
mentioned that this does not lose information, since the sub-
tree of lv, if constructed by following the original production
p= A — a, is just a copy of the subtree at v and does not
introduce any new information. This process is referred to
as ezception handling. Although exception handling slightly
modifies the DTD embedded in an ATG, it ensures termina-
tion of ATG evaluation without loss of information.

Theorem 2.1: Let 0 : R — D be an arbitrary ATG with
exception handling. Then over all instances I of R, o ter-
minates and o(I) conforms to the DTD D. m|

Theorem 2.1 shows that an ATG ¢ : R — D is actually a
total function: given a database I of R, o(I) computes an
XML documents of D that is unique up to reordering of B-
elements produced by productions of the form A — B*. In
the sequel we consider only ATGs with exception handling,
and refer to them simply as ATGs. Note that our incremental
techniques also work on ATGs without exception handling.

3. External Trees

Incremental update makes sense only in the context of an
externally maintained tree available to the client. A vari-
ety of potential implementations for the external tree exist,
from a native storage system like Berkeley XML DB to an in-
memory implementation of DoM. While in the current work
we have used our own implementation of an in-memory tree
in C++, we expect the data structures and algorithms we
propose to apply to other implementations.

We next describe the external data structures maintained
by our middleware to accept and process changes.

Node Identity. We assume that we can associate a com-
pact, unique value with each tuple value taken on by a se-
mantic attribute in o(I). We abstract away the implemen-
tation of this identity value by assuming, without loss of
generality, the existence of a Skolem function gen_id (see,
e.g., [9]) that, given the tuple value of a semantic attribute
$A, computes id_A that is unique among all identities as-
sociated with all semantic attributes (for example, it might
encode the type and a unique value within that type).
Tree vs. Graph Representations. An important prop-
erty of an ATG o : R — D is that, for any database I of
R and type A of D, an A-element (subtree) T4 in the XML
view o(I) is uniquely determined by the value of the seman-
tic attribute $A at the root of T4. Thus the ATG defines a
function ST such that, given an element type A and a value
t of $A, ST(A,t) returns a subtree rooted at a node tagged
A and carrying t as its attribute.
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Since a subtree ST(A,$A) may appear at different places
in the XML view o (I), if the middleware system is managing
the external view, it may be more efficient to represent o (I)
as a graph such that a single copy of sT(A, $4) is stored and
shared by its multiple occurrences. Indeed, if o(I) is stored
as a tree, for example by using an available implementa-
tion of boMm [2], the tree may be exponentially larger than
the graph representation. In light of this the current im-
plementation of ATGs adopts the graph representation, but
supports client navigation on the graph as if it were a tree.
The trade-off of the space efficiency is that the support of
user navigation is complicated, as the path from a particu-
lar node to the root of the tree would be dependent on the
route navigated; further, a mechanism must be provided to
check for duplicates along this path to provide the exception
handling semantics described above.

Data Structures. The external data structures used to
represent the XML document are depicted in Fig. 4. The
tree T is stored in a hash index H and a subtree pool S.
Each entry of H is of the form (A, id_A, ptr), where A is an
element type, id_A is the unique id of a value of $A, and
ptr is a pointer to the root node of the subtree ST(A,$A)
in S. The subtree pool S consists of entries (A4, id-A, L),
where (A,id_A) represents a node v of T, and L is a list
[(B1,4d-B1),...,(Bn, id-By)] representing the children of v
such that each (B;,4d_B;) is an entry in H. Observe that
in the graph representation, there is a one-to-one mapping
from H entries to the nodes in S.

Handling Updates. In this paper, we allow AI to be
any group of updates to the underlying DBMS that preserves
the consistency of the database (integrity constraints). XML
updates AT generated from AT by one of the techniques de-
scribed in the next two sections are represented as (E*, E™),
where E™T is a set of edges to be inserted into the tree T, and
E~ is a set of edges to be deleted from T'. The edges are rep-
resented as (1d_A, id_B), where id_A and id_B are the ids of
the parent A-element and the child B-element respectively.
The system processes insertions as follows: for each tuple
(id-A,id_B) in ET, 1) find the H entry (A4, id_A) and the
pointer to the node (A, id_A, L) in the subtree pool S, 2) in-
sert (B, id_B) into L if it is not already in L, and 3) if H
does not have an entry (B,id_B) in H, create an entry in
H and a node (B, id_B,[]) in S with an empty child-list [ ]
Note that if there is already an entry (B,id_B) in H, the
new edge is actually a cross edge to the existing B node. A
subtle issue concerns the order of the children list L when a
B node is inserted into L. Note that L is constrained by the
production A — «: if a is Bu,..., By, the elements of L are
in the same order as their element types in the production;
and if @ is B*, L elements are ordered by a default order on
the tuple values of the $B attributes of these elements.
The system carries out deletions similarly: for each tu-
ple (id-A,id_B) in E~, 1) find the node (A,id-A, L) in the

Qgen_prereq :
select gen_course.cno
from gen_course gc

Qgen_course :
select distinct c.cno, c.title, 1 as tag /* Q’1 */

from course c
where c.dept = ‘‘CS’’
union

select distinct p.cno, p.title, 2 as tag
from project p

where p.dept = ‘CS’’

union /% QY */

select distinct c.cno, c.title, 1 as tag
from prereq p, course c, gen prereq g

where p.cnol = g.cno and p.cno2 = c.cno

Figure 5: Attribute relation generating queries.

subtree pool via the H-index entry H(A,id_A), and 2) cuts
the edge (id_A, id_B) by removing id_B from the children
list L. It should be noted that during the processing of re-
lational updates AI, no entries are physically deleted from
H because a) an entry may be shared by multiple subtrees
of T, and b) as will be seen shortly, our incremental system
minimizes unnecessary recomputations by reusing subtrees
that have been disconnected from the tree by cuts.

