

Edinburgh Research Explorer

Fence Scoping

Citation for published version:
Lin, C, Nagarajan, V & Gupta, R 2014, Fence Scoping. in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis: New Orleans, Louisana. SC '14, IEEE,
pp. 105-116. DOI: 10.1109/SC.2014.14

Digital Object Identifier (DOI):
10.1109/SC.2014.14

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1109/SC.2014.14
https://www.research.ed.ac.uk/portal/en/publications/fence-scoping(20e72d3c-29f6-400f-bba9-ed898d734629).html

Fence Scoping

Changhui Lin
CSE Department

University of California, Riverside

linc@cs.ucr.edu

Vijay Nagarajan
School of Informatics

University of Edinburgh, UK

vijay.nagarajan@ed.ac.uk

Rajiv Gupta
CSE Department

University of California, Riverside

gupta@cs.ucr.edu

Abstract—We observe that fence instructions used by pro-
grammers are usually only intended to order memory accesses
within a limited scope. Based on this observation, we propose
the concept fence scope which defines the scope within which
a fence enforces the order of memory accesses, called scoped
fence (S-Fence). S-Fence is a customizable fence, which enables
programmers to express ordering demands by specifying the
scope of fences when they only want to order part of memory
accesses. At runtime, hardware uses the scope information
conveyed by programmers to execute fence instructions in a
manner that imposes fewer memory ordering constraints than
a traditional fence, and hence improves program performance.
Our experimental results show that the benefit of S-Fence hinges
on the characteristics of applications and hardware parameters. A
group of lock-free algorithms achieve peak speedups ranging from
1.13x to 1.34x; while full applications achieve speedups ranging
from 1.04x to 1.23x.

Keywords—Memory models, Fence instructions, Scope

I. INTRODUCTION

Modern multiprocessor systems usually adopt shared mem-
ory as the primary system level programming abstraction,
as it provides all processors with a single view of data
and it is relatively easy for programmers to use. However,
the reordering of accesses to shared memory may result in
unintuitive program behavior. Hence, various memory con-
sistency models [2] have been proposed to specify contracts
between programmers and systems (compiler and hardware).
Each of these models involves a balance between the ease of
programming and high program performance. To achieve high
performance, many manufacturers typically implement relaxed
memory consistency models by allowing parts of memory
accesses to be reordered, e.g., total store order (TSO), relaxed
memory order (RMO), release consistency (RC), etc [2]. On
the other hand, to prevent reordering of memory accesses
that can otherwise be reordered under the supported memory
consistency model, systems also provide fence instruction (also
known as memory barrier) to constrain the reordering. This
is important for the correctness of multithreaded programs
running under relaxed memory models and are used to ensure
that the program execution is consistent with the programmer’s
intention.

For shared memory programming, although locks remain
the de facto mechanism for concurrency control on shared-
memory data structures, it is not easy to design scalable
algorithms based on locks, as they introduce problems such
as priority inversion, deadlock and convoying [39]. Therefore,
non-blocking algorithms [6], [21] have been developed to

avoid these problems by eschewing mutual exclusion, and
improve scalability and robustness while still ensuring safety.
For example, non-blocking work-stealing [10] is a popular
approach for balancing load in parallel programs. Cilk [16]
bases on work-stealing to support load balancing of fully
strict computations. X10 [11] extends the the work-stealing
approach in Cilk to support terminally strict computations.
Other commonly used concurrent algorithms include non-
blocking concurrent queue [33] which is implemented in Java
class ConcurrentLinkedQueue, Lamport queue [28], Harris’s set
[20], etc.

Process Data

Control

 Data

Access

Concurrent algo.

Fig. 1. A common data access pattern.

In these non-blocking algorithms, fence instructions and
atomic instructions are required to ensure correctness when
they are executed under relaxed memory models. However,
traditional fence instructions order memory accesses without
being aware of the programmer’s intention. In practice, pro-
grammers typically use fence instructions to ensure ordering
of specific memory operations, while others do not have to
be ordered. In other words, the effect of fences is supposed
to be limited in a certain scope. Programs using concurrent
algorithms usually exhibit the pattern shown in Figure 1.
Such programs repeatedly access shared data controlled by
concurrent algorithms and process the accessed data. The
fences in the concurrent algorithms are supposed to guarantee
the correct concurrent accesses to shared data, without being
aware of how the accessed data is processed later. However,
due to their semantics, traditional fences also order memory
accesses which belong to the part that processes the data. That
is, if long latency memory accesses are encountered during
processing of data, the fences in the concurrent algorithms have
to wait for them to complete, incurring unnecessary stalling at
fences. To prevent this, we need mechanisms to differentiate
memory accesses that must be ordered by a fence from the
rest of memory accesses.

Inspired by the above observation, we propose the concept
fence scope which constrains the effect of fences in programs.
We call such a fence as scoped fence, S-Fence for short. S-

SC14, November 16-21, 2014, New Orleans, Louisiana, USA
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

1 void put(TASK task){
2 tail = TAIL;
3 wsq[tail] = task;
4 FENCE //storestore
5 TAIL = tail + 1;
6 }

7 TASK take(){
8 tail = TAIL −1;
9 TAIL = tail ;

10 FENCE //storeload
11 head = HEAD;
12 if (tail < head){
13 TAIL = head;
14 return EMPTY;
15 }

16 task = wsq[tail];
17 if (tail > head)
18 return task;
19 TAIL = head + 1;
20 if (! CAS(&HEAD,
21 head,head+1))
22 return EMPTY;
23 TAIL = tail + 1;
24 return task;
25 }

26 TASK steal(){
27 head = HEAD;
28 tail = TAIL;
29 if (head ≥ tail)
30 return EMPTY;
31 task = wsq[head];
32 if (! CAS(&HEAD,
33 head,head+1))
34 return ABORT;
35 return task;
36 }

Fig. 2. Simplified Chase-Lev work-stealing queue [10].

Fence is a customizable fence which only orders memory
accesses in its scope, without being aware of memory ac-
cesses beyond the scope. In practice, programmers can use
such fences when they only intend to order part of memory
accesses, but not all of them, e.g., the concurrent algorithms
mentioned above. S-Fence enables programmers to specify the
scope of fences using customizable fence instructions. The
scope information is encoded into binaries and conveyed to
hardware. At runtime, hardware utilizes the scope information
to determine whether a fence needs to stall due to uncompleted
memory accesses in the scope. The key contributions of this
work are:

1) To the best of our knowledge, this is the first work that
explores the scope in which fences impose ordering of
memory accesses in hardware. We propose fence scope
and a new customizable fence statement scoped fence
(S-Fence). S-Fence is easy for programmers to use, and
enables programmers to convey ordering demands more
precisely to the hardware for performance improvement.

2) We propose a possible implementation of fence scoping
with current object-oriented programming languages. The
idea of fence scoping is consistent with the principle
of encapsulation and modularity of object-oriented lan-
guages. This makes it easy to incorporate fence scoping
to current popular object-oriented languages.

3) We describe the hardware design and compiler support for
S-Fence. It only requires minor modification to the cur-
rent hardware, and the compiler support is also straight-
forward. This makes scoped fence a practical solution for
refining the traditional fence to improve performance.

4) We conduct experiments on a group of lock-free al-
gorithms and the other group of full applications. The
results show that, the benefit of S-Fence hinges on the
characteristics of applications and hardware parameters.
Lock-free algorithms achieve peak speedups ranging from
1.13x to 1.34x; while full applications achieve speedups
ranging from 1.04x to 1.23x.

