

Edinburgh Research Explorer

Optimisation Validation

Citation for published version:
Aspinall, D, Beringer, L & Momigliano, A 2007, 'Optimisation Validation' Electronic Notes in Theoretical
Computer Science, vol. 176, no. 3, pp. 37 - 59. DOI: 10.1016/j.entcs.2006.06.017

Digital Object Identifier (DOI):
10.1016/j.entcs.2006.06.017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

Publisher Rights Statement:
Open access document

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28978088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2006.06.017
https://www.research.ed.ac.uk/portal/en/publications/optimisation-validation(debd5748-215a-40bd-849f-5bdcebafd24e).html

Optimisation Validation

David Aspinall1

LFCS, School of Informatics, University of Edinburgh, U.K.

Lennart Beringer2

Institut für Informatik, Ludwig-Maximilians-Universität München, Germany

Alberto Momigliano3

LFCS, School of Informatics, University of Edinburgh, U.K. and
DSI, University of Milan, Italy

Abstract

We introduce the idea of optimisation validation, which is to formally establish that an instance of an
optimising transformation indeed improves with respect to some resource measure. This is related to, but in
contrast with, translation validation, which aims to establish that a particular instance of a transformation
undertaken by an optimising compiler is semantics preserving. Our main setting is a program logic for
a subset of Java bytecode, which is sound and complete for a resource-annotated operational semantics.
The latter employs resource algebras for measuring dynamic costs such as time, space and more elaborate
examples. We describe examples of optimisation validation that we have formally verified in Isabelle/HOL
using the logic. We also introduce a type and effect system for measuring static costs such as code size,
which is proved consistent with the operational semantics.

Keywords: Compiler Optimisation, Translation Validation, Program Logic, Java Virtual Machine
Language, Cost Modelling, Resource Algebras, Lightweight Verification.

1 Introduction

We are interested in certifying the resource usage of mobile code for the Java plat-

form. In previous work [3,1,6] we have described a proof-carrying code infrastructure

which accomplishes this for memory usage. A class file is accompanied by a proof

certificate which describes the resource usage of the main method of the program;

1 Email: da@inf.ed.ac.uk.
2 Email: beringer@tcs.ifi.lmu.de.
3 Email: amomigl1@inf.ed.ac.uk.

Electronic Notes in Theoretical Computer Science 176 (2007) 37–59

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.06.017

mailto:da@inf.ed.ac.uk
mailto:beringer@tcs.ifi.lmu.de
mailto:amomigl1@inf.ed.ac.uk
http://www.elsevier.com/locate/entcs

we use a program logic with judgments of the form � e : {P}, stating that

expression e satisfies assertion P . For example

� emain : {r = F (h)}

where h is the starting heap of the program (in particular, containing the arguments

to the main method) and r is the memory consumption of the program expressed

as a function of the size of the arguments in h.

In this paper we investigate a significant extension of this framework and a

particular application. First, we generalise the form of resources so that a wider

range of notions is covered, in an uniform fashion. Second, we consider orderings

on resources, which allow us to talk about optimisation validation, in the sense that

we can establish when one program consumes fewer resources than another.

This turns out to be of interest for the compiler community, where much research

has been invested in trying to select (the order of) the best compiler transforma-

tion in the current context, given the available resources. However, this may be

problematic:

“[. . .] current optimisation strategies do not always achieve the performance

goals. Indeed, it is well known that optimizations may degrade performances in

certain circumstances. The difficulty is that current techniques cannot always

determine when it is beneficial or harmful to apply an optimization.” [31]

This is where optimisation validation comes to the rescue: technically, it is

inspired by the idea of translation validation [23], an alternative to the wholescale

verification of translators and compilers. In this approach, one instead constructs a

validation mechanism that, after every run of a compiler, formally confirms that the

target code produced on that run is a correct translation of the source producing

“[. . .] the same result while (hopefully) executing in less time or space or con-

suming less power.” [24]

(our emphasis). Here, optimisation validation take the improvement in resource

usage as being the primary motivation, and therefore, what should be checked. This

is appropriate in scenarios such as the safety policies considered in proof-carrying

code, where resource usage may even be a more important concern than correctness,

because it encompasses the security requirements of the domain.

1.1 Notions of optimisation.

To consider validating optimisations, we must first define what we mean by optim-

isation in our setting. We suppose that a program is given as a collection of classes,

one of which includes a nominated main method. A simple notion of dynamic

optimisation refers to every terminating execution of this method. Let P1 be the

program before optimisation and P2 be the program after:

P1 −→ P2

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5938

We only need to consider the costs for the bodies of the main method in each

program,

e1 −→ e2

Changes in other methods may be optimising, neutral or even non-optimising; at

this point we do not study optimisations within nested program contexts. To be

considered an optimisation, we want to establish that the transformation is improv-

ing with respect to a cost model. We capture the latter with the notion of resource

algebra R, which contains components for measuring the cost of executing each

kind of instruction, along with an ordering on those costs. The overall (dynamic)

cost may depend on the input of the program, and it is measured by execution in

a operational semantics annotated with calculations using R. If for all input heaps

both e1 and e2 converge, then the resource consumption of e2 should improve on

that of e1:

h � e1 ⇓ r1 ∧ h � e2 ⇓ r2 =⇒ r2 ≤ r1

where the ordering ≤ refers to the ordering from R. We may assume, without loss

of generality, that the input pointer for the argument(s) to main is fixed on every

execution.

1.2 Optimisation sequences.

The above defines our notion of a single-step optimisation. For several optimisations

in sequence, it is enough to consider an optimisation between the initial and final

program for the resource algebra of interest R. However, we often want to decom-

pose a sequence of optimisations into several transformations which are individually

optimising. Then we can show the existence of a sequence of optimising steps:

P1 −→ P2 −→ · · · −→ Pn

where each Pi −→ Pi+1 is an optimisation for some particular resource algebra Ri.

Additionally, each step in the optimisation should be non-increasing for the target

cost model R. A proper optimisation sequence has at least one step for which costs

in R strictly decrease from some Pi to Pi+1.

1.3 Validating optimisations by program logic.

To state and prove (dynamic) cost optimisations, we use a program logic that

provides assertions about functions bounding the resources consumed. We must

find assertions of the form:

ST 1 � e1 : {F1(h) ≤ r} ST 2 � e2 : {r ≤ F2(h)}

where the specification tables ST i associate an assertion to each method and loop

in the program, providing the appropriate invariant. The assertions state that the

resources consumed when executing P1 are bounded from below by some function

F1 of the input heap, and that the resources consumed by P2 are bounded from

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 39

above by a function F2. To show that P2 is an optimisation of P1 we must now

prove that:

∀h. F2(h) ≤ F1(h)

(in particular, this holds trivially in case F1 = F2).