Garbage Collection. Upon the completion of the compu-
tation of the new XML view o (I @ AI), a garbage collection
process runs in the background to remove H-entries and
nodes in the subtree pool that are not linked to o(I ® AI),
Conceptually this can be done via a top-down traversal of
the new XML tree, removing nodes that are no longer reach-
able from the root. In our implementation we associate
with each H-entry a count keeping track of the number of
nodes linked to it, and maintain the counters when process-
ing insertions and deletions; the garbage collection process
removes unused nodes, i.e., those H-entries with count = 0
and their corresponding nodes in the subtree pool.

4. Pushing Incremental Work to the DBMS

In this section we present our reduction mechanism for in-
cremental evaluation of ATGs. The approach is based on 1) a
relational encoding of XML trees via a set of (interrelated)
virtual attribute and edge relations, and 2) a translation of
an ATG o : R — D to a set M@, of sQL 99 queries uti-
lizing the with...recursive construct, which computes the
attribute and edge relations of the XML views defined by .

Given this, the reduction approach to incrementally main-
taining an XML tree T computed by ATG o(I) works as fol-
lows: 1) encode T with the attribute and edge relations,
2) map o to SQL 99 queries MQ,, 3) define an incremen-
tally updated materialized view in the source DBMS for each
query of MQ,, 4) in response to relational updates AI,
utilize the DBMS functionality to capture the incremental
changes made to each of the materialized views which can
be directly transformed into the XML changes AT (i.e., ET
and E7), and 5) propagate the changes AT to the external
tree, as described in the previous section. This leads to a
convenient approach to incremental evaluation of ATGs by
pushing as much work as possible to the underlying DBMS.

We next focus on the relational encoding of XML trees and
translation of ATGs to SQL 99 queries.

4.1 A Relational Encoding of XML Trees
An xML view o(I) is encoded via node (semantic attribute)
and edge relations.



Qedge_cou'rse_title :
select gen_id(c), gen_id(c.title)
from gen_course c

Qedge.p're’req_course: /* derived from Q,2 */
select gen_td(gp), genid(c.cno, c.title, 1 )
from gen_prereq gp, prereq p, course c
where p.cnol = gp.cno and p.cno2 = c.cno

Figure 6: Edge relation generating queries.

Attribute Relations. The attribute relations are to cap-
ture the values taken on by the semantic attributes defined
in o(I). To avoid confusion, “attributes” of relational tables
will be uniformly referred to as “columns”.

Recall that o associates with each element type B a tuple-
formatted variable $B. For each such variable $B, let gen_B
be a relation with columns matching the arity and type of
$B, along with a column for id_B if an existing group of
attributes does not serve this role. Further, in the context
of a database instance I, assume that gen_B is populated
with all the (non-null) values taken on by $B during an
evaluation of o on I.

We define each attribute relation, gen_B, in terms of a
query Qgen_B involving the other attribute relations and the
relations of I. To define Qgen_p we first rewrite SQL queries
embedded in o to queries that take gen_A, instead of a single
tuple $A, as a parameter. Specifically, consider productions
A — « in which B appears on its right-hand side (RHS).

(1) For productions of the form A — B* with associated
semantic rule $B + Q($A), gen_B is the union, over all
values of $A4 in gen_A, of Q($A). In a manner similar to the
level-at-a-time processing of [4], this query can be rewritten
as @', which takes no parameters but additionally accesses
gen_A. This is accomplished, roughly, by a) adding gen_A
to the from list of @, and b) replacing references to $4 in Q
with the corresponding references to gen_A.

(2) If B appears as some B; when « is By, ..., B, then Q'
is a simple selection query from gen_A that projects fields
according to f;($A) (see Section 2).

(3) If B appears as some B; in a is By + ...+ B, then Q'
can be written as select * from gen_A a where f(a) = i.
Note that we assume further that f(a) is computable in the
dialect of sQL used to express Q’.

It is now simple to generalize this construction to handle
the case where B appears on the RHS of multiple rules in o.
Suppose that it appears on the RHS of rule p1, p2, . .., pn, and
that Q’; is defined per the discussion above. Then Qgen_a
is formed by taking the (distinct) union of all Q’; queries.

For example, Fig. 5 shows the definition of two attribute-
relation generating queries when the resulting construction
is applied to the ATG o of Fig. 3.

We denote by AR(o) the set of all Qgen_ queries for o.

Maintaining Edges. We next describe how to capture
the edge relations of the XML view. Let edge_A_B be a
relation with two columns, id_A and id_B. We create such
a relation if B appears on the RHS of some production for A.
We overload the Skolem function gen_id described in Sect. 3
to compute the unique id 7a from a relational tuple a.

