

Edinburgh Research Explorer

Exploiting user feedback to compensate for the unreliability of
user models

Citation for published version:
Moore, JD & Paris, CL 1992, 'Exploiting user feedback to compensate for the unreliability of user models'
User Modeling and User-Adapted Interaction, vol. 2, no. 4, pp. 287-330. DOI: 10.1007/BF01101108

Digital Object Identifier (DOI):
10.1007/BF01101108

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
User Modeling and User-Adapted Interaction

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1007/BF01101108
https://www.research.ed.ac.uk/portal/en/publications/exploiting-user-feedback-to-compensate-for-the-unreliability-of-user-models(e7bec6bd-3159-489e-844d-04c9ba197669).html

Exploiting User Feedback to Compensate for
the Unreliability of User Models

J O H A N N A D. MOORE *
University of Pittsburgh
Department of Computer Science
and
Learning Research and Development Center
Pittsburgh, PA 15260, USA

and

Ct~CILE L. PARIS **
USC/lnformation Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695, USA

(Received 14 October, 1990; in final form 9 April, 1992)

Abstract. Natural Language is apowerful medium for interacting with users, and sophisticated
computer systems using natural language are becoming more prevalent. Just as human speakers
show an essential, inbuilt responsiveness to their hearers, computer systems must "tailor"
their utterances to users. Recognizing this, researchers devised user models and strategies for
exploiting them in order to enable systems to produce the "best" answer for a particular user.

* Dr. Joharma D. Moore holds interdisciplinary appointments as an Assistant Professor of
Computer Science and as a Research Scientist at the Learning Research and Development Cen-
ter at the University of Pittsburgh. Her research interests include natural language generation,
discourse, expert system explanation, human-computer interaction, user modeling, intelligent
tutoring systems, and knowledge representation. She received her MS and PhD in Computer
Science from the University of California at Los Angeles, and her BS in Mathematics and
Computer Science from the University of California at Los Angeles. She is a member of the
Cognitive Science Society, ACL, AAAI, ACM, IEEE, and Phi Beta Kappa. Readers can reach
Dr. Moore at the Department of Computer Science, University of Pittsburgh, Pittsburgh, PA
15260; e-mail: jmoore@cs.pitt.edu.

** Dr. Cecile Paris is the project leader of the Explainable Expert System project at USC's
Information Sciences Institute. She received her PhD and MS in Computer Science from
Columbia University (New York) and her bachelor's degree from the University of California
in Berkeley. Her research interests include natural language generation and user modeling,
discourse, expert system explanation, human-computer interaction, intelligent tutoring sys-
tems, machine learning, and knowledge acquisition. At Columbia University, she developed
a natural language generation system capable of producing multi-sentential texts tailored to
the users" level of expertise about the domain. At ISI, she has been involved in designing a
flexible explanation facility that supports dialogue for an expert system shell. Dr. Paris is a
member of the Association for Computational Linguistics (ACL), the American Association
for Artificial Intelligence (AAAI), the Cognitive Science Society, ACM, IEEE, and Phi Kappa
Phi. Readers can reach Dr. Paris at USC/ISI, 4676 Admiralty Way, Marina Del Rey, California,
90292; e-mail: paris@isi.edu.

User Modeling and User-Adapted Interaction 2: 287-330, 1992.
~) 1992 Kluwer Academic Publishers. Printed in the Netherlands.

2 8 8 JOHANNA D. MOORE AND CI~CILE L. PARIS

Because these efforts were largely devoted to investigating how a user model could be exploited
to produce better responses, systems employing them typically assumed that a detailed and
correct model of the user was available a priori, and that the information needed to generate
appropriate responses was included in that model. However, in practice, the completeness and
accuracy of a user model cannot be guaranteed. Thus, unless systems can compensate for
incorrect or incomplete user models, the impracticality of building user models will prevent
much of the work on tailoring from being successfully applied in real systems. In this paper,
we argue that one way for a system to compensate for an unreliable user model is to be able
to react to feedback from users about the suitability of the texts it produces. We also discuss
how such a capability can actually alleviate some of the burden now placed on user modeling.
F~inally, we present a text generation system that employs whatever information is available in
its user model in an attempt to produce satisfactory texts, but is also capable of responding to
the user's follow-up questions about the texts it produces.

Key words: question answering, natural language generation, adaptive systems, text planning