1.4 Static optimisations.

Static costs such as code size are commonly used as metrics for optimisation and

some dynamic costs can be usefully approximated with static measurements. We

cover both possibilities by introducing a notion of static resource algebra S. To

measure static costs, we use a type system with effects. For two function bodies e1

and e2 we must find a type t and effects s1 and s2 such that:

Γmain �Σ1 e1 : t, s1 Γmain �Σ2 e2 : t, s2

where the typing context for the body of main has the form args : String[] and

Σ1 and Σ2 are the resource typing signatures of programs P1 and P2 respectively,

see Sect. 5. For P2 to be a static optimisation of P1 we should establish that

s2 ≤ s1, where the ordering ≤ now refers to the ordering on static costs. An

ideal notion of optimisation would be w.r.t. a pair (R,S) of target dynamic and

static cost models; a sequence of optimisations might alternate dynamic and static

reductions as appropriate. A typical example is to use time and code size to validate

optimisations such as loop unrolling, see Sect. 4.1. To simplify exposition here we

consider the costs separately.

This paper is organized as follows. In Sect. 2 we present the dynamic semantics

of our language, introduce resource algebras, and describe some typical instanti-

ations. In Sect. 3, we present a program logic that generalizes the logic presented

in [1] to arbitrary resource algebras. Sect. 4 gives example optimisation validations,

including standard compiler optimisation steps, tail-call optimisation and an ap-

plication specific one. Sect. 5 examines the static system, while Sect. 6 concludes

with a summary and discussion of related work.

2 Resource annotated operational semantics

We use a functional form of Java bytecode called Grail [7], although the approach

would work for other languages endowed with a structural operational semantics.

Grail retains the object and method structure of JVML, but represents method

bodies as sets of mutually tail-recursive first-order functions. The language is built

from values v, arguments a, and function body expressions e (in this paper we do not

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5940

mention static fields and virtual invocation, which are accounted for elsewhere [1]):

v ::= () | lC | i | nullC

a ::= v | x

e ::= a | prim a a | new C | x.f | x.f := a | e ; e | let x= e in e

| if e then e else e | call g | C.m(a)

Here, C ranges over Java class names, f over field names, m over method names,

x over variables (method parameters and locals) and g over function names (which

correspond to instruction addresses in bytecode). Values consist of integer constants

i, typed locations lC , the unique element () of type unit and the nullary reference

nullC . As in JVML, the booleans bool are defined as true
def
= 1, false

def
= 0.

The (impure) call-by-value functional semantics of Grail coincides with an im-

perative interpretation of its direct translation into JVML, provided some syntactic

conditions are met. In particular, actual arguments in function calls must coincide

with the formal parameters of the function definitions. Sample Grail programs are

shown in Fig. 1 and 2 in their Isabelle format and in the concrete syntax of our

compiler in Fig. 3.

To model consumption of computational resources, our semantics is annotated

with a resource counting mechanism based on resource algebras.

Definition 2.1 A resource algebra R is a partially ordered monoid (R, 0,+,≤),

i.e. (R, 0,+) is a monoid and (R,≤) a partially ordered set, where

(i) 0 is the minimum element: 0 ≤ x;

(ii) + is order preserving on both sides: x ≤ y entails x + z ≤ y + z and

z + x ≤ z + y.

Moreover, R has constants in R for each expression former: Rint, Rnull, Rvar, Rprim,

Rnew
C , Rgetf , Rputf , Rcomp, Rlet, Rif , Rcall and a monotone operator Rmeth

C,m,v : R → R.

Each constant denotes the cost associated to an instruction, which are then

composed via the monoidal operation. The operator Rmeth
... calculates a cost for

method calls. For some applications, we might parameterise the constants with

additional pieces of syntax, for example if we are tracking read/writes of certain

variables or charge differently selected function calls and/or primitive operations.

For all the resource algebras considered here, composition is commutative; however,

for examples where it is not, the order of the operation in the rules is important

and matches the evaluation order.

A useful operation on such algebras is the product, which we simply under-specify

as monoidal product; for R = (R, 0,+,≤) and R′ = (R′, 0′,+′,≤′), define R × R′

as (R × R′, 〈0, 0′〉,�,≤∗), where:

(i) 〈r1, r
′
1〉 � 〈r2, r

′
2〉 ≡ 〈r1 + r2, r

′
1 +′ r′2〉;

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 41

(ii) ≤∗ is any partial order on R × R′, satisfying the conditions in Def. 2.1.

This allows us to compose various resource algebras without committing to the

ordering induced by the product of posets. For instance we may want to take the

ordering on R×R′ to be lexicographic or simultaneous orderings, see for example

the product algebra introduced on page 16. Conversely, we can define the projection

πi(R
n) of a product as expected.

The operational semantics defines a judgement

E � h, e ⇓ h′, v, r

which relates expressions e to environments E (maps from variables to values),

initial and final heaps h, h′, result values v and costs r ∈ R. Heaps are partial

maps from locations l to objects, where an object is represented as a class name

C together with a field table (a map from field names f to values v). We use the

following notations for heaps:

h(l) class name of object at l;

h(l).f field lookup of value at f in object at l;

h[l .f �→ v] field update of f with v at l.

Argument evaluation in an environment E is defined by evalE(x) = E(x) and

evalE(v) = v, while costs are defined by

• cost() = cost(lC) = 0;
• cost(nullC) = Rnull;
• cost(i) = Rint;
• cost(x) = Rvar.

The function fields(C) returns the sequence f of fields in the class C, while initvalfi

denotes the initial value of the field fi. For functions and methods, we write bodyg

and bodyC,m to stand for the definition of g and C.m, respectively. The complete

listing of the operational semantics rules follows:

a �= lC

E � h, a ⇓ h, evalE(a), cost(a)

E � h, a ⇓ h, va, ra E � h, a′ ⇓ h, v′a, r
′
a

E � h, prim a a′ ⇓ h, prim(va, v
′
a), ra + r′a + Rprim

l = freshloc(h) fields(C) = f

E � h, new C ⇓ h[l .f i �→ initvalfi
], l,Rnew

C

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5942

E � h, x ⇓ l, h, rx

E � h, x.f ⇓ h, h(l).f , rx + Rgetf

E � h, x ⇓ l, h, rx E � h, a ⇓ v, h, ra

E � h, x.f := a ⇓ h[l .f �→ v], (), rx + ra + Rputf

E � h, e1 ⇓ h1, (), r1 E � h1, e2 ⇓ h2, v, r2

E � h, e1 ; e2 ⇓ h2, v, r1 + Rcomp + r2

E � h, e1 ⇓ h1, v1, r1 E〈x := v1〉 � h1, e2 ⇓ h2, v, r2

E � h, let x= e1 in e2 ⇓ h2, v, r1 + Rlet + r2

E � h, e ⇓ h′,1, re E � h′, e1 ⇓ h′′, v, r

E � h, if e then e1 else e2 ⇓ h′′, v, re + Rif + r

E � h, e ⇓ h′,0, re E � h′, e2 ⇓ h′′, v, r

E � h, if e then e1 else e2 ⇓ h′′, v, re + Rif + r

E � h, bodyg ⇓ h′, v, r

E � h, call g ⇓ h′, v,Rcall + r

evalE(a) = v x := v � h, bodyC ,m ⇓ h′, v, r

E � h,C.m(a) ⇓ h′, v, cost(a) + Rmeth
C,m,v(r)

2.1 Resource algebra examples

Some example resource algebras are shown in Table 1. The Time algebra models an

instruction counter that approximates execution time; each Grail expression form

is charged according to the number of JVM instructions to which it expands 4 . The

Heap algebra counts the size of heap space consumed during execution (ignoring the

possibility of garbage collection, which cannot be assumed for an arbitrary JVM).