We now discuss how to derive queries to define these edge
relations in terms of attribute relations and base relations.
As before, consider first productions of the form A — B™,
where $B <+ Q($A) is the associated semantic rule. In this
case, edge_A_B is the set of pairs (za, ib) such that a € gen_A

with QCi(cno,title,...) as (Q1 from Figure 3)
with QC2(idc, idp, pq-idp, pq-idc, srel)

recursive as
select gen_td(c.cno, c.title, 1) from QC1
union
select gen_id(gp), gentd(c.cno, c.title, 1),
null, null, ‘‘course’’
from QC2 gp, prereq p, course c
where p.cnol = gp.cno and p.cno2 = c.cno
and gp.srel = ‘‘prereq’’
union
select null, null, cno as pq-idc,
cno as pq-idp , ‘‘prereq’’
from QC2 gc
where gc.srel = ‘‘course’’ }
select distinct cno, title, tag
from QC2, course
where QC2.srel=‘‘course’’ and QC2.idc=course.cno

Figure 7: with...recursive for recursive schema

and b € Q(a), where ia = gen_id(a) and ib = gen_id(b). To
derive a query Q.qg._4_B for an edge relation edge_A_B, we
can employ the same rewriting as for the attribute relations,
with the following change: the select list of the attribute
relation is replaced with (ia, ib). The definition of Qcdge_a_B
is similar for productions of other forms.

The set of all Qcage_a_B queries for o is denoted by ER(o).

As an example, Fig. 6 shows two edge-relation generating
queries derived from the o9 ATG of Fig. 3.

4.2 Computing Attribute and Edge Relations with
SQL 99 Linear Recursion

As the running example illustrates, the attribute relations
are potentially mutually recursive, and the edge relations de-
pend on the attribute relations. Furthermore, each attribute
relation can be related to itself and other attribute relations
through a variety of paths, raising the possibility that con-
cluding evaluation of updates to the attribute relations will
be excessively complex. Fortunately, this is not the case.

While the attribute relations are recursive, there are sub-
stantial constraints on this recursion. Consider the ref-
erences in the query Q_gen_A to other attribute relations
B, C,.... First, observe that such a relationship cannot be
made via negation (in the Datalog sense), that is, the refer-
ence to B cannot appear in a not exists clause in Q_gen_A.
Second, note that references to two different attributes rela-
tions, for example B and C, must be made in two different
subqueries of Q_gen_A, such that these subqueries are joined
only by the top-level union operator introduced by the con-
struction. Finally, since expressions are not allowed in the
select clauses of view-definition queries, aggregate expres-
sions which depend on attribute relations will not appear.

Given these restrictions, the computation of the attribute
and/or edge relations can be accomplished with the sQL 99
with...recursive construct. Let Q, be a set of edge and
attribute relation-generating queries from o which either in-
cludes all of the attribute relations or all of the edge rela-
tions. Let Gg be a graph in which there is a node for each
query in Q, and an edge from Qg to Q4 iff @p refers to the
virtual relation gen_A in the from clause. Let ¢%1,...,c%,
be the connected components of this graph. We now merge
components and generate possibly recursive queries, along
the same lines as [17]. First, singleton components with only
asingle incoming edge is merged with the source component.
Let the result of this process be ci,...,c,. For each such
component ¢;, if it is acyclic, then a set of merge-queries,
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MQ.;, for the component can be defined. The number of
queries produced will depend on the choices made for query
merging [4, 11], and DAG structures can be handled with an
embedded with clause as suggested by [17].

If the component is cyclic, a single recursive query MQ.;
is defined to compute the outer union of all the virtual re-
lations in ¢; with the following steps :

(1) The schema of MQ.; is the union of all columns ap-
pearing in any query of ¢; plus an additional srel attribute
intended to encode which virtual relation a given tuple in
MQ.,; represents.

(2) The initial condition for M Q.; is the union of the queries
for nodes with edges incident on ¢; in Gg.

(3) The query MQ.; is the union of all of the queries of ¢;.
In each subquery, if a mention to a virtual attribute relation
gen_A appears, it is replaced with a reference to MQ.,;, and
a conjunctive condition is added to the where clause to en-
sure that srel = ¢‘A’’; similarly for edge relations.

Applying this algorithm to the ATG of Fig. 3, we get
two components after merging. One component consists
of Qedge.course.p're’req and Qedge_p'rereq_caursey and is shown
as the linear-recursive QC2 in Fig. 7. All the remaining
queries are in the other, which is not recursive.

We refer to the set of queries M Q. generated for an ATG o
as MQ,. It is easy to verify the correctness of the mapping:
for any ATG o : R — D and any relational instance I of R,
MQ,(I) computes gen_-A and edge_A_B for all attributes
$A and parent-child edges ($4, $B) in the XML view o ().

In response to relational updates AI, each edge relation
edge_A_B defined by SQL 99 queries M Q,, is updated via in-
sertions and deletions. Insertions and deletions over all edge
relations are collected into two sets E' and E™, respectively.
The two sets ET and E~ are sent to the middleware main-
taining the external tree, as described in the last section. As
mentioned in the introduction, this approach assumes that
the underlying DBMS incrementally computes edge changes
E* and E~ and further that these incremental changes can
be captured, for example with triggers.

5. Bud-Cut Incremental Evaluation

As discussed in the introduction, the reduction approach
is not practical for middleware-based XML publishing since
it depends on a combination of features not yet found in
even the most advanced commercial DBMSs, while middle-
ware should depend on only the most common features. This
observation motivates us to propose the bud-cut approach to
incrementally evaluating ATGs ¢ : R — D, which does not
require the underlying DBMS to support with...recursive.