The rest of the paper is organized as follows. Section II
presents the background on fence instructions and a motivating
example. Section III proposes the concept fence scope and the
design of scoped fence (S-Fence) statements. Section IV and
Section V describe the two types of fence scopes and their
compiler and hardware support. The experimental results are
presented in Section VI. We discuss related work in Section
VII and conclude in Section VIII.

II. BACKGROUND AND MOTIVATION

A. Fence instructions

Modern multiprocessors implement relaxed memory con-
sistency models for achieving high performance. These sys-
tems provide fence instructions as a mechanism for selectively
overriding their default relaxed memory access order [2], [14].
A fence instruction ensures that all memory operations prior to
it have completed before the memory operations following it
are performed. Commercial architectures provide various fence
instructions, enforcing different memory orders, e.g., lfence,
sfence and mfence in Intel IA-32, customizable MEMBAR
instruction in SPARC V9, etc. In addition, atomic instructions
usually imply the same effect as fence instructions.

Fence and atomic instructions are important for enforcing
correctness of programs when they are executed on machines
that only support relaxed memory models. For example, im-
plementations of many lock-free concurrent algorithms have to
use fence and atomic instructions. [3], [22] have proven that,
under relaxed memory models, the use of fences or atomic in-
structions is inevitable for building concurrent implementations
of sets, queues, stacks, mutual exclusion, etc. However, fence
instructions are substantially slower than regular instructions.
The use of fence instructions can incur high overhead. For
example, Frigo et al. [16] observe that in an Intel multipro-
cessor, Cilk-5’s THE protocol spends half of its time executing
a memory fence. Hence, reducing fence overhead is beneficial
for the program performance.

B. Work-stealing queue: A motivating example

Figure 2 shows a simplified C-like pseudo code of Chase-
Lev work-stealing queue [10]. Work-stealing is a popular
method for balancing load in parallel programs. Chase-Lev
work-stealing queue implements a lock-free dequeue using a
growable cyclic array, which has three operations: put, take
and steal as shown in Figure 2. In the code, HEAD and TAIL

are two global shared variables which record the head and
tail indices of the valid tasks in the cyclic array wsq. The
owner thread can put and take a task on the tail of the queue,
while other thief threads can steal a task on the head of
the queue. Under sequential consistency, the algorithm will
execute correctly, complying with the semantics, i.e., each
inserted task is eventually extracted exactly once, either by
the owner thread or other thief threads. However, under relaxed
memory models, to guarantee the correctness of the algorithm,
fences have to be inserted to enforce the ordering of some

memory accesses [25], [32]. Under TSO, a store-load fence in
Line 10 is required to guarantee that no task is fetched by two
threads; while under PSO, one more store-store fence in Line
4 is required to guarantee steal does not return a phantom
task [32]. In addition, there is need for two compare-and-swap
instructions: at Line 20 and 32.

8 tail = TAIL 1;

9 TAIL = tail;

10 FENCE

11 head = HEAD;

2 tail = TAIL;

3 wsq

4 FENCE

5 TAIL = tail + 1;

1 task = wsq.take();

2 for (each neighbor of task)

3 if is not processed) {

4

5 wsq.put

6 }

(a) (b)

Fig. 3. Parallel spanning tree algorithm.

Let us consider an application of work-stealing queue –
parallel spanning tree algorithm, an important building block
for many graph algorithms [5], [34]. The parallel spanning tree
algorithm is discussed in [5], which uses work-stealing queue
to ensure load balancing because of the irregular nature of
graph applications. Here, we focus on how the work-stealing
queue is used. Figure 3(a) shows the core operations of the
algorithm that include calls to work-stealing queue functions
take and put. First a task is extracted from the work-stealing
queue (Line 1), then each unprocessed neighbor task’ of task
is processed (Line 4), and task’ is put into the work-stealing
queue (Line 5). Let us further expand these operations as
shown in Figure 3(b) (three blocks in (b) correspond to three
operations in (a)). We can see that there are two fences that
are executed. Consider the fence residing in put (Line 4).
The traditional fence semantics will require all its preceding
memory accesses to complete before the following accesses
can execute, including those in the blocks 1©, 2© and 3©. The
problem here is that, since graph applications usually do not
exhibit data locality, accessing neighbors of a node may incur
long latency cache misses. Thus, stores to arrays color and
parent in 2© can be long latency memory accesses, which leads
to a long stall time for the fence in 3©, even though accesses in
Line 2 and 3 can complete quickly. Moreover, these operations
are inside a loop, which imposes a significant impact on the
whole application performance. However, such stalls are not
necessary – the application runs correctly even if the fence
does not wait for memory accesses in 2© to complete. This is
because: (1) fences in the work-stealing queue algorithm are
only supposed to order memory accesses inside the algorithm
(e.g., in function put, the fence in Line 4 orders the stores in
Lines 3 and 5) – the implementers guarantee the correctness of
the algorithm without being aware of memory accesses beyond
the algorithm; and (2) the parallel spanning tree algorithm does
not rely on the fences inside the work-stealing queue algorithm
– the users call the functions put and take, but they ensure the
correctness of their applications on their own (e.g., Line 3 in
(a) tests whether a task is processed). In fact, the correctness of
parallel spanning tree algorithm is provable with some ordering

requirements under relaxed consistency models [5], which we
do not discuss here.

The above example shows how people program and ensure
correctness of their programs. The semantics of traditional
fence is too restrictive in that it orders all memory accesses
without differentiating them; thus, causing unnecessary stalls.
If a fence could differentiate the memory accesses it has to
order from the other accesses, there will be opportunities
to eliminate stalls while still enforcing program correctness.
Consider the memory accesses in 3© in Figure 3(b). Since
the queue is only occasionally accessed by thief threads, the
array wsq and shared variables HEAD and TAIL often reside
in the processor’s cache, as long as they are not kicked out by
conflicting cache lines. This indicates that memory accesses
in Lines 3 can often complete quickly. If the fence in Line
4 only needs to order data accesses related to work-stealing
queue, without waiting for accesses in 2© to complete, the stall
time due to the fence can be greatly reduced. The same also
applies to the fence in 1©. Thus, we introduce the concept of
scope for fences.

III. SCOPED FENCE

In this section, we propose scoped fence, S-Fence for short,
that constrains the effect of a fence to a limited scope. We first
define the semantics of S-Fence, then introduce the scope of
a fence and how programmers can specify the scope.

A. Semantics of S-Fence

S-Fence can be considered as a refinement of traditional
fence as it imposes more accurate constraints on memory
ordering. Recall that, the semantics of traditional fence requires
that all memory accesses preceding the fence must complete
before the memory accesses following the fence are issued.
However, S-Fence further limits the scope of the fence. We
adopt the following definition of S-Fence throughout the rest
of this paper.

S-Fence A S-Fence imposes ordering between memory
accesses in such a way that when a S-Fence is
executed by a processor, all previous memory
accesses in the scope of the fence are guaranteed
to have completed before any memory access that
follows the S-Fence in the program is issued.

In other words, if a memory access prior to the fence is
not in the scope of the fence, the fence does not need to wait
for it to complete. Although S-Fence can also be considered
as a finer form of traditional fence, it is different from other
finer fences in current commercial architectures [2], such as
mfence, lfence, and sfence in Intel IA-32 and customizable
MEMBAR instruction in SPARC V9. The existing finer fences
explore the ordering of previous load/store operations with
respect to future load/store operations, while S-Fence explores
the ordering of a subset of memory accesses that are in the
scope of a fence.