Only the new instruction consumes heap. The Frames algebra counts the maximal

number of frames on the stack during execution. The MethCnts algebra traces

invocations by accumulating a multiset of invoked method names.

4 There are zero costs for the if instructions because they are compiled as test and branches; similarly,
sequential composition has zero cost in these example algebras.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 43

Time Heap Frames MethCnts MethFreqId MethGuard
|R| N N N MS(Id) N ×N {tt, ff}
Rint 1 0 0 ∅ (1, 0) tt

Rnull 1 0 0 ∅ (1, 0) tt
Rvar 1 0 0 ∅ (1, 0) tt

Rprim 1 0 0 ∅ (1, 0) tt
Rnew

C
3 size(C) 0 ∅ (3, 0) tt

Rgetf 2 0 0 ∅ (2, 0) tt

Rputf 3 0 0 ∅ (3, 0) tt
Rcomp 0 0 0 ∅ (0, 0) tt

Rlet 1 0 0 ∅ (1, 0) tt

Rif 0 0 0 ∅ (0, 0) tt

Rcall 1 0 0 ∅ (1, 0) tt

Rmeth
C,m,v(r) |v| + 2 + r r r + 1 r ∪+{C.m} FreqC.m,|v|(r) GC,m(v) ∧ r

0R 0 0 0 ∅ (0, 0) tt
+R + + max ∪+ +Freq ∧
≤R ≤ ≤ ≤ ⊆+ ≤Freq ≤Guard

The notation |v| denotes the length of the list v1 . . . vn. For method counts, ∪+ and ⊆+ are multiset union

and subset respectively. For frequencies, we define FreqId,n(t, p) = (0, max(t , p)) and FreqC.m,n(t, p) =

(n + 2 + t, p) for C.m 	= Id . Composition in this case is (t, p)+Freq(t
′, p′) = (t + t′, max(p, p′)) and the

ordering (t, p) ≤Freq (t′, p′) iff p ≤ p′. For guards, GC,m(v) is a boolean valued function for each C, m and

b ≤Guard b′ iff b = tt or b = b′ = ff.

Table 1
Example resource algebras

The MethFreqId algebra calculates a measure of the frequency of calls to the

method Id (a long identifier C.m), by accumulating the maximal period between

successive calls; this is an example of an application specific algebra (see Sect. 4.3

for a motivating example).

Finally, the MethGuard algebra does not calculate a quantitative resource, but

rather maintains a boolean monitor that checks whether arbitrary guards GC,m(v)

are satisfied at invocations of method m in class C. If guards are considered as

resource usability preconditions (for example, to check that a method parameter lies

within some limits), then we may consider an optimisation to be a transformation

that ensures the resource preconditions are always satisfied.

In this last case, the resource operator Rmeth
C,m,v depends on the run-time values

vi, whereas in the other examples it is fixed – only the length of the argument list

matters and it is specified by the definition of the method. In general, resource

algebras such as this that depend on runtime values can collect traces along the

path of computation. The resulting word may be constrained by further policies,

specified for example by security automata [27] or by formulae from logics over

linear structures. These can be encoded in the higher-order assertion language of

our program logic, introduced next.

3 Resource-aware program logic

Our primary basis for optimisation validation is a general-purpose program logic for

Grail where assertions are boolean functions over all semantic components occurring

in the operational semantics, namely the input environment E and initial heap h,

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5944

the post heap h′, the result value v, and the resources consumed r. An assertion P

thus belongs to the type E × H ×H× V ×R → BOOL. A judgement G � e : P in

the logic relates a Grail expression e to an assertion P , dependent on a context G =

{(e1, P1), . . . , {en, Pn)} that stores assumptions for recursive program structures,

in the spirit of Hoare’s original proof rule for procedures [17]. The program logic

comprises one rule for each expression form, an axiom and a consequence rule, where

we use the following syntactical conventions:

• the square-bracket notation P [E,h, h′, v, r] indicates the instantiation of a pre-

dicate P ;
• The notation G�e : {Φ(x)} for a formula Φ with some occurrence of an implicitly

universally quantified variable x stands for G � e : λx. Φ(x).

(e, P) ∈ G

G � e : P

G � e : P P −→ Q

G � e : Q

G � a : {h′ = h ∧ v = evalE(a) ∧ r = cost(a)}

G � prim a1 a2 : {h′ = h ∧ v = prim(evalE(a1), evalE(a2)) ∧

r = cost(a1) + cost(a2) + Rprim}

G � new C : {v = freshloc(h) ∧ h′ = h[v.fi �→ initvalfi
] ∧ r = Rnew

C
}

G � x.f : {h = h′ ∧ (∃l.E(x) = l ∧ v = h(l).f) ∧ r = cost(x) + Rgetf}

G � x.f := a : {(∃l. E(x) = l ∧ h′ = h[l.f �→ evalE(a)]) ∧ v = () ∧

r = cost(x) + cost(a) + Rputf}

G � e1 : P1 G � e2 : P2

G � e1 ; e2 : {∃ h1 r1 r2. P1[E, h, h1, (), r1] ∧ P2[E,h1, h′, v, r2] ∧

r = r1 + Rcomp + r2}

G � e1 : P1 G � e2 : P2

G � let x= e1 in e2 : {∃ h1 v1, r1 r2. P1[E,h, h1, v1, r1] ∧

P2[E[x := v1], h1, h′, v, r2] ∧

r = r1 + Rlet + r2}

G � e1 : P1 G � e2 : P2 G � e3 : P3

G � if e1 then e2 else e3 : {∃ h1 v1 r1 r2. P1[E, h, h1, v1, r1] ∧

(v1 = 1 =⇒ P2[E,h1, h′, v, r2]) ∧

(v1 = 0 =⇒ P3[E,h1, h′, v, r2]) ∧ r = r1 + Rif + r2}

G ∪ {(call g , P)} � bodyg : P [E,h, h′, v,Rcall + r]

G � call g : P [E,h, h′, v, r]

G ∪ {(C .m(a), P)} � bodyC ,m : P [x := evalE(a), h, h′, v,Rmeth
C ,m,evalE (a)

(r)]

G � C .m(a) : P [E,h, h′, v, r]

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 45

Before demonstrating how the program logic is used to verify the resource con-

sumption of programs, we summarise some basic meta-theoretical properties. These

have been formally proven by representing the operational semantics and the pro-

gram logic in the proof assistant Isabelle/HOL; for more details, see [1,2]; the results

here are a generalisation with resource algebras of those presented there. First, se-

mantic validity, which has a partial correctness interpretation:

Definition 3.1 An assertion P is valid for expression e, written |= e : P , if for

all E, h, h′, v and r E � h, e ⇓ h′, v, r implies that the assertion P [E,h, h′, v, r]

holds. A context G is valid, |= G, if for all pairs (e, P) in G, it holds that |= e : P .