A middleware system based on the bud-cut mechanism is
depicted in Fig. 8. The system interacts with an underlying
DBMS and maintains a hash index H and a subtree pool for
the external XML view T (o(I)) as described in Sect. 3. It
responds to a relational update AI in three phases. The
first phase, bud-cut generation, identifies the portions of the
existing tree that will be affected by the updates AI, and

create view old_course as
select * from course
where not exists ( select 0 from Acourse dc
where dc.cno = course.cno );

AQedge_prereq_couTse:
select p.cnt, gen_id(gp), gen_id(c.cno, c.title, 1),
c.cno, c.title, 1 as tag

from gen_prereq gp, Aprereq p, course c
where p.cnol = gp.cno and p.cno2 = c.cno
union

select c.cnt, gen_id(gp), gen_id(c.cno, c.title, 1),
c.cno, c.title, 1 as tag

from gen_prereq gp, old_prereq p, Acourse ¢

where p.cnol = gp.cno and p.cno2 = c.cno

Figure 9: Incremental query for bud generation.

propagates Al to XML changes to the ezisting nodes in 7.
Nodes created in this phase are buds, i.e., they are marked
unezrpanded; and nodes to be removed are cuts. The second
phase, bud completion, constructs subtrees under buds (and
generates new buds), taking advantage of ATG properties
to avoid recomputation and reusing existing subtrees when
possible. The third phase, garbage collection, runs after bud
completion is finished and removes unreachable subtrees.
While requiring several round-trips between the middle-
ware and the DBMS, this approach is able to exploit other
optimizations by taking advantage of the specifics of ATG se-
mantics and XML views. In particular, as observed in Sect. 3,
since the value of a subtree, ST(A,t), is determined by the
tuple value t of the semantic attribute of the subtree’s root
node, changes to the children of the existing nodes in the
tree can be computed by a fized set of non-recursive queries.
Furthermore, any new subtree ST(A,t) can be reused and
thus needs to be computed at most once. In addition, the
bud-cut approach allows the update process of the exter-
nal tree T to run in parallel with the computation of XML
changes AT, thus improving the response time. This last
point leads to a variety of options for lazy evaluation of in-
cremental updates. That is, the middleware can optionally
defer complete processing of updates until the subtrees af-
fected by those updates are accessed. When the external
view is materialized as an in-memory tree, it is possible to
support tree navigation concurrent with processing [7, 23].

5.1 Implementation of Delta SQL Queries

Assuming the existence of virtual attribute relations, the
first step is to derive two sets of incremental (nonrecursive)
SQL queries from edge-generating queries ER(o). These two
forms of incremental queries will be used in the bud-cut gen-
eration phase and the bud-completion phase, respectively.

Incremental queries of the first form are derived as fol-
lows. For each query Qeqge_a.B in ER(c), we define a bud
generating query formed by adding all the columns of the
attribute $B to the select list of Qegge_a_B. An incremental
form of this bud-generating query, AQc4ge_a_B, is then cre-
ated by using a counting method like [15]. In a nutshell, [15]
associates a count with each tuple in a view to keep track
of the number of alternative derivations of the tuple via the
view, and computes updates to the view, namely, insertions
and deletions of tuples, by incrementing or decrementing the
counts of its tuples in response to changes to base relations.

Since the method of [15] is assumed to execute in the
DBMS, it assumes access to both I and I&® AI. However, our
middleware system is separate from the DBMs and can only
access I ® AI. To find I, for a given relation, R;, we assume
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AQe;ge_prereq_couTse(BUdP““‘l) °
select gen_id(gp), gen_id(c.cno, c.title, 1 as tag),
c.cno, c.title, 1 as tag
from Budprereq gp, Prereq p, course c

where p.cnol = gp.cno and p.cno2 = c.cno

Figure 10: Incremental query for bud-completion.

the existence of a change table AI; that holds AT restricted
to R; as well as a count cnt with the value either “+1” or
“-1” to indicate an insert or delete. Further, we assume that
AI; has already been applied to I;, the instance of R; in I.
In order to simulate the pre-image of I;, we define a view
old_R; for each relation R; € R, which simply selects tuples
of I; that do not appear in AI;. It can be implemented
efficiently if AJ; is small and is indexed on the key of R;.
For example, Fig. 9 gives the incremental bud-generating
query for edge_prereq_course, which is derived from the

query Qedge_prereq_course Dy using the counting method of [15].

It computes updates to edge_prereq_course in response to
changes Acourse and Aprereq. Observe that in addition to
edges of edge_A_B, the query also returns the correspond-
ing $B values. A query AQ.age_a_B is typically a union of
several queries each incorporating the effects of changes in
one of the base relations referenced by Qcige_a_B.
Incremental queries of the second form are a mild exten-
sion of ER(c). For each Q.qge_ap in ER(c), we define
an incremental bud-completing query AQE;‘;E_A_B(BudA) to
compute changes to edge_A_B in response to a set Buda of
insertions to the attribute relation gen_A. The query is de-
rived from Q.4ge_4_p by substituting Buds for gen_A and
by adding all the columns of the attribute $B to the se-
lect list of Q.qge_a_p- It computes the edges of the newly
inserted A-nodes in Buda. In contrast to the incremental
bud-generating query AQcdge_a_B, the incremental query
A E;‘;e_A_B(BudA) takes Buds as a parameter and does not
access gen_A; furthermore, it uses the new relation I & AT
without requiring the old I. For example, Fig. 10 shows
the incremental bud-completing query of Qcdge_prereg_course;
which assumes that course has been updated by Acourse.