B. Scope of a fence

The scope of a fence defines the context in which memory
accesses should be ordered by the fence. We are all aware
of various scoping rules for variables. For example, function

scope is a commonly-used scope, where a locally defined
variable is only valid within the function; block scope is
a finer-grained scope, where a variable is made local to a
block of statements. Programming languages also offer various
constructs for controlling scope. Object-oriented languages,
e.g., C++ and Java, use class to group data and functions
that manipulate the data.

We will make use of class in object-oriented program-
ming languages to illustrate the concept of fence scoping.
However, in this work, we do not target any specific language,
but focus on exploring benefits of fence scoping. We would
like to provide means for fence scoping that capture its main
characteristics and are easy for programmers to understand
and use. Without loss of generality, we offer two types of
fence scoping, i.e., class scope and set scope. We also provide
programming support that allows programmers to specify
the fence scope they want to use, as shown in Figure 4.
There are three fence statements customized with parameters,
which define the scopes. The specified scope information will
be utilized by the compiler and conveyed to the hardware.
The first statement has no parameter. It simply represents a
traditional fence, which has a global scope. In the following
sections, we focus on class scope and set scope, as well as
corresponding programming, compiler, and hardware support.
In particular, class scope makes use of programming language
constructs to specify the fence scope; while set scope provides
a way for programmers to specify fence scope more accurately.

1. S-FENCE [global scope]
2. S-FENCE[class] [class scope]
3. S-FENCE[set, {var1, var2, ...}] [set scope]

Fig. 4. Customized fence statements.

Memory consistency models. Note that, the concept of S-

Fence does not assume a specific memory model. Fences are
still put into programs according to the underlying memory
models. The difference of S-Fence is that it further allows
to specify the scope of each fence, and such information
is conveyed to hardware to order memory operations more
accurately. Therefore, fence scoping is orthogonal to memory
models, although in our evaluation we consider RMO memory
model.

IV. CLASS SCOPE

The fence statement S-FENCE[class] is used to specify
that the fence has a class scope. The intuition of class scope
is that, since function members of the class operate on data
members of the class, fences in function members only have
to order memory accesses to the data inside the class – they
do not have to order those outside the class. In other words,
class scope contains all memory accesses to the data members
of the class; if the class has a data member of another class
(say A), then class scope also contains memory accesses to
the data members of class A and so on recursively.

More formally, Figure 5 shows the semantics of fences
with class scope. The semantics only focuses on the memory
operations and fence operations. We denote the set of all
memory operations by MemOp, and the set of all method
members by F. For each f ∈ F , C(f) denotes the class which
defines this method f . Moreover, Seq(F) denotes the set of

all finite sequences over F , s · t denotes the concatenation of
two sequences s and t, and [[s]] denotes the set of all distinct
elements in the sequence s. The semantics is presented in an
operational style with a set of inference rules. We use the
following semantic domains.

• FSeq ∈ Seq(F), which is used for recording nested
method invocation.

• Scope ∈ Class 7→ P(MemOp). Each class forms a
scope for the fences used in the class, and the class is
associated with a set of memory operations that have
to be ordered by these fences.

• pc ∈ PC, which is the program counter. We use
next(pc) to denote the instruction following pc.

The formulation in Figure 5 focuses on the effects in
processors, but omits the effects in memory subsystem, which
depends on the underlying memory models. These inference
rules are applied to a single process. They define the state
transition from 〈FSeq×Scope×pc〉 to 〈FSeq′×Scope′×pc′〉.
Components not updated in the rules are assumed to be
unchanged.

SCOPEENT
stmt(pc) = enter md f FSeq = s

FSeq′ = s · f pc′ = next(pc)

SCOPEEX
stmt(pc) = exit md f FSeq = s · f

FSeq′ = s pc′ = next(pc)

MEMOP
stmt(pc) = mop FSeq = s

∀f ∈ [[s]], Scope(C(f)) = Scope(C(f)) ∪ {mop}
pc′ = next(pc)

FENCE
stmt(pc) = fence FSeq = s · f Scope(C(f)) = ∅

pc′ = next(pc)

Fig. 5. Semantics of class scope.

The first two rules [SCOPEENT] and [SCOPEEX] show the
operations at the entrance and exit of a method containing
fences. The rule [MEMOP] shows that, when a memory
operation mop is encountered, it is added to its corresponding
scopes, which may include multiple nested scopes. We omit the
rules for removing memory operations from scopes when they
are completed, as this is done by the memory subsystem, which
can implement different memory models. The rule [FENCE]
shows that a fence can complete only when all memory oper-
ations in the corresponding scope have completed, indicated
by Scope(C(f))=∅.

Figure 6 shows an example of class scope. Suppose fences
at Lines 6 and 16 have class scope. Consider the memory
accesses to m1 and m2 in the class A, n1 and n2 in the class
B. The fence at Line 16 will order the accesses to n1 and n2,
as they are in class B; while the fence at Line 6 will order all
four memory accesses, as accesses to m1 and m2 are in the
class A and n1 and n2 are data members of class B accessed
by b.funcB() (Line 5).

Recall the algorithm of Chase-Lev work-stealing queue in
Figure 2. Assume those operations are implemented in a class.
To only order data accesses related to work-stealing queue, we
can apply class scope to the fences by specifying them as S-
FENCE[class], which forces the fences to only order memory

1 class A{
2 B b;
3 int m1, m2;
4 void funcA1(){
5 b.funcB();
6 FENCE

7 m1 = val0;
8 }
9 void funcA2()

10 {m2 = val1;}
11 }

12 class B {
13 int n1, n2;
14 void funcB(){
15 n1 = val2;
16 FENCE

17 n2 = val3;
18 }
19 }

Fig. 6. An example of class scope.

accesses inside the class. Hence, for the parallel spanning tree
algorithm in Figure 3, since the memory accesses in 2© are
out of scope of the fence in Line 4, the fence does not have
to wait for accesses in 2© to complete.

A. Implementation Design

We say a hardware implementation for S-Fence is con-
sistent with the semantics of S-Fence if it guarantees that
any execution in the hardware does not violate its semantics.
Obviously, the naive implementation is to consider S-Fence as
full fence, stalling the pipeline if there is any memory access
not complete prior to the fence. However, to take advantage
of S-Fence, the hardware should be able to flag whether a
memory access is in the scope of a given fence. Hence, the
main hardware support for S-Fence is in form of additional
bits, called fence scope bits, that are associated with each entry
of the reorder buffer (ROB) and store buffer.

1) Compiler support: To convey the scope information to
hardware, compiler has to incorporate it into binaries. We
assume that the compiler does not reorder memory accesses
across any fence. For class scope, we only need the extension
of Instruction Set Architecture (ISA) shown in Table I.

New fence inst. class-fence
Supporting inst. fs start, fs end

TABLE I. THE EXTENSION OF ISA FOR CLASS SCOPE.

First, we use a new instruction class-fence to represent a
fence with class scope. Second, for class scope, we have to
convey to hardware: (1) whether a memory access is in a class
scope; and (2) which scope a memory access belongs to. To
do this, we assign a unique ID to a class if it contains class-
scope fences in any of its function members, called cid. In the
generated binary, cid is incorporated into function members of
the class. In particular, we introduce two instructions fs start
(start of a fence scope) and fs end (end of a fence scope)
with cid as their operand to embrace each function. For each
public function, we insert fs start at the entry of the function,
and insert fs end for each exit. Note that, there might be
multiple exits for a function. At runtime, they behave as a nop
operation other than informing ROB to set bits properly. For
the remainder of the program, no extra work is done by the
compiler, e.g., they are compiled as using traditional compilers.

2) Hardware support: Figure 7 shows the hardware support
for class scope in an out-of-order processor core with a ROB
and a store buffer. All instructions are retired from the head

...