Assertion P is valid for e in context G, if |= G implies |= e : P .

Indeed, the proof system is sound with respect to the operational semantics:

Theorem 3.2 (Soundness) If G � e : P then G |= e : P .

The proof of Theorem 3.2 proceeds by induction on the height of derivations,

employing suitably relativised notions of (context) validity.

Given the adopted partial correctness interpretation, it is clear that non-terminating

programs satisfy their specifications vacuously. To verify resource consumption of

such programs, an auxiliary termination logic have developed [2].

The treatment of logical completeness, as well as the actual proving methodology,

benefits from some admissible rules concerning the proof context. Beyond the usual

weakening rule(s), other rules allow one to discharge the proof context, i.e. to derive

judgements in the absence of contextual assumptions. This uses a specification table

ST , which maps function and method calls into assertions. We says that a context

G respects the specification table ST , notation ST |= G, if all entries in it consist

of a function or method call together with its assertion in the table; moreover their

bodies satisfy a corresponding assertion. See [2] for the formal definition.

ST |= G (e, P) ∈ G

� e : P
(spectable)

ST |= G (C .m(a),ST (C ,m, a)) ∈ G

� C .m(b) : ST (C ,m, b)
(adapt)

The spectable rule accounts for the verification of (possibly mutually recursive)

program fragments using the specification table, while adapt may be used to adjust

the actual arguments when extracting method specifications.

To prove relative completeness, we define a context Gstrong that associates to

each function and method call its strongest specification.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5946

Definition 3.3 The strongest specification for e is

SSpec(e) ≡ {E � h, e ⇓ h′, v, r}

Lemma 3.4 For any e, Gstrong � e : SSpec(e).

Furthermore, Gstrong satisfies ST strong |= Gstrong , where ST strong is the specific-

ation table defined by (λg . SSpec(call g), λCma. SSpec(C .m(a))). From this, we

obtain:

Theorem 3.5 (Completeness) For any e and P , |= e : P implies � e : P .

The completeness result means that we can conceivably derive any provable asser-

tion using the rules of the program logic, following the structure of the program.

4 Validated optimisations

The program logic presented in the previous section can be used to justify program

transformations that are routinely applied in optimising compilers [20], provided

they are in fact improving. In this section we give some example optimisations and

sketch the proofs of their validation. While the transformations and the examples

we consider in this paper are fairly simple, they serve the purpose of demonstrating

our methodology.

4.1 Standard low-level optimisations

We first consider the motivating program of [24],

i <- 0; x <- 1; y <- 2;
WHILE i < 24 DO {i <- i + x + y ; g <- 2 * i}
EXIT

Our formal verification refers to a translation of this code into (the Isabelle repres-

entation of) our language. The result of this (manual) translation is the method

R.calc0:

method static int R.calc0() =

let i= 0 in let x= 1 in let y = 2 in let g = 0 in call f

fun f(int i, int x, int y, int g) = if i < 24 then call h else var g

fun h(int i, int x, int y, int g) =

let j = i + x in let i= j + y in let g = 2 ∗ i in call f

which differs from the original code only in minor ways: we extended the loop

prelude by an assignment to variable g, converted the loop into two functions which

represent basic blocks, and turned the EXIT statement into a return statement of

the final value of g.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 47

Using the resource algebra Time defined previously, we now outline our Isabelle

proof of the judgement

�R.calc0([]) : {r = 213} (1)

which states that an invocation of R.calc0 requires 213 units of time. We first define

two auxiliary (semantic) functions

costf (n) = 24 ∗ n + 10

costh(n) = 24 ∗ n + 1

that describe the costs of evaluating functions f and h, respectively, where n is the

number of loop iterations. Next, we define a specification table ST 0 for calc0 and

its local functions f and h.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R.calc0 �→ {r = 11 + costf (8)}

call f �→ {∀ J. (E(x) = 1 ∧ E(y) = 2 ∧ E(i) = 3 ∗ J ∧ J ≤ 8) −→

r = costf (8 − J)}

call h �→ {∀ J. (E(x) = 1 ∧ E(y) = 2 ∧ E(i) = 3 ∗ J ∧ J ≤ 7) −→

r = costh(8 − J)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The first line defines the specification of R.calc0 in terms of the auxiliary function

costf , while the entries for call f and call h ensure that the auxiliary functions

correctly model the costs of the executing the local functions. In both cases, the

specifications depend on the value of the variable i; intuitively, the universally

quantified variable J represents the number of loop iterations that have already

been performed.

Next, we define a context, G0 that associates the specification table entries to

the relevant function and method calls, e.g.

G0 = {(R.calc0([]), ST 0 R.calc0), (call f,ST 0 call f), (call h,ST 0 call h)}

The core of the verification consists in establishing ST 0 |= G0. From that, it is just

a matter of calling the spectable rule to conclude the proof of (1). The former, in

turn, requires us to prove that each entry in G0 is justified: for each entry (call f, P)

– and similarly for method entries – we need to show that the body bodyf satis-

fies G0 � bodyf : P [E,h, h′, v,Rcall + r]. Using the rules of our program logic, these

proofs proceed syntax-directed similarly to the way a Verification Condition Gener-

ator would work, leaving side conditions involving numeric constraints. Ideally, we

would delegate the solution of those verification conditions to a fully automated (ex-

ternal) solvers. Currently, instead, the proof assistant often needs directions when

facing large case-splits and quantifier instantiations beyond decision procedures.