5.2 Bud-Cut Generation

Having derived the incrementalized SQL queries, this phase
proceeds as follows:
(1) The incremental bud-generating queries AQcqge_a_p are
executed in the DBMS, yielding changes to the edge relations:
a set of insertions E* and deletions E~.
(2) The sets (E*, E™) are transmitted to the middleware
and posted against the tree T', as described in Sect. 3. More-
over, the $A-value of each new A-node added to T is also
added to Buda, a set of buds of type A. An A-node is
marked unezpanded if its $A value is in the Buda set.
(3) The bud-cut approach does not require the attribute re-
lations to be materialized in the DBMS since they can be
computed from the hash table and the subtree pool in the
middleware. To speed up the response time with a tradeoff
of space, we treat these relations as views maintained by the
DBMS. In the latter case, the changes computed in step (1)
above also update these views; furthermore, in step (2) tu-
ples in Bud4 are sent to the DBMs and inserted into gen_A,
for all element types A in the ATG.

It should be remarked that the bud-cut-generation phase
updates the parent-child edges of all the ezisting nodes in the
XML view T in response to relational changes AI. Thus all

the edge deletions are handled in this phase, by evaluating
the incrementalized sQL (bud-generating) queries of ER(c)
once. Note further that nodes disconnected by the edge cuts
are not removed from H-index or the tree but instead remain
in the subtree pool pending reuse during bud generation.
Garbage collection of the nodes that have been disconnected
from the tree will be handled by a background process after
the bud-completion phase, as described in Sect. 3.

A complicated DTD may lead to a large number of incre-
mental bud-generating queries. For an given small relational
change AI, however, one only needs to evaluate those that
refer to a relation affected by AI. Techniques [21, 6] for
identifying queries irrelevant to AI can further reduce the
number of bud-generating queries that need to be evaluated.

Example 5.1: Recall the ATG o defined in Fig. 3. Assume
that an XML tree oo(I) of a registrar database I is main-
tained by the middleware. Consider relational changes AI:
deletion of a CS course from the course relation, along with
deletions from prereq and enroll accordingly. Given this,
the bud-cut-generation phase computes only E~, which con-
sists of deletions of edges (db,course), (course,prereq), etc.
These changes are made to the XML tree oo (I) in this phase.
Note that no buds are generated, i.e., Budp is empty for
all B in the ATG. In other words, although the relational
changes have impact to the XML tree at an arbitrary level,
they are captured in the bud-cut-generation phase by eval-
uating a fixed number of incrementalized SQL queries.

On the other hand, if AT is to update the name fields of
some student tuples, then it involves both deletions and in-
sertions, i.e., Budstudent is nonempty and consists of student
buds. The bud-cut-generation phase handles deletions, and
the next phase, the bud-completion phase, proceeds to gen-
erate subtrees of new student buds. a

5.3 Bud Completion

The previous bud-cut-generation phase creates sets Buda
consisting of the $ A-attribute values of new A-nodes for each
element type A in the ATG, and the bud-completion phase
is to produce the subtrees of these buds. The process may
further generate new buds, but does not incur deletions.

The processing of bud completion is conducted by Algo-
rithm eval, given in Fig. 11. The algorithm takes Buda’s
from the generation phase as input, and processes each non-
empty Buda based on the production p = A — « and its
associated rule(p) (cases 1-4), generating children of these
A-elements. For example, in case 3, it processes a given set
Buda as follows. It first finds the edges of the A nodes in
Bud4 that are to be inserted into edge_A_B, by evaluating
the incremental bud-completing query AQ?;;e_A_B(BudA) in
the DBMS. It then updates the children lists of these A nodes
in the subtree pool T, taking advantage of the H-index and
id_A. Then, for each B child ¢d_B of such an A-bud id_A, it
invokes the procedure process(B, id_B) to inspect whether
there already exists an entry for the node (B, id_B) in the
hash index H. If so, it simply adds a cross edge (id-A, id_B)
instead of recomputing the subtree of (B, id_B); otherwise,
it creates a new H-entry for (B, 1d_B) and adds the attribute
value $B of id_B to Budp. This yields Budg, the set of new
B-buds that will be further expanded at the next level of
the tree. Note that to populate Budg we need the attribute
values $B of these newly inserted B nodes.

Observe the following properties of Algorithm eval.



Input: newly inserted nodes Bud 4 for all element types A in o.
Output: completed subtrees for all nodes in Bud 4’s.

1. repeat

2. for all nonempty Bud4 with A in ¢ do

3. case the production p = A — « of

4. (1) A> Bi,...,Bp:

5. for each tuple ¢ in Bud 4 do

6. for ¢ from 1 to n do

7. $B; := fi(t); /* fi in rule(p) for $B; */

8. process(B;,$B;);

9. let v = H(A,t).ptr;

10. v.L := (B1,9en4d($B1),...,Bn, genid($By));
/* gen_d: Skolem function */

11. Bud 4 := 0

12 (2) A= Byi+...+ By

13. for each tuple ¢t in Bud4 do  /* f in rule(p)*/

14. evaluate f(t) to find the unique $B; # null;

15. process(B;,t);

16. let v = H(A,t).ptr;

17. v.L := (B, t);

18. Bud 4 := 0;

19.  (3) A— B*:

20. X:= AQZYS, 4 _p(Buda); /* sending Buda to DBMS */

21. /* executing the incremental edge-generating query™*/

22. for each tuple (id_A,id_B,$B) in X do

23. let v = H(A,id_(A)).ptr;