Store Buffer

Reorder Buffer

...

Fence Scope Bits (FSB)

cid FSB Entry

Mapping Table

...

Fence Scope Stack (FSS)

Fig. 7. Hardware support for class scope.

of ROB in program order. At the head of ROB, loads are
retired when they complete, while stores are retired to the
store buffer as soon as the value and destination address are
available. To support class scope, each ROB and store buffer
entry is extended with the fence scope bits (FSB) as shown in
Figure 7, to flag whether a memory operation is in the scope
of some fence. Besides, we use an auxiliary mapping table
to maintain the mapping from cid to FSB entry, and a fence
scope stack (FSS) to handle nested scopes properly. The key
step at runtime is to properly set the bits in FSB and check if
a fence has to stall the processor when it is encountered.

3) Setting fence scope bits: Each entry in FSB represents a
distinct scope. Memory accesses that belong to the same scope
of a fence set the same entry of FSB. Each set bit is cleared
when the corresponding memory access has completed. Note
that, at a given point in execution, the number of active fence
scopes can be quite large; thus possibly exceeding the limited
number of entries allowed by FSB. We must deal with this
situation in the hardware implementation.

1 fs start cid :
2 // operations in mapping table
3 if (cid recorded in mapping table)
4 current entry = map[cid];
5 else

6 current entry = a new entry available
7 in FSB;
8 map[cid] = current entry;
9 // operations in FSS

10 FSS.push(current entry);
11

12 fs end cid:
13 // operations in FSS
14 FSS.pop();

Fig. 8. Micro-operations on fs start and fs end.

The compiler-inserted instructions fs start and fs end are
utilized to flag memory accesses in the class scope of a fence.
Figure 8 shows the micro-operations on fs start and fs end.
(1) When the processor issues a fs start, it indicates the start
of a scope, and the operand is the cid of the scope. The
mapping table is first looked up to see if an FSB entry has
been assigned to this scope. If not, a new available entry is
used to flag this scope, and the mapping information is added
to the mapping table. Moreover, FSS is updated by pushing
the current FSB entry. Note that, FSS records the nested active

scopes, where the outermost scope is at the bottom of the stack
while the innermost scope is on the top of the stack. Hence,
the current scope in which instructions are being decoded is
on the top of the stack. The entries recorded in FSS determine
which FSB entries have to be flagged. When FSS is not empty,
a newly issued memory operation sets all FSB entries that
are contained in FSS. By doing this, when an inner scope
is flagged for an instruction, all of its outer scopes are also
flagged. This is for the ease of next step for fence issue (recall
that a class-fence also has to order memory accesses in its
inner scope), as well as removing mapping information when
an entry is no longer used for a scope. FSS does not change as
long as the processor does not encounter a fs start or fs end,
and hence the processor continues flagging memory accesses in
the same FSB entries. (2) When the processor issues a fs end,
it indicates the end of current decoded scope, and the top of
FSS is popped. (3) As for the mapping table, the mapping
information is maintained as long as the corresponding scope
is active. When bits in the same entry for all FSBs have
been cleared, the processor looks up the mapping table and
invalidates the mapping information with such FSB entry.

Class scope Set scopeClass scope Set scope

I0

fs_start a MT {a 0}

FSS 0I0

I1

fs start b
MT {a 0, b 1}

I2

I3

_

inner

outer

FSS 0 1

I4

fs_end b
MT {a 0, b 1}

FSS 0
I5

I6
fs end a

FSS 0

MT {a 0, b 1}

I7

0 1 2 3

fs_end a { , }

FSS

0 1 2 3

Fig. 9. Setting fence scope bits.

Figure 9 illustrates how we flag memory accesses for
class scope. Here, we only show FSBs for ROB – each row
corresponds to the FSB of a ROB entry. For simplicity, we only
show memory operations, which are decoded in program order
and allocated in the entries of ROB. Suppose there is a fs start
before Instructions 0 and 2, and a fs end before Instructions
5 and 7. Recall that fs start and fs end should appear in
pairs at runtime, and each pair embraces the instructions in
its scope. Hence, we have two scopes here and they are
nested, the inner one and the outer one. In the figure, the
right side shows how the states of mapping table (MT) and
FSS change as instructions are decoded. The line with arrow
crosses the entries for current scope, and the highlighted entries
in Columns 0-1 will be set to flag the memory accesses that
are in the class scope of a fence. Initially, no memory access is
flagged, and both the mapping table and FSS are empty. Since
a fs start with cid a is encountered before Instruction 0, the
processor starts to use Entry 0 to flag the following memory
accesses. The mapping a → 0 is added to the mapping table,
and Entry 0 is pushed to FSS. Before Instruction 2, another
fs start with cid b is encountered. The processor uses a new

entry (Entry 1) for the inner scope, and the mapping table
and FSS are also updated accordingly. Now, FSS contains two
entries (0 and 1). For the following memory accesses, both
Entry 0 and 1 are set, as Entry 1 represents the current scope
and Entry 0 represents the outer scope. Since there is a fs end
before Instruction 5, the top of FSS is popped, with only Entry
0 remaining in FSS. However, the mapping table remains the
same, as a mapping is only removed when all memory accesses
in the corresponding entry have completed. Likewise, fs end
before Instruction 7 indicates the end of the outer scope. FSS
is emptied, and hence no memory access is flagged afterwards.

Handling excessive scopes. There can be multiple simul-
taneously active fence scopes. Moreover, at a given point in
execution, the number of active fence scopes may be too
large for FSB to assign a different entry to each scope, i.e.,
FSB does not have enough entries. If the number of active
scopes does exceed the number of FSB entries, for each newly
encountered scope, we simply choose one specific FSB entry to
flag memory accesses. The mapping table and FSS are updated
in the same way. The difference is, in the mapping table,
multiple fence scopes can be mapped to the same entry now.
Such implementation is still consistent with the semantics of S-

Fence, as it only places stricter constraints on memory ordering
due to fences. However, it is unlikely that a program will
involve too many simultaneously active fence scopes. Thus,
we only need to maintain a small number of FSB entries in the
hardware, and it almost does not affect program performance.

In some rare cases, the mapping table or FSS can be full.
That is, when we encounter a fs start instruction and there
is no space for mapping table or FSS to add a new entry.
To handle this, we maintain a counter to indicate how many
additional scopes are encountered after mapping table or FSS
is full. The counter increases by 1 with fs start, and decreases
by 1 with fs end. During the period when the counter is
not zero, each encountered fence will behave as a traditional
fence, which orders all memory operations. After the counter
becomes zero, the processor switches back to its normal state.

Handling branch prediction. Branch prediction is widely
employed in today’s pipelined microprocessors for improving
performance. A branch misprediction requires ROB to discard
all instructions following the branch instruction and those
instructions are fetched and executed again. This process may
affect the information recorded in FSS. For example, there is
a branch between a pair of fs start and fs end. The issue
of fs start will push an entry to FSS. Then, the predicted
branch leads to the issue of fs end, and hence the entry
in FSS is popped. Later on, the branch prediction is found
to be incorrect, and the following instructions are fetched
and executed again. In this case, the processor will issue
another fs end which is also paired with the previous fs start.
However, the entry in FSS has been popped because of the
previous fs end, which results in a problem in FSS. To
solve this, we maintain a shadow copy of FSS, namely FSS′.
FSS′ has the similar operations as FSS. The difference is that
fs start and fs end only trigger operations on FSS′ if there
is no unconfirmed branch prediction prior to them. Hence,
FSS′ maintains the information that is not affected by branch
prediction. When there is a branch misprediction, we copy the
content in FSS′ back to FSS and start execution as usual.