In the same fashion, we have established Isabelle proofs of specifications �R.calci([]) :

{r = ri} for methods R.calc1 . . . R.calc7 which arise from applying the code trans-

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5948

formations described in [24] to R.calc0. The resulting code is shown in Fig. 1, while

Table 2 summarises the costs ri obtained for each transformation step.

class R {

. . .

method static int calc1() = let i= 0 in let x= 1 in let y = 2 in let g = 0 in call f

fun f(int i, int x, int y, int g) = if i < 24 then call h else var g

fun h(int i, int x, int y, int g) = let i= i + 3 in let g =2 ∗ i in call f

method static int calc2() = let i= 0 in let g =0 in call f

fun f(int i, int g) = if i < 24 then call h else var g

fun h(int i, int g) = let i = i + 3 in let g =2 ∗ i in call f

method static int calc3() = let i= 0 in let g =0 in call h

fun h(int i, int g) = let i = i + 3 in let g =2 ∗ i in if i < 24 then call h else var g

method static int calc4() = let g = 0 in call h

fun h(int g) = let g = g + 6 in if g < 48 then call h else var g

method static int calc5() = let g = 0 in call h

fun f(int g) = let g = g + 6 in if g < 48 then call h else var g

fun h(int g) = let g = g + 6 in if g < 48 then call f else var g

method static int calc6() = let g = 0 in call h

fun h(int g) = let g = g + 6 in let g = g + 6 in if g < 48 then call h else var g

method static int calc7() = let g = 0 in call h

fun h(int g) = let g = g + 12 in if g < 48 then call h else var g}

Figure 1. A sequence of low level transformations

i ti Transformation

0 213

1 197 Constant propagation and constant folding

2 193 Dead assignment elimination

3 176 Branch movement, inlining, redundant test elimination

4 126 Induction variable elimination

5 126 Loop unrolling without code sharing

6 82 Dead code elimination

7 66 Expression folding

Table 2
Costs associated to low level transformations

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 49

class REV {

method static LIST App(LIST l, int i) = call app

fun app(LIST l, int i) = if l = null then call app 0 else call app 1

fun app 0(int i) = let l= null in let x= new LIST in

x.HD:=i ; x.TL:=l ; var x

fun app 1(LIST l, int i) = let h= l.HD in let t= l.TL in

let t=REV.App(t, i) in l.TL:=t ; var l

method static LIST Rev1(LIST l) = call rev1

fun rev1(LIST l) = if l = null then null else call rev1 1

fun rev1 1(LIST l) = let h= l.HD in let t= l.TL in

let t=REV.Rev1(t) in REV.App(t, h)

method static LIST Rev2(LIST l, LIST acc) = call rev2

fun rev2(LIST l, LIST acc) = if l = null then var acc else call rev2 1

fun rev2 1(LIST l, LIST acc) = let h= l.HD in let t= l.TL in

l.TL:=acc ; REV.Rev2(t, l)

method static LIST Rev3(LIST l, LIST acc) = call rev3

fun rev3(LIST l, LIST acc) = if l = null then var acc else call rev3 1

fun rev3 1(LIST l, LIST acc) = let t= l.TL in l.TL:=acc ;

let acc= var l in let l= var t in call rev3}

Figure 2. Class REV

In general, proofs of functional correctness of arbitrary code fragments may

be required to verify statements about resource consumption in this case-study.

However, this is not the case for the specific transformations we considered: none of

the specifications involved constrains the result values v. Furthermore, none of the

transformations increases the dynamic resources consumed. Indeed, except for loop

unrolling (the conversion calc4 → calc5), all transformations reduce the costs 5 .

4.2 Tail-call optimisation

Next, we consider a recursive program involving heap structures. Figure 2 defines

the class REV with method App for appending an element to a list, and methods

Rev1, . . . , Rev3 for reversing a list. We assume that objects of class LIST contain

fields HD and TL of type int and LIST, respectively.

Concentrating our attention on the required height of the frame stack, we observe

that method Rev1 is formulated using method recursion and employs the auxiliary

method App. As all its recursive invocations are nested, Rev1 requires a frame stack

of a height that depends linearly on the length of the input list. To express this

dependency we define a predicate h, v |=X n that specifies when a reference value v

5 The loop unrolling performed in [24] actually increases the dynamic costs, because it jumps to a shared
code block instead of duplicating the continuation code. Using our formalism of static resources we could
characterise this as a static optimisation instead, namely reducing code size.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5950

2
6666666666666666666666666664

REV.App(a) �→ {∀ x y n X.

(a = [x, y] ∧ h, E(x) |=X n) −→

(h′, v |={freshloc(h)}∪X n + 1 ∧ h =dom(h)\X h′ ∧ r = rApp(n))}

REV.Rev1(a) �→ {∀ x n X.

(a = [x] ∧ h, E(x) |=X n) −→ (∃ Y. h′, v |=Y n ∧ r = rRev1(n))}

REV.Rev2(a) �→ {∀ x n X y m Y.

(a = [x, y] ∧ h, E(x) |=X n ∧ h, E(y) |=Y m ∧ X ∩ Y = ∅) −→

(∃Z. h′, v |=Z n + m ∧ r = rRev2(n))}

REV.Rev3(a) �→ {∀ x n X y m Y.

(a = [x, y] ∧ h, E(x) |=X n ∧ h, E(y) |=Y m ∧ X ∩ Y = ∅) −→

(∃Z.h′, r |=Z n + m ∧ r = rRev4(n))}

call rev3 �→ {∀ n X m Y.

(h, E(l) |=X n ∧ h, E(acc) |=Y m ∧ X ∩ Y = ∅) −→

(∃Z.h′, v |=Z n + m ∧ r = rRev4(n))}

3
7777777777777777777777777775

Table 3
Specification table for class REV.

represents a non-cyclic (integer) list of length n in a heap region h�X .

h, v |=∅ 0 ≡ v = null

h, v |=v�Y (n + 1) ≡ v ∈ dom(h) ∧ h(v) = LIST ∧ h(v).TL = t ∧ h, t |=Y n

We can now prove a specification that relates the length of the list to the stack

depth. The quantitative specification we will prove also indicates that the runtime,

the number of jumps, and the number of method invocations all grow quadratically

with the length of the input list:

� REV.Rev1([a]) : {∀ n X. h,E(a) |=X n −→ rFrames = n + 1}

Method Rev2 arises from Rev1 by introducing an accumulator that eliminates the

invocation to App and formulates the recursion as tail recursion. Its specification

imposes some well-structuredness conditions on both arguments: pointers must

represent lists, which moreover should be non-overlapping in the heap. The frame

depth depends only on the length of the first argument, which gives the same overall

depth cost as Rev1 (but a considerable saving in allocated space):

� REV.Rev2([a, b]) : { ∀ n X m Y. h,E(a) |=X n ∧ h,E(b) |=Y m ∧ X ∩ Y = ∅

−→ rFrames = n + 1}

In Rev3, the method-level tail recursion is converted into a method-internal loop

and the redundant field is eliminated, resulting in a program whose execution only

requires a single frame.

� REV.Rev3([a, b]) : {∀ n X m Y. h,E(a) |=X n ∧ h,E(b) |=Y m ∧ X ∩ Y = ∅

−→ rFrames = 1}

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 51

The verification of the three specifications follows the same strategy as before.