24. if (B, 4d_B) is not in v.L

25. then insert (B, 4d-B) into v.L;

26. process(B, $B);

27. Bud := 0;

28. (4) A — str:

29. for each tuple ¢ in Bud4 do

30. let v = H(A,t).ptr;

31. v.L := str (t); /* computes pcpara from ¢ */

32. Bud := 0;

33. until Budy = 0 for all A in o3

Procedure process(A4,t)

Input: element type A, tuple ¢t as a value of $A.
Output: modified index H, subtree pool and the sets Bud 4.

tid := gen_id(t);  /*gen_id: Skolem function*/
if (A, tid) is an entry of H

then return;

create a node v = (A, tid,[ ]) in the subtree pool;
create an entry (A,tid) in H;

H(A,tid).ptr := &v;  /*address of v*/
H(A,t).L :=1]; /* empty list */

Bud4 := Buds U {t}; /* newly created nodes */
return;
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Figure 11: Algorithm eval

(1) At each iteration (level), any paths in the XML view that
begin at the root and do not encounter a bud are guaranteed
to be correct, and thus partial results of the new XML view
o(I & AI) can be exposed to the users in parallel with the
computation of AT.

(2) It minimizes unnecessary computations via the proce-
dure process: it reuses subtrees that has been computed
either by Algorithm eval or earlier for the old view o(I).
Thus, each bud is computed at most once. The reuse of
the previous computations is possible since no nodes are re-
moved from the H-index or subtree pool at this stage.

(3) The bud-completion phase does not need materializa-
tion of the attribute relations, since all the $A-values that
AQ?;‘;G_A_B needs are in Buda, not in gen_A. Note that
only case (3) in Algorithm eval needs to access the DBMS.

(4) The procedure process also ensures that algorithm eval
always terminates, no matter whether the input ATG has
exception handling or not. Specifically, if a descendant lv of
an A-node v with attribute value $A4 is also an A node with
the same $A value, the node lv is not created since there
is already an entry for (A,$A) in the H-index; instead, any
edge to lv is treated as a cross edge and linked to v. Thus
no infinite computation is incurred.

Example 5.2: Consider again the ATG 0o and relational
changes AI that update the name fields of some student tu-
ples. The bud-cut-generation phase generates a set Budstugent
consisting of these updated student tuples, generates new
student buds for these tuples, and redirects affected edges to
these new nodes. The bud-completion phase completes the
subtree of these new students by creating new name fields
and reusing ssn fields for the students. This is done in one
iteration of the outer loop of Algorithm eval, although the
students may appear at arbitrary levels of the XML view.
Now consider changes AT consisting of insertion of a new
CS course to the course relation, along with insertions of
its prerequisites to prereq and insertions to enroll for the
students who have enrolled in the course. The bud-cut-
generation phase generates a set Budcourse consisting of the
newly inserted course tuple, creates a new node c represent-
ing the course, and adds an edge from the root db to c.
The bud-completion phase takes Budcourse as input and con-
structs the subtree of ¢. Since all the prerequisites of ¢ are
already in the XML view, the subtree of ¢ can be completed
in two iterations of the outer loop of Algorithm eval. In
the first iteration only Budcourse is nonempty, and the algo-
rithm creates new cno, title, prereq, type and takenBy
children of ¢. The second iteration completes their subtrees
by reusing the existing course and student nodes. Since
no new nodes are generated in the second step, the iteration
terminates, although the subtree under ¢ may have a depth
greater than two due to its prerequisites hierarchy. ]

5.4 Implementation Issues

Overlapping Phases. While the first and second phase
have been presented as completely separate, in practice it
may be advantageous to “pipeline” them. In particular,
consider the case where AI affects base tables for both
AQedge_a.B and AQ.dqge_B.c. It makes sense to compute
AQedge_a_p first, allowing the A nodes in the tree to be ex-
panded and thus gen_B to be incremented before AQ.qge_s.c
is executed. This follows the observation in [15] that incre-
mental queries should be evaluated according to their “stra-
tum number”, which reflects dependency relationship.

Query Merging. Query merging has been proved useful
for systems to publish relational data in XML [11, 4]. The
idea is to reduce the number of queries issued to the DBMS
by merging multiple queries into a single, larger query via
outer-join/outer-union. Query merging can help decrease
the communication costs between the middleware and DBMS,
while also potentially diminishing query processing time and
execution overheads.

The generation of subtrees under buds is similar to the
original process of ATG generation [4], and query merging
can be used in the bud-completion phase to merge multiple
edge-generating queries of the form AQ?;;E_ 4_g(Buds) and
AQ?;‘;e_B_C(Bud B) into one. However, the reuse of existing
subtrees is an important difference, and direct application
of the merging techniques for ATGs [4] may lead to unnec-



table cardinality | tuple size
course 1 40 bytes
prereq 1-3/course 8 bytes
student 100 20 bytes
takenby 5-10/course 8 bytes
taughtby | 1/2 courses 8 bytes

Figure 12: Table sizes

essary recomputations. Consider an edge (a,b) generated
by AQE;‘;e_ 4p- If node b already exists, then there is no
need to recompute its subtree, and b should not be included
in Budp for the computation of A E;EE_B_C(BudB). This
can be avoided by adding a condition in the where clause of
A El‘j‘;e_B_C(BudB), ensuring that b is not already in gen_B.
With this mild extension, one can use the cost model and
merging algorithms of [4] to determine what queries to merge
before Algorithm eval is executed, and thus further opti-
mize generation of subtrees under buds. The tradeoff is that
the attribute relations need to be materialized in the DBMS.