S
B

R

O
B

. . .
St A

St X

St A

Ld Y

St B

St B

S
B

R

O
B

St A

St X

. . .

St B

St A 1 0

St X 1 1

Ld Y 1 1

FENCE

St B 1 0

-- --

Tra
d

itio
n

a
l F

e
n

ce

S
co

p
e

d
 F

e
n

ce

 (a) (b)

0

1

2

3

4

ROB issue stalled

Store Buffer drained &

Fence issued

Cache miss

Ld Y

St B

St A

Fence issued

. . .

FSBs

Fig. 10. Comparison between traditional fence and S-Fence.

4) Issuing Fence: After we have set FSB bits properly,
it becomes straightforward to determine whether a fence can
be issued. When a class-fence is encountered, the top of FSS
indicates which entry of FSB is flagging the current scope.
The processor checks this entry of all FSBs to determine if
it is allowed to issue. If no entry is set, the fence is allowed
to issue and so are the following instructions; otherwise, the
fence is stalled until all entries are cleared.

B. An example

Figure 10 depicts an example to illustrate the performance
advantages of S-Fence. Figure 10(a) shows the instructions the
processor decodes, where only memory accesses are displayed.
Instructions 1 and 3 are in the inner scope as indicated in FSBs,
and the fence is a class-fence in the inner scope which only
orders Instructions 1 and 3. Moreover, Instructions 0 and 3 are
long latency cache misses. Figure 10(b) shows a timeline for
executing instructions, in terms of the states of ROB and store
buffer. The upper half is for traditional fence, while the lower
half is for S-Fence. Initially, St A and St X are retired to the
store buffer. St X is a cache hit, so it completes earlier than
St A. The subsequent instruction is a fence. With traditional
fence, the fence cannot be issued as St A has not completed.
Once the store buffer is drained, the fence is issued and so are
the following instructions Ld Y and St B. Then Ld Y takes
some cycles to load data from memory as it is a cache miss.
On the other hand, with S-Fence, since the fence is a scoped
fence, it can be issued as soon as St X completes. In this case,
Ld Y can be issued and it starts to load data earlier, without
waiting for the store buffer to be drained. The total execution
time is therefore reduced.

V. SET SCOPE

Class scope constrains a fence to limit its scope to the
object class where it is used. Furthermore, a fence may only
intend to order some specific memory accesses. Hence, we also
provide a way to specify the fence scope more accurately. The
fence statement S-FENCE[set, {var1, var2, ...}] is used to
specify that the fence has a set scope, and it only needs to
order memory accesses to a certain set of variables {var1,
var2, ...}.

For example, Figure 11 shows Dekker’s algorithm [12],
which is designed to allow only one processor to enter the

P0 P1

1 m0 = ...
2

3 flag0 = 1
4 FENCE

5 if (flag1 == 0)
6 critical section

7 m1 = ...
8

9 flag1 = 1
10 FENCE

11 if (flag0 == 0)
12 critical section

Fig. 11. Simplified Dekker algorithm.

critical section at a time. The purpose of fences (Lines 4 and
10) is to order the accesses to flag0 and flag1. However,
traditional fences will also order other memory accesses. In
particular, in P0, if there is a long latency memory access
to m0 (Line 1) before the store to flag0 (Line 3), the fence
will stall its following memory accesses until the store to m0
completes, even when the store to flag0 completes quickly as
a cache hit. However, the reordering of the access to m0 across
the fence does not violate the programmer’s intention, i.e., the
exclusive access to the critical section. Hence, we can apply
set scope to the fences by specifying them as S-FENCE[set,
{flag0, flag1}], which forces the fences to only order the
memory accesses to flag0 and flag1. In this case, even if
the store to m0 (Line 1) is a long latency memory access, the
fence (Line 4) does not have to wait for the store to complete.
As long as the store to flag0 (Line 3) has been completed,
the fence will allow the following memory accesses to proceed.

A. Implementation Design

Set scope requires to identify the memory accesses that
have to be ordered at runtime. Similar to class scope, this can
be easily implemented with compiler and hardware support.

New fence inst. set-fence
Supporting inst. inst. flagging memory operations

TABLE II. THE EXTENSION OF ISA FOR SET SCOPE.

1) Compiler support: For set scope, we only need the ISA
extension shown in Table II. We use a new instruction set-
scope to represent a fence with set scope. Besides, the ISA is
extended to allow a compiler to flag memory accesses to the
variables in the set scope. At runtime, when a processor core
decodes a memory instruction which is flagged, it will set a
scope bit of the allocated ROB entry.

2) Hardware support: Since memory accesses in the set
scope of fences have been flagged using the extended ISA, it
is straightforward to set FSB bits for these memory accesses
when they are decoded and issued. For simplicity, in our
design, we do not differentiate memory accesses in set scopes
of different fences. Hence, we use a specific FSB entry (e.g.,
the last entry as shown in Figure 9) to flag if the memory
access is in the set scope. By doing this, when the processor
encounters a set-fence, it checks the last entry of all FSBs to
determine whether it can be issued.

B. Class scope vs. Set scope

With set scope, a fence can have a narrower scope com-
pared with class scope. For example, in the work stealing
queue (Figure 2), we can either use class scope, or set scope
with parameters of shared variables (e.g., HEAD, TAIL, etc).
There are trade-offs between using class scope and using set
scope. (1) Compiler. With class scope, compiler only needs
to insert fs start and fs end to embrace the functions; with
set scope, compiler has to analyze the program to identify the
memory accesses to the specified variables, which will involve
alias analysis. (2) Hardware. Class scope has higher hardware
complexity than set scope. Class scope has to set fence
scope bits according to the inserted fs start and fs end, and
handle nested scope properly. However, set scope can set fence
scope bits easily according to the flagged memory operations.
(3) Performance. Since set scope is more accurate on what
memory operations to order, it may have better performance
than class scope. We will compare the performance in the
evaluation.

VI. EXPERIMENTAL EVALUATION

The goals of our experimental evaluation are: (1) to assess
the performance of S-Fence compared to traditional fences; (2)
to understand how applications can benefit from S-Fence, and
what characteristics can affect the performance of S-Fence; (3)
to study the effect of varying the values of the parameters in
the hardware implementation.

Processor 8 core CMP, out-of-order
ROB size 128
L1 Cache private 32 KB, 4 way, 2-cycle latency
L2 Cache shared 1 MB, 8 way, 10-cycle latency
Memory 300-cycle latency

of FSB entries 4
of FSS entries 4

TABLE III. ARCHITECTURAL PARAMETERS.

Simulation. We implemented S-Fence in the simulator
SESC [37] targeting the MIPS architecture. The simulator is
a cycle-accurate, execution-driven multi-core simulator with
detailed models for the processor and memory systems. We
implemented S-Fence by adding FSB, FSS, FSS′ and the
associated control logic to the simulator. Currently, scopes for
fences in each benchmark program are manually identified, and
the scope information is fed to the simulator for runtime usage.
Table III shows the default architectural parameters used in all
experiments unless explicitly stated otherwise.