This is an overall optimisation for the resource algebra Frames, but we verified

the intermediate steps using a more informative product resource algebra, Frames×
MethCntsAll × Time × Heap, where MethCntsAll is similar to the MethCnts algebra

shown in Table 1, except that only the size of the multisets is considered (thus we

sum calls to all methods), and we stipulate that size(LIST) = 1. We obtain the

following resource tuples, which show the costs in terms of of the length n of the

(first) input list.

rFrames rMethCntsAll rTimes rHeap

rApp(n) ≡ (n + 1, n + 1, 22n + 22, 1)

rRev1(n) ≡ (n + 1, n(n + 1)/2, 11n2 + 29n + 11, n)

rRev2(n) ≡ (n + 1, n + 1, 20n + 11, 0)

rRev3(n) ≡ (1, 1, 18n + 11, 0)

Under the lexicographic order for the product algebra, both steps are optim-

ising. To preserve datatype representation conditions across method calls, we need

stronger invariants in the specifications than shown above. The full specification

table is given in Table 3, which also contains an invariant of the loop represented

by the function call rev3.

4.3 Optimisation of method call frequency

As well as standard optimisations, our framework can be used to validate optimisa-

tions that are custom specified for a particular application.
Consider the hypothetical scenario of a

process-control application where there is

an irregularly shaped chemical tank (illus-

trated opposite) whose contents must be

carefully monitored to ensure sufficient re-

agent. When the amount reaches a crit-

ical low point, the reaction must be tem-

porarily halted while the tank refills.

Sensor.level()

...

section(0)

section(1)

An embedded controller runs a program that which monitors the level gauge. A

suitable notion of optimisation in this setting would be to transform the program

into one which checks the tank level more frequently, so reducing the latency between

noticing a tank empty condition and triggering the refill cycle. Thus the frequency of

invoking the Sensor.level() method is a suitable resource measure. Using the

same methodology as previously, and with the resource algebra MethFreq, we can

validate the transformation of a naive implementation of a program which calculates

the amount of reagent into the tank into a better one which checks the level more

frequently.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5952

The full listing of the example program (naive version) is in Fig. 3. The method

calc(n) calculates the amount of reagent left in n sections of the tank. It is

invoked from the runloop method, which is supposed to be the process control

loop; in reality, this loop would be run indefinitely and involve other tasks besides

level calculation.
class ChemCalc {

field static int alarm
field static int[] section
field static int critical_amount

method static void runloop() =
let
val n = 1000

fun raise_alarm () = putstatic <int ChemCalc.alarm> 1

fun loop_check(int n) = if n>0 then loop(n) else ()

fun loop(int n) =
let
val chem_level = invokestatic <int Sensor.level()> ()
val chem_amount = invokestatic <int ChemCalc.calc(int)> (chem_level)
val n = sub n 1
val critical = getstatic <int ChemCalc.critical_amount>

in
if chem_amount < critical then raise_alarm() else loop_check(n)

end
in loop_check(n) end

method static int calc(int n) =
let
val a = 0
fun sumup(int n, int a) =
let

val cs = getstatic <int[] ChemCalc.section>
val x = get cs n
val a = add x a
val n = sub n 1

in
sumup_check (n,a)

end
fun sumup_check(int n, int a) =

if n>0 then sumup(n,a)
else a

in sumup_check(n,a) end}

Figure 3. Grail code for an embedded controller

Numerous optimisations are possible in this example to increase the rate of

testing the sensor level. For example, we might sum up the section sizes only until

we find out that the critical level has been safely exceeded. Or (supposing the

dimensions of the tank are fixed during the run of the process), we may calculate

the sums for the container sections in advance to avoid looping over the section
array each time we test the sensor level. We have not yet undertaken the formal

verification of this example, as it goes slightly beyond our formal presentation of

the logic as it makes use of arrays; however, the extension is straightforward.

5 Static semantics

A static resource algebra S is defined exactly as in Def. 2.1, except that the resource
constructors depend on the typing context only; in particular, the method operator
does not depend on the values of its arguments. For a fixed signature the judgment
Γ � e : t, s assigns type t and effect s to Grail expression e in a straightforward way;
an example is the rule for if expressions:

Γ � e : bool, se Γ � e1 : t, s1 Γ � e2 : t, s2

Γ � if e then e1 else e2 : t, se + S if + s1 + s2

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 53

Γ � a : typeΓ(a), scost(a)

Γ � e : t, s s ≤ s′

Γ � e : t, s′

Γ � a1 : t1, s1 Γ � a2 : t2, s2 Σ(prim) = t1 × t2 → t3

Γ � prim a1 a2 : t3, s1 + s2 + Sprim

Γ � new C : C, Snew
C

Γ � x : C, s Σ(C.f) = t

Γ � x.f : t, s + Sgetf

Γ � x : C, sx Γ � a : t, sa Σ(C.f) = t

Γ � x.f := a : unit, sx + sa + Sputf

Γ � e1 : unit, s1 Γ � e2 : t2, s2

Γ � e1 ; e2 : t2, s1 + Scomp + s2

Γ � e1 : t1, s1 Γ, x : t1 � e2 : t2, s2

Γ � let x = e1 in e2 : t2, s1 + S let + s2

Γ � e : bool, se Γ � e1 : t, s1 Γ � e2 : t, s2

Γ � if e then e1 else e2 : t, se + S if + s1 + s2

Σ(g) = t1 × · · · × tn → t, s

Γ � call g : t,Scall + s

Γ � ai : ti, si Σ(m) = t1 × · · · × tn → t, s

Γ � C.m(a) : t, Σisi + Smeth
C,m,a

(s)

Figure 4. Typing rules

Notice that this is different from usual type and effect systems, where the effect on

both branches would be the same. See Fig. 4 for the full listing, where argument

typing and static cost are defined as follows:

typeΓ(x) = Γ(x) scost(x) = Svar

typeΓ(i) = int scost(i) = S int

typeΓ() = unit scost() = 0

typeΓ(lC) = C scost(lC) = 0

typeΓ(nullC) = C scost(nullC) = Snull

Many of the standard properties of type and effect systems hold, culminating in

subject reduction. All proofs are standard and hence omitted. First, it is immediate

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5954

to show that our system is conservative w.r.t. the effect-free system defined, as usual,

by erasure. Further, a canonical forms property holds.

Fact 5.1 (Canonical forms) Assume that Γ � v : t, s; then:

• if t = int then v = i and s = S int.
• if t = unit then v = () and s = 0.
• if t = C then either v = nullC and s = Snull or v = lC and s = 0.

From this we observe that every value has constant effect.

Weakening is admissible as is a specialised form of substitution, in which ar-

guments play the role of variables and the effect is increased accordingly. This

generalises value substitution in type and effects systems, which holds because val-

ues are pure (i.e. have zero effect).

We now introduce a generalisation of the well-known relation between static

effects and dynamic traces [30], which is key in the statement and proof of subject

reduction.

Definition 5.2 Given two resource algebras S and R, an approximation is a rela-

tion � included in S×R, which reads “static effect s approximates dynamic resource

r”, with the following properties:

(i) 0S � 0R and for every constructor c, it holds Sc � Rc.