6. Experimental Results

Our experimental evaluation focuses on the effect of database

and update size on the performance of our approach and on
the effectiveness of the proposed subtree caching strategy.

We build the source database based on the schema of Ex-
ample 2.2, but with an additional taughtby table giving in-
stances of professors teaching courses. The database size is
given in terms of the number of courses, with scaling factors
for other tables given in Fig. 12. A smaller pool of f% of the
courses are used to initially build the tree. In effect, f con-
trols the probability a new prerequesite will exist in the tree
already. For the recursive part of the schema, between one
and three random prerequesites with lower cnos from the
pool are generated for each course. The maximum depth of
this recursive part is limited to 8 levels of XML nodes.

An update consists of inserting or deleting a course and
its associated prerequisites. Fixed size batches of meaningful
updates, w = AI, are generated by ensuring that inserts are
not duplicates and that deleted courses are present. Since
deletes in our system generally execute much faster than
inserts, w is constrained to have 50% inserts unless stated
otherwise. The locality of updates is controlled by selecting
the updates in w from a random pre-generated “universe,”
S, of courses. When S is smaller, the updates in w are
more related. The parameters and their default values are
summarized in Fig. 13. Experiments are performed by run-
ning sequences of such batches for two workloads W1 and
W2, and using bud-cut to propagate the changes to the ex-
ternal tree. The first workload, W1, consists of executing
such batched updates against our example ATG, gg. A sec-
ond workload W2 modifies oo to restrict prerequisites to
courses taught by instructors from the computer science de-
partment. Thus, W2 introduces a join to taughtby in the
recursive part of the view.

The experiments were run on a system with a 2GHZ Pen-
tium 4 processor with 1G bytes of RAM; they were conducted
with a large (256 MB), warm DBMS buffer cache. While in-
cremental update may reasonably avoid disk access since
the relevant data was just updated, fully cached operation
for document publishing is also reasonable, at least for pub-
lished XML data up to a few tens of megabytes in size, given
modern database configurations. Similarly, the external XML
tree (see Sect. 3) is fully cached in RAM on the same sys-
tem. Each experiment was run five times and the average

Symbol | Meaning Default val.

S the “universe” of the updated 300
courses

f the percentage of S in the 50%
published XML view

w a unit of work containing |w| = 100
both insertions and deletions

1 the database size |I] = 10K

Figure 13: Table of symbols

is reported here. All numbers obtained for each average are
within 6% of the average value. Unless otherwise noted, we
used the proposed caching strategy.

We compare the cost of incremental update against the
cost of full tree recreation for a variety of database sizes.
We scale the database by varying |I| from 100 to 10K, and
setting |w| to 4% of |I|. For this experiment, locality is
not considered (S = I, f = 100%). Figure 14(a) shows
the resulting time with |I| on a log-scale for workloads W1
and W2. Not surprisingly, incremental update far outper-
forms full reconstruction for small updates once the overall
database size gets appreciably large. Note that incremental
update for W2 is faster than for W1 since the tree is sig-
nificantly smaller (and thus less update work in the tree is
needed).

Fixing |I| = 10K, we vary |w| and study the behavior
of incremental update vs. full tree recreation. The result is
presented in Fig. 14 (b). As this figure shows, for W1 and
W2, bud cut scales nicely with the size of the change in the
source database, |w|. We note that the bud-cut approach
is sensitive to the selectivity of the ATG queries, and low
selectivity leads to substantial activity on the hash index in
the subtree pool. Accordingly, the incremental update and
the full tree recreation for W1 and W2 cross when 10% and
80% of the database is updated, respectively.

To investigate the impact of the subtree pool, we evaluate
the performance impact of turning it off. We fix |w| = 100
and vary |S| from 100 to 600 (decreasing the locality of up-
dates as S grows) for W1. (In this experiment, the percent-
age of inserts in w is allowed to vary.) Finally, we consider
two values of f, 50% and 80%, to control the probability that
a given subtree will already appear in the tree. The results
are shown in Fig. 15(a), where each point represents the av-
erage of 20 such experiments, with garbage collection fired
after each w. As expected, the impact of subtree caching is
greatest with smaller values for |S| and f. With f = 50%,
the impact is substantial across the range. However, the
curves for f = 80% are rather flat, since most cached sub-
trees are small due to “natural caching” by the rest of the
tree.

While in Fig. 14(b) we compare the size of the change in
the source database to the time taken, it is also interesting
to consider the size of the change in the output, the XML
tree, and compare this to the time taken for the incremental
update. An experiment to investigate this relationship is
shown in Fig. 15(b) (for workload W1). To capture this,
we output the XML tree before and after the incremental
update w. We then use X-Diff [32] to produce an edit script
converting the old tree to the new tree, and measure its size
as an approximation of |AT|. Furthermore, |w| remains 100,
f is 50% and |S| is set to 300. This experiment shows that
bud-cut also behaves reasonably well with respect to output
size, and further, that the subtree caching optimization (in
combination with the graph-oriented storage model) tends
to be more effective exactly when an incremental update to
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the database causes a large change in the output tree.