Benchmarks. We evaluate our technique using bench-
marks in Table IV. In these benchmark programs, fences

Benchmarks Type Description

dekker set Dekker algorithm [12]
wsq class Work-stealing queue [10]
msn class Non-blocking Queue [33]

harris class Harris’s set [20]

barnes set Barnes-Hut n-body [43]
radiosity set Diffuse radiosity method [43]

pst class Parallel spanning tree [5]
ptc class Parallel transitive closure [15]

TABLE IV. BENCHMARK DESCRIPTION.

and atomic compare-and-swap (CAS) instructions are utilized
to implement lock-free algorithms. There are two groups of
benchmark programs. The first group consists of several lock-
free algorithms, i.e., dekker, wsq, msn and harris. We use these
applications to study how program characteristics can affect
the performance of S-Fence. Dekker algorithm (dekker) [12]
is a classic solution to mutual exclusion problems using only
shared variables for communication. Chase-Lev work-stealing
queue (wsq) [10] is a lock-free work-stealing deque imple-
mented with a growable cyclic array. Non-blocking concurrent
queue (msn) proposed by Michael and Scott [33] is a multiple-
producer and multiple-consumer queue. Harris’s set (harris)
[20] is a concurrent set implementation using sorted linked list
to represent the set. Since these lock-free data structures are
not closed programs, we constructed harnesses to use them to
assess the performance of S-Fence. The second group consists
of several full applications. We use them to evaluate how they
can benefit from S-Fence, and how architecture parameters
affect the performance. pst and ptc are parallel spanning tree
algorithm [5] and parallel transitive closure algorithm [15]
using work-stealing queue [10]. barnes and radiosity are from
SPLASH-2 [43], and they are inserted with fences to enforce
sequential consistency [38].

A. Lock-free algorithms

In the lock-free algorithms, fences and atomic instructions
are used to ensure correctness when they are executed under
relaxed memory models. Fences are inserted as suggested in
[8], [25], [32]. We use these applications to have a preliminary
understanding on the performance of S-Fence. Moreover, the
workload between fences may affect the benefit of S-Fence.
Hence, we developed the harness programs that can control
the workload. Different workloads have different amounts of
computation. In this experiment, the harness program repeat-
edly 1) accesses shared variables using lock-free algorithms;
and 2) performs arithmetic computations on private variables,
whose accesses do not need to be ordered by fences. We vary
the amount of computations by filling up different amounts
of arithmetic computations in the loop, to evaluate the perfor-
mance of S-Fence. We only measured the execution time of the
parallel sections in the programs. Figure 12 shows the speedups
of S-Fence over traditional fence, where the x axis represents
different amounts of computations, from low to high.

As we can see, S-Fence achieves improvement for all
applications, with peak speedups ranging from 1.13x to 1.34x.
Moreover, for each application, its speedup varies with differ-
ent workload. The trend is first increasing before reaching the
peak speedup and decreasing afterwards. This is because, with
low workload, the fence costs relatively more time to order

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1 2 3 4 5 6

S
p

e
e

d
u

p

Workload

dekker

wsq

msn

harris

Fig. 12. Impact of workload.

the memory accesses in the scope, in which case S-Fence

does not completely manifest its advantage over traditional
fence. As the workload increases, it will reach a point at
which S-Fence can manifest its advantage the most, and
hence the speedup reaches the peak value. When the workload
increases further, the time cost by the workload will gradually
dominate the overall running time of the program, and the
stalls due to fences gradually become insignificant. Hence,
the speedup becomes smaller. From the figure, we can also
observe that, different benchmarks reach peak speedups with
different workload. One reason of this result is that they
have different amount of computation in the scope, and hence
they need different amount of workload to reach the peak
value. In particular, dekker reaches the peak value with low
workload. Therefore, the speedup of S-Fence over traditional
fence depends on the relative cost of the workload. However,
S-Fence always performs better than traditional fence.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T S
T

+ S+ T S
T

+ S+ T S
T

+ S+ T S
T

+ S+

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

pst ptc barnes radiosity

Others
Fence Stalls

Fig. 13. Normalized execution time (T – traditional fence; S – S-Fence;
T+ – traditional fence with in-window speculation; S+ – S-Fence with
in-window speculation) .

B. Performance on full applications

We now evaluate the performance of S-Fence on several
full applications. Figure 13 shows the normalized execution
time of applications with traditional fence and S-Fence, with
and without in-window speculation [18]. Each bar consists of
two parts, the stalling time due to fences Fence stalls and
the rest of the execution time Others. All execution time is
normalized to the total execution time with traditional fence
(the lower, the better). Let us first see their execution time
without in-window speculation.

(pst and ptc) We use pst (parallel spanning tree [5]) and ptc
(parallel transitive closure [15]) to evaluate S-Fence with class

scope. These two applications are both graph applications and
use work-stealing queue to achieve load balancing because of
the irregular nature of graph applications. We use S-Fence with
class scope in the work-stealing queue implementation, and
evaluate their performance. Note that, using S-Fence in these
applications does not violate the applications’ correctness.

As we can see from Figure 13, in the case of pst, traditional
fences used in the work-stealing queue incurs stalls accounting
for more than 50% of the overall execution time. Using S-

Fence reduces 12.9% fence stalls and achieves 1.11x speedup
in the overall execution time. We can see that S-Fence does
not reduce as many stalls as that in barnes and radiosity. This
is because, in addition to the fences used in the work-stealing
queue implementation, another fence is required between the
stores to arrays color and parent (segment 2© in Figure 3)
under relaxed consistency models. Since S-Fence does not
optimize this fence, it is a full fence outside the work-stealing
queue implementation. The existence of this full fence limits
the optimization space for S-Fence. In the case of ptc, we can
see that fence stalls only occupy a small percentage of overall
execution time, as workload between fences is relatively large.
However, S-Fence is still able to reduce around half of fence
stalls in ptc, and achieves 4.3% improvement in the overalll
execution time.

(barnes and radiosity) We use barnes and radiosity to eval-
uate S-Fence with set scope. Programs running on machines
only supporting relaxed consistency models can be inserted
with fences to enforce sequential consistency [38]. This can
be done by compilers to identify memory pairs which have to
be ordered based on delay set analysis [38]. Hence, the inserted
fences are used to order some specific memory accesses, but
not all of them. So S-Fence with set scope can be utilized here
during compilation, flagging memory operations that have to
be ordered with delay set analysis.

As we can see from Figure 13, in the case of barnes
and radiosity with traditional fence, fence stalls account for
a significant portion of the total execution time (38.8% and
34.5% respectively). However, S-Fence is able to eliminate
40%-50% fence stalls, and hence reduce the overall execution
time by 19.5% and 15.8%. This is because, memory accesses
to private or read-only data account for a significant portion
of all memory accesses [40], and such memory accesses will
not be flagged by S-Fence, as they are not involved in any
conflicting accesses in the delay set analysis [38]. Hence, S-

Fence only flags a part of memory accesses, and orders them
at runtime. In particular, those long latency private memory
accesses will not be flagged, and hence they are not ordered
by S-Fence. This will help hide long latency memory accesses.

In-window speculation. In-window speculation [18], where
speculation on reordering is employed in instruction window,
can be used to reduce some of fence stalls. To incorporate in-
window speculation into S-Fence, a fence now can be issued
speculatively, but before it can be retired from ROB, it has
to check the FSBs of store buffer. Figure 13 also shows
the performance when in-window speculation is employed.
As we can see, with in-window speculation, fence stalls are
reduced significantly for both traditional fence and S-Fence.
However, S-Fence still achieves performance improvement
over traditional fence.

C. Class scope vs. Set scope

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
.S

.

S.
S.

C
.S

.

S.
S.

C
.S

.

S.
S.

C
.S

.

S.
S.

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

msn harris pst ptc

Others
Fence Stalls

Fig. 14. Performance comparison between class scope and set scope (C.S.