(ii) If s � r, then Rmeth
C,m,a(s) � Rmeth

C,m,a(r).

(iii) s1 � r1 ∧ s2 � r2 entails s1 +S s2 � r1 +R r2;

(iv) s � r entails s +S s′ � r.

For example, consider the static approximation SG = 〈S, {tt},∪,≤SG〉 of the

MethGuard algebra, where the carrier S is {{tt}, {tt,ff}} and the ordering is defined

as b ≤SG b′ iff b = {tt} or b = b′ = {tt,ff}. The approximation relation is ∈−1,

which trivially satisfies the above conditions.

Let E : Γ be the usual correspondence between environment and typing. Further,

say that a heap h is well-typed if Σ(C.f) = t implies h(lC).f : t. Finally, we say

that a signature is well-typed if for all g,m ∈ Σ it holds

Σ(g) = t1 × · · · × tn → t, s =⇒ x1 : t1 . . . xn : tn � bodyg : t, s

Σ(C.m) = t1 × · · · × tn → t, s =⇒ x1 : t1 . . . xn : tn � bodyC,m : t, s

Theorem 5.3 (Subject reduction) Assume a well-typed signature, algebras S
and R as above. Suppose further that Γ � e : t, s and for a well typed heap h it

holds that E � h, e ⇓ h′, v, r and E : Γ; then Γ � v : t, scost(v) and s � r.

The above result ensures the consistency of the operational semantics with the

type system; it is a basis for approximating dynamic measurements using type

checking instead of theorem proving.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 55

6 Conclusions

We have presented a framework and methodology for optimisation validation, based

on generic forms of dynamic and static resource costs. We have formalised most of

the setting in Isabelle/HOL, particularly including the soundness and completeness

of the program logic, which was applied to validate the specific optimisations in

Sect. 4.

One can argue against our approach in various ways. For example, validating

optimisation with disregard of behavioural equivalence seems pointless (often, the

empty program is the ultimate optimisation). Yet, we see resource improvement

validation as orthogonal to translation validation; in some settings one may check

both things. Optimising compilers usually employ heuristics to decide what to do

with code, but in some cases a sequence of transformations may not actually result

in improvement even if correctness is preserved; the optimisation is then pointless

(as noted in [31]). In others settings, such as our PCC application, the safety policy

that we care most about is captured by our resource consumption notion and so

resource usage preservation is more crucial than functional equivalence.

6.1 Related Work.

By now there is an extensive literature on verifying compiler correctness and op-

timisations (e.g. [10,11,20]), but as far as we know, no previous work on formal and

static methods for verifying that optimisations in fact improve resource usage. The

closest are an early formal approach to performance estimation and monitoring for

space and time complexity w.r.t. OO programs [26] and, at the other end of the

spectrum, a framework for predicting the impact of optimizations, via models for

the latter as well for code and resources [31]. This is empirically tested and used to

select the right combination and application strategy of given optimizations.

Specific instances of machine checked correctness proofs have also been pursued:

some recent examples concern code elimination [8], tokenization and componentiz-

ation transformations [13].

One of the most well-developed approaches is David Sands’ Improvement The-

ory [25], a specialisation of the standard theory and reasoning principles of observa-

tional equivalence, in which basic observations include some intensional information

about computational cost. This is extended to space improvements for effects-free

call-by-need languages in [15]. “Paper and pencil” proofs are mostly equational

and require considerable ingenuity even in the simplest cases. Our direction is in-

spired by translation validation (TV) [23], mainly implemented in the automatic

tvoc tool [4]. It addresses both reordering transformation such as loop fusion and

structure preserving ones, such as constant folding, where statements can be inser-

ted or deleted. In both cases sound rules generate verification conditions entailing

a bisimulation between source and target w.r.t. observable variables. Those VC’s

are then fed to a theorem prover, in particular CVC. TV subsumes Rinard’s cred-

ible compilation [24], which instead requires full code instrumentation. Necula [22]

demonstrates an approach to TV based on symbolic execution in the context of the

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5956

GNU C compiler intermediate language. Similarly to Rinard, he uses simulation of

execution paths, but instead of compiler annotation, a constraint-based algorithm

heuristically tries to infer a simulation. The system is robust enough to allow the

author to verify structure preserving optimisations in gcc itself.

Several other researchers have considered program logics going beyond tradi-

tional functional correctness specification. For example [28] presents a generic Hoare

calculus for reasoning about computational monads and is formalised in HasCasl.

With a similar aim as us, Denney and Fischer [12] introduce a framework for safety

policies: given a semantically defined safety property (such as “no division by zero”)

and an operational semantics, the aim is to derive specialised Hoare rules to enforce

the property; however, for “stateful” properties, such as memory writes limits, the

approach becomes technically quite involved.

Since we consider optimisation from one program to another, a natural approach

suggests itself, namely using a logic which relates two programs at once. In Benton’s

relational Hoare logic [5] judgements {R} c1 ∼ c2 {S} refer to the execution of two

(possibly) different programs c1 and c2 while the pre- and post-conditions are re-

lations (rather than predicates) over states. As a special case, the program logic

contains a proof system in which (functional) equivalence of programs can be dir-

ectly verified, in contrast to our approach where separate judgements are needed.

A similar logic is used in Rinard’s report [24]. In both cases, proofs of soundness

are included while completeness is not examined.

Elsewhere, forms of cost algebras (monads) and partial orders similar to ours

have been investigated for analysis of resource consumptions, e.g., [19,14] and op-

timisation [21]. General static analysis techniques having similarities with the setup

of our type and effect system include [16,29]. There is also considerable work on

specific static analysis for different notions of resource usage: to name one, the

use of abstract interpretation for certification of bound memory usage in Java byte

code [9], but a more complete survey would lead us well beyond the scope of this

overview.

6.2 Future work.

There are several avenues for pursuing this work. First, by considering finer-grained

transformations individually, perhaps by generalising Improvement Theory to re-

source algebras. Second, it would be noteworthy if our static analysis was able to

validate optimisations directly and avoid the need for the program logic: this is

in fact possible in restricted (e.g. boolean) domains, but further assumptions are

needed in the general case. To scale our techniques to routine application we would

need either an automatic technique based on the type system or better automatic

assistance for using the program logic. Endowing relational Hoare logics with a

notion of resource algebra seems also a swift way to combine semantics preservation

with optimisation validation.

Finally, the considerable generality of resource algebras allows examples that are

less directly related to optimisation, but useful for validating other safety properties

(including correspondence properties in protocols, or resource usage analysis in the

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 57

sense of [18]), and we would like to apply our general techniques to those examples

too.