7. Related Work

Incremental computation has proved useful in many ar-
eas (see [27] for a survey). In particular, incremental view
maintenance algorithms have been extensively studied for
relational, datalog (see [13] for a collection of readings) and
object-oriented views (see, e.g., [12, 18]). On the one hand,
those algorithms are not directly applicable to incremental
evaluation of XML publishing. Unlike traditional database
views, XML views (ATGs) are defined by associating a collec-
tion of SQL queries with a (possibly recursive) DTD. These
views are stored outside of DBMS, and their incremental
maintenance is to propagate relational group updates to
external XML trees. On the other hand, our incremental
evaluation algorithms leverages previous work for traditional
databases. Our reduction approach relies on the support of
incremental maintenance of SQL 99 views by the underlying
DBMS, and our top-down mechanism makes use of the count-
ing algorithm of [15] to incrementally evaluate SQL queries.

We now draw the analogy of our top-down ATG evaluation
algorithm to incremental evaluation of recursive queries. A
number of algorithms have been developed for evaluating
recursive datalog queries and prolog programs, notably [15,
29]. These algorithms typically involve a first phase where
conservative deletions are conducted, followed by a second
phase where insertions are performed, which may restore
information deleted in the first phase. In contrast, our algo-
rithm avoids recomputation between the two phases to an
extent by reusing subtrees computed earlier and by deferring
removal of disconnected subtrees. For example, consider an
extreme case where the conservative deletion involves dele-
tion of the root of the tree, and thus the entire tree, whereas
in the second phase the tree is reassembled with somewhat
differing children of the root. While this may require recon-

struction of the entire tree for the previous algorithms [15],
our algorithm is capable of making maximum reuse of ex-
isting subtrees without doing unnecessary recomputations.
Another difference between our algorithm and previous ones
is that the conservative deletion phase repeatedly executes
deletion operations for an unbounded number of times [15,
29], whereas by taking advantages of the semantics of XML
trees, our bud-cut-generation phase does all the deletions by
evaluating a fixed number of incrementalized SQL queries.

It is worth remarking that the possibility of encoding ATGs
with SQL 99 queries was first suggested by [17], but [17] did
not show how the encoding should be defined. It should be
mentioned that there is a big gap between XML trees com-
puted by an ATG and their relational encoding: while the
former can be exponentially large in the size of the rela-
tional database, the latter is bounded by a polynomial in
the database size. Thus an sQL 99 encoding of an ATG alone
does not suffice to compute XML trees defined via ATGs.

There have also been incremental maintenance algorithms
for semistructured views [1, 31, 33]. These algorithms are
developed for views defined with a nonrecursive query over
graph structures, and cannot be applied to ATG evaluation.

Incremental update of external views has been studied for
data warehousing [22, 30, 34] and web site maintenance [19,
20]. Techniques developed in this work are complemen-
tary to ours, addressing e.g., compensating queries to cope
with updates to decoupled sources, maintaining mediated
views via constrained rules, scheduling updates for a group
of views to maximize data quality, and deciding where to
materialize web views with respect to access and update
patterns.

There has also been a host of work on the self maintain-
ability of relational and datalog views (e.g., [21, 6]). We
plan to study techniques for detecting updates irrelevant to
XML views in order to optimize XML view maintenance.



The only work on maintaining XML views that we are
aware of is [10]. The views considered in [10] are defined
via a simple nonrecursive algebraic query over XML trees,
and as a result, maintenance of the views can be done via a
bottom-up traversal of the source XML tree. These views are
not capable of expressing ATGs, and the techniques of [10]
cannot be applied to incremental evaluation of XML publish-
ing of relational data. There has also been recent work on
incremental XML validation [26], which differs from our work
in that it focuses on validating XML documents in response
to a single insertion or deletion of XML subtrees, rather than
propagation of relational (group) updates to XML views.

Finally, the strategy commonly used by XML publishing
middleware that pushes simple queries to the DBMS and con-
ducts the rest of the work for composing a view at the mid-
dleware traces back to query processing for distributed re-
lational databases [5]. Again recursive XML views introduce
new challenges not encountered in the relational context.

8. Conclusion

‘We have proposed two approaches for incremental evalua-
tion of ATGs [4]. The reduction approach is based on a non-
trivial translation of ATGs to SQL 99 queries with recursion.
Upon the availability of the support for incremental main-
tenance of SQL 99 views by commercial DBMS, the reduc-
tion approach leads to a convenient mechanism to maintain
external XML views without requiring sophisticated middle-
ware implementation. In the absence of high-end DBMS fea-
tures, the bud-cut approach provides novel algorithms and
a middleware system for efficient incremental maintenance
of XML views. The algorithms and system minimize unnec-
essary recomputations by capitalizing on the ATG seman-
tics and optimization techniques developed for XML pub-
lishing. We have implemented the bud-cut middleware, and
our experimental results demonstrate that our approach, al-
gorithms and optimization techniques are effective for main-
taining XML views. To the best of our knowledge, our work
yields the first effective framework for incremental evalua-
tion of schema-directed XML publishing of relational data.

We plan to extend the current work in a number of direc-
tions. First, we note that our assumption of an in-memory
hash table limits the technique for extremely large docu-
ments cached in middleware. We plan to address this by
developing a streaming version of the incremental update so
that an existing document can be read from disk and up-
dated in a single pass. Second, the more complicated XML
Schema standard is gaining popularity, and our next step
toward handing XML Schema-directed publishing will be to
extend our bud-cut algorithm to accommodate XML integrity
constraints. Finally, we are planning to extend the present
algorithms for use in schema-directed XML integration [3].
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