– class scope; S.S. – set scope)

We now compare the performance of class scope and set
scope. msn, harris, pst, and ptc are used for this experiment.
They use class scope in previous evaluation, but it is also
possible to use set scope by only flagging shared variables that
have to be ordered. Figure 14 shows the results. For all bench-
marks, performance with set scope is slightly better than that
with class scope, as set scope orders fewer memory accesses.
However, the difference between them is not significant. This is
because fence stalls are not reduced significantly by set scope.
Since class scope is easier to use, programmers would be able
to choose to use it, instead of set scope, without significant
performance loss.

D. Sensitivity Study

In this section, we study how the architecture parameters
affect the performance of S-Fence, including memory access
latency and reorder buffer size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20
0T

20
0S

30
0T

30
0S

50
0T

50
0S

20
0T

20
0S

30
0T

30
0S

50
0T

50
0S

20
0T

20
0S

30
0T

30
0S

50
0T

50
0S

20
0T

20
0S

30
0T

30
0S

50
0T

50
0S

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

pst ptc barnes radiosity

Others
Fence Stalls

Fig. 15. Varying memory access latency.

Memory access latency. A fence stalls because some
memory accesses prior to it has not completed. Long latency
memory accesses impose long stalling for fences. In particular,
a cache miss takes as much time as the round trip latency to
the memory, incurring long stalling to its following fence. To
study the impact of memory access latency on S-Fence, we
varied the memory access latency with values of 200, 300, and
500 cycles. Figure 15 shows the execution time normalized
to the total execution time with traditional fence (the lower,
the better). Each cluster shows the results for each benchmark,
including traditional fence and S-Fence with different memory
access latencies (xT and xS represent the execution time with x

cycles latency for traditional fence and S-Fence respectively).
As we can see, for barnes and radiosity, the improvement of
S-Fence increases as the latency increases. In particular, larger
latency results in larger portion of fence stalls, and S-Fence

is able to reduce 40%-50% fence stalls. However, we see a
different trend for pst. As the latency increases, we do not see
the increase in improvement, and the fence stalls account for
less portion of the overall execution time. One reason for this
is that, the full fence in pst outside the work-stealing queue
incurs more stalls as the latency increases, and the benefit of
S-Fence is offset by such stalls.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

64
T

64
S

12
8T

12
8S

25
6T

25
6S 64
T

64
S

12
8T

12
8S

25
6T

25
6S 64
T

64
S

12
8T

12
8S

25
6T

25
6S 64
T

64
S

12
8T

12
8S

25
6T

25
6S

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

pst ptc barnes radiosity

Others
Fence Stalls

Fig. 16. Varying ROB size.

Reorder buffer size. The reorder buffer (ROB) enables out-
of-order instruction execution. S-Fence only stops issuing new
instructions into ROB when any memory access in the scope
prior to the fence has not completed. When a S-Fence does not
have to stall, larger ROB size would allow more instructions
following the fence to be issued into ROB. This would increase
the improvement of using S-Fence. In Figure 16, we show the
impact of ROB size on the performance of S-Fence, where
we varied the ROB size with values of 64, 128 and 256 (xT
and xS represent the execution time with x entries of ROB for
traditional fence and S-Fence respectively). As we can see, for
barnes, S-Fence achieves better performance when the ROB
size increases from 64 to 256. This is because S-Fence used
in barnes benefits from larger ROB size by allowing more
instructions to be issued to ROB when a S-Fence does not have
to stall. On the other hand, in the case of radiosity, pst and
ptc, the performance of S-Fence remains stable with different
ROB sizes. This is because a smaller ROB size already exposes
the critical path in these applications, and hence larger ROB
size does not result in more overlap of instruction execution.
In fact, with 256 entries of ROB, the average number of used
ROB entries is less than 80 for radiosity, pst and ptc, which
indicates they do not benefit from a larger ROB.

E. Hardware Cost

S-Fence is implemented with low hardware cost. The main
hardware change is only extending each entry of ROB and
Store Buffer with a few (e.g., 4 bits) fence scope bits (FSB);
and the auxiliary structures, mapping table and fence scope
stack (FSS), also only cost very small amount of hardware.
In the case of 128-entry ROB and 8-entry Store Buffer, the
hardware overhead would be less than 80 bytes for each core.
More importantly, all these changes are made locally in each
processor core, without adding inter-processor communication
for multiprocessors, e.g., affecting cache coherence.

VII. RELATED WORK

The purpose of fence scoping is to constrain memory
ordering effect of fences to certain scopes and hence improve
program performance, while the correctness of programs is still
enforced. In concurrent work to ours, Heterogeneous-Race-
Free (HRF) [23] memory models are proposed very recently to
formalize synchronization behavior with the notion of scopes
in heterogeneous systems. Scope in HRF refers to a group
of tasks or threads (e.g., sub-group, work-group, device, and
system in OpenCL [35]). In contrast, scope in our work refers
to the part of the program where the fence is valid. We believe
both notions can co-exist for heterogeneous systems.

Many concurrent algorithms are usually first developed
assuming Sequential Consistency (SC) memory model. How-
ever, to guarantee correctness under relaxed memory models,
[3], [22] have proven that fences or atomic instructions are
inevitable to build concurrent implementations of sets, queues,
stacks, mutual exclusion, etc. Hence, it is essential to put
fences, preferably as few as possible, in these algorithms.
There have been works [14], [29], [41] on fence inference
based on the concept of delay set analysis [38] to enforce SC,
where they rely on static analysis to minimize the number of
fences. Another group of research [8], [24]–[26], [32] uses
model checking techniques to insert fences to ensure SC. In
addition, [34] takes a different approach to reducing number
of fences. It exploits the relaxed semantics of work-stealing
algorithm – tasks are allowed to be executed multiple times for
some applications – and avoid some fences in the algorithm.
While our work does not target reducing number of fences, it
is complementary to the above techniques to improve program
performance.

There has been work on reducing fence overhead. Tech-
niques in [13], [27], [30], [31], [42], based on the observation
that most fences are not necessary dynamically, reduce most
memory ordering overhead due to fences non-speculatively.
Techniques in [7], [9], [19], developed to enforce SC through
speculation, can also be utilized to reduce memory ordering
overhead of fences. More recently, [40] proposes to identify
thread-local and shared read-only data, and enforces SC by
only ordering the accesses to remaining data. This approach is
also useful for reducing the memory ordering overhead due to
fences. Besides, there is work on optimizing lock implemen-
tations, which is related to fence optimizations. For example,
[4] allows a particular thread to reserve a lock to make the
acquisitions of the lock by the reserving thread more efficient;
[36] proposes speculative lock elision to dynamically eliminate
lock operations. Our work is different in that we reduce fence
overhead by constraining memory ordering effect of fences
in certain scopes. In particular, S-Fence only makes changes
locally in each processor core, without adding inter-processor
communication for multiprocessors, and hence scalability is
not a problem for S-Fence.

There are also finer fences in commercial architectures [2].
In Intel IA-32, there are three types of fence instructions, i.e.,
mfence, lfence and sfence. While mfence enforces all memory
orders, lfence only enforces orders between memory load
instructions and sfence only enforces orders between mem-
ory store instructions. Moreover, in SPARC V9, MEMBAR
instruction can be customized to enforce different memory
orders; in PowerPC, there are lightweight fence lwsync and

heavyweight fence sync, where sync is a full fence, while
lwsync guarantees all other orders except RAW; in Alpha
model, there are memory barrier (MB) and write memory
barrier (WMB). Although our work also provides fences for
enforcing ordering of a subset of memory operations, it is
orthogonal to the above works – they refine the semantics of
full fence in different directions. While the existing works ex-
plore the ordering of a combination of previous load and store
operations with respect to future load and store operations,
our work explores the ordering of a certain set of memory
accesses that are in the scope of fences. However, they are
also complementary – the idea of S-Fence can be combined
with the above various finer fences to further improve program
performance.

Besides, there is also some work using specified variables
to allow compilers to do optimizations across fence instruc-
tions. For example, OpenMP [1] provides flush instruction with
a list of variables. This allows compiler to reorder accesses
to variables that are not included in the list across the flush
instruction. In the same spirit, Cedar [17] provides advance
and await routines with specified variables for synchronization.
Cedar targets Fortran, but performing the same optimization
analysis at compile time in C/C++ code would be very hard.
On the contrary, S-Fence focuses on hardware optimization,
reordering memory operations across fences at runtime. The
above compiler work would be complementary to S-Fence.

VIII. CONCLUSION

We propose the concept fence scope, and a new fence
instruction scoped fence (S-Fence), which is constrained in
its scope. S-Fence expresses programmers’ intention in their
programs, and conveys such information to the hardware to
reduce memory ordering requirements. S-Fence is easy to be
incorporated in current popular object-oriented programming
languages, and the hardware support is lightweight. The ex-
periments show that S-Fence achieves peak speedups ranging
from 1.13x to 1.34x for lock-free algorithms, and obtains
speedups from 1.04x to 1.23x for full applications.

ACKNOWLEDGMENTS

We would like to thank all reviewers for their helpful
comments and advice for improving this paper. This research
work is supported by the National Science Foundation grants
CCF-1318103 and CCF-0963996 to the University of Cali-
fornia, Riverside, and by an Intel early career faculty award
and EPSRC grants EP/G036136/1 and EP/L000725/1 to the
University of Edinburgh.

REFERENCES

[1] OpenMP application program interface. http://www.openmp.org/
mp-documents/spec30.pdf.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29:66–76, 1995.

[3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and
M. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In Proceedings of the 38th annual

ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’11, pages 487–498, 2011.

[4] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks:
featherweight synchronization for Java. In Proceedings of the ACM

SIGPLAN 1998 conference on Programming language design and

implementation, PLDI ’98, pages 258–268, 1998.

[5] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (SMPs). J. Parallel Distrib. Comput.,
65(9):994–1006, Sept. 2005.

[6] G. Barnes. A method for implementing lock-free shared-data structures.
In Proceedings of the Fifth Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’93, pages 261–270, 1993.

[7] C. Blundell, M. M. Martin, and T. F. Wenisch. Invisifence: performance-
transparent memory ordering in conventional multiprocessors. In
Proceedings of ISCA-36, pages 233–244, 2009.

[8] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking
consistency of concurrent data types on relaxed memory models. In
Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’07, pages 12–21, 2007.

[9] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk
enforcement of sequential consistency. In Proceedings of ISCA-34,
pages 278–289, 2007.

[10] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In
Proceedings of the seventeenth annual ACM symposium on Parallelism

in algorithms and architectures, SPAA ’05, pages 21–28, 2005.

[11] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and
T. Wen. Solving large, irregular graph problems using adaptive work-
stealing. In Proceedings of the 2008 37th International Conference on

Parallel Processing, ICPP ’08, pages 536–545, 2008.

[12] E. W. Dijkstra. Cooperating sequential processes. The origin of

concurrent programming: from semaphores to remote procedure calls,
pages 65–138, 2002.

[13] Y. Duan, A. Muzahid, and J. Torrellas. Weefence: toward making
fences free in TSO. In Proceedings of the 40th Annual International

Symposium on Computer Architecture, ISCA ’13, pages 213–224, 2013.

[14] X. Fang, J. Lee, and S. P. Midkiff. Automatic fence insertion for shared
memory multiprocessing. In ICS ’03: Proceedings of the 17th annual

international conference on Supercomputing, pages 285–294, 2003.

[15] I. Foster. Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[16] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the
Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementation,
PLDI ’98, pages 212–223, 1998.

[17] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh. Cedar: A large scale
multiprocessor. SIGARCH Comput. Archit. News, 11(1):7–11, Mar.
1983.

[18] K. Gharachorloo, A. Gupta, and J. Hennessy. Two techniques to enhance
the performance of memory consistency models. In Proceedings of the

1991 International Conference on Parallel Processing, ISCA ’91, pages
355–364, 1991.

[19] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In
Proceedings of ISCA-26, pages 162–171, 1999.

[20] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.
In Proceedings of the 15th International Conference on Distributed

Computing, DISC ’01, pages 300–314, 2001.

[21] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Trans. Program. Lang. Syst., 15(5):745–770, Nov. 1993.

[22] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[23] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.
Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous-race-free
memory models. In Proceedings of the 19th International Conference

on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’14, pages 427–440, 2014.

[24] T. Q. Huynh and A. Roychoudhury. Memory model sensitive bytecode
verification. Form. Methods Syst. Des., 31(3):281–305, Dec. 2007.

[25] M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of
memory fences. In Proceedings of the 2010 Conference on Formal

Methods in Computer-Aided Design, FMCAD ’10, pages 111–120,
2010.

[26] M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions
for relaxed memory models. In Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation,
PLDI ’11, pages 187–198, 2011.

[27] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov. Location-based memory
fences. In Proceedings of the 23rd ACM symposium on Parallelism in

algorithms and architectures, SPAA ’11, pages 75–84, 2011.

[28] L. Lamport. Specifying concurrent program modules. ACM Trans.

Program. Lang. Syst., 5(2):190–222, Apr. 1983.

[29] J. Lee and D. A. Padua. Hiding relaxed memory consistency with a
compiler. IEEE Trans. Comput., 50(8):824–833, 2001.

[30] C. Lin, V. Nagarajan, and R. Gupta. Efficient sequential consistency
using conditional fences. In Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT
’10, pages 295–306, 2010.

[31] C. Lin, V. Nagarajan, and R. Gupta. Address-aware fences. In
Proceedings of the 27th international ACM conference on International

conference on supercomputing, ICS ’13, pages 313–324, 2013.

[32] F. Liu, N. Nedev, N. Prisadnikov, M. Vechev, and E. Yahav. Dynamic
synthesis for relaxed memory models. In Proceedings of the 33rd

ACM SIGPLAN conference on Programming Language Design and

Implementation, PLDI ’12, pages 429–440, 2012.

[33] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings

of the fifteenth annual ACM symposium on Principles of distributed

computing, PODC ’96, pages 267–275, 1996.

[34] M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent work
stealing. In Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, PPoPP ’09, pages
45–54, 2009.

[35] A. Munshi, B. Gaster, T. G. Mattson, and D. Ginsburg. OpenCL

Programming Guide. Addison-Wesley Professional, 2011.

[36] R. Rajwar and J. R. Goodman. Speculative lock elision: enabling highly
concurrent multithreaded execution. In Proceedings of the 34th annual

ACM/IEEE international symposium on Microarchitecture, MICRO 34,
pages 294–305, 2001.

[37] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[38] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst.,
10(2):282–312, 1988.

[39] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System

Concepts. Wiley Publishing, 2008.

[40] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi.
End-to-end sequential consistency. In Proceedings of the 39th Annual

International Symposium on Computer Architecture, ISCA ’12, pages
524–535, 2012.

[41] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. Padua.
Compiler techniques for high performance sequentially consistent Java
programs. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages
2–13, 2005.

[42] C. von Praun, H. W. Cain, J.-D. Choi, and K. D. Ryu. Conditional
memory ordering. In Proceedings of the 33rd annual international

symposium on Computer Architecture, ISCA ’06, pages 41–52, 2006.

[43] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological considera-
tions. In Proceedings of ISCA-22, pages 24–36, 1995.