The sources for the core logic (and much more) are available at:

http://www.tcs.ifi.lmu.de/∼hwloidl/mrg/MRG-infra-0805.tgz

The examples presented in this paper can be downloaded from:

http://homepages.inf.ed.ac.uk/amomigl1/papers/cocv06.tar

Acknowledgement

This work was funded in part by the Information Society Technologies programme

of the European Commission, Future and Emerging Technologies under the IST-

2005-015905 MOBIUS project. This paper reflects only the authors’ views and the

European Community is not liable for any use that may be made of the information

contained therein.

References

[1] Aspinall, D., L. Beringer, M. Hofmann, H.-W. Loidl and A. Momigliano, A program logic for resource
verification, in: K. Slind, A. Bunker and G. Gopalakrishnan, editors, TPHOLs2004, LNCS 3223 (2004),
pp. 34–49.

[2] Aspinall, D., L. Beringer, M. Hofmann, H.-W. Loidl and A. Momigliano, A program logic for resources
(2005), to appear in Theoretical Computer Science.

[3] Aspinall, D., S. Gilmore, M. Hofmann, D. Sannella and I. Stark, Mobile resource guarantees for smart
devices, in: G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet and T. Muntean, editors, CASSIS 2004,
LNCS 3362 (2005), pp. 1–26.

[4] Barrett, C. W., Y. Fang, B. Goldberg, Y. Hu, A. Pnueli and L. D. Zuck, TVOC: A Translation Validator
for Optimizing Compilers, in: K. Etessami and S. K. Rajamani, editors, CAV, LNCS 3576 (2005), pp.
291–295.

[5] Benton, N., Simple relational correctness proofs for static analyses and program transformations, in:
N. D. Jones and X. Leroy, editors, POPL (2004), pp. 14–25.

[6] Beringer, L., M. Hofmann, A. Momigliano and O. Shkaravska, Automatic certification of heap
consumption, in: A. V. Franz Baader, editor, LPAR 2004, LNCS 3425 (2005), pp. 347–362.

[7] Beringer, L., K. MacKenzie and I. Stark, Grail: a functional form for imperative mobile code, in:
Foundations of Global Computing, number 85.1 in ENTCS (2003), pp. 1–21.

[8] Blech, J. O., L. Gesellensetter and S. Glesner, Formal verification of dead code elimination in
Isabelle/HOL, in: B. K. Aichernig and B. Beckert, editors, SEFM (2005), pp. 200–209.

[9] Cachera, D., T. Jensen, D. Pichardie and G. Schneider, Certified memory usage analysis, in:
J. Fitzgerald, I. J. Hayes and A. Tarlecki, editors, FM’05, LNCS 3582 (2005), pp. 91–106.

[10] Cousot, P. and R. Cousot, Systematic design of program transformation frameworks by abstract
interpretation, in: POPL, 2002, pp. 178–190.

[11] Dave, M. A., Compiler verification: a bibliography, SIGSOFT Softw. Eng. Notes 28 (2003), pp. 1–4.

[12] Denney, E. and B. Fischer, Correctness of source-level safety policies, in: K. Araki, S. Gnesi and
D. Mandrioli, editors, FME 2003, LNCS 2805 (2003), pp. 894–913.

[13] Genet, T., T. P. Jensen, V. Kodati and D. Pichardie, A Java Card CAP converter in PVS, ENTCS
82 (2003).

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–5958

http://www.tcs.ifi.lmu.de/~hwloidl/mrg/MRG-infra-0805.tgz
http://homepages.inf.ed.ac.uk/amomigl1/papers/cocv06.tar

[14] Grobauer, B., Cost recurrences for DML programs, in: ICFP’01 (2001), pp. 253–264.

[15] Gustavsson, J. and D. Sands, Possibilities and limitations of call-by-need space improvement, in:
ICFP’01 (2001), pp. 265–276.

[16] Hankin, C. and D. L. Métayer, A type-based framework for program analysis, in: SAS, 1994, pp. 380–
394.

[17] Hoare, C. A. R., Procedures and parameters: An axiomatic approach, in: E. Engeler, editor, Symp.
Semantics of Algorithmic Languages,, Notes in Mathematics 188 (1971), pp. 102–116.

[18] Igarashi, A. and N. Kobayashi, Resource usage analysis, ACM SIGPLAN Notices 37 (2002), pp. 331–
342.

[19] Jay, C. B., M. Cole, M. Sekanina and P. Steckler, A monadic calculus for parallel costing of a functional
language of arrays, in: C. Lengauer, M. Griebl and S. Gorlatch, editors, Euro-Par, LNCS 1300 (1997),
pp. 650–661.

[20] Kennedy, K. and J. R. Allen, “Optimizing compilers for modern architectures: a dependence-based
approach,” Morgan Kaufmann Publishers Inc., 2002.

[21] Knoop, J., O. Rüthing and B. Steffen, Optimal code motion: Theory and practice, ACM TOPLAS 16

(1994), pp. 1117–1155.

[22] Necula, G. C., Translation validation for an optimizing compiler, in: PLDI ’00 (2000), pp. 83–94.

[23] Pnueli, A., M. Siegel and E. Singerman, Translation validation, in: B. Steffen, editor, TACAS, LNCS
1384 (1998), pp. 151–166.

[24] Rinard, M., Credible compilation, Technical Report MIT-LCS-TR-776, MIT Laboratory for Computer
Science (1999).

[25] Sands, D., Improvement theory and its applications, in: A. D. Gordon and A. M. Pitts, editors,
Higher Order Operational Techniques in Semantics, Publications of the Newton Institute, Cambridge
University Press, 1998 pp. 275–306.

[26] Schmidt, H. W. and W. Zimmermann, A complexity calculus for object-oriented programs, Hournal of
Object-Oriented Systems 1 (1994), pp. 117–147.

[27] Schneider, F. B., Enforceable security policies, ACM Transactions on Information and System Security
3 (2000), pp. 30–50.

[28] Schröder, L. and T. Mossakowski, Monad-independent Hoare logic in HasCASL, in: M. Pezze, editor,
FASE, LNCS 2621 (2003), pp. 261–277.

[29] Skalka, C. and S. F. Smith, History effects and verification, in: W.-N. Chin, editor, APLAS, LNCS
3302 (2004), pp. 107–128.

[30] Wadler, P. and P. Thiemann, The marriage of effects and monads, ACM Trans. Comput. Log. 4 (2003),
pp. 1–32.

[31] Zhao, M., B. R. Childers and M. L. Soffa, Predicting the impact of optimizations for embedded systems,
in: LCTES (2003), pp. 1–11.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 176 (2007) 37–59 59

	Introduction
	Notions of optimisation.
	Optimisation sequences.
	Validating optimisations by program logic.
	Static optimisations.

	Resource annotated operational semantics
	Resource algebra examples

	Resource-aware program logic
	Validated optimisations
	Standard low-level optimisations
	Tail-call optimisation
	Optimisation of method call frequency

	Static semantics
	Conclusions
	Related Work.
	Future work.

	Acknowledgement
	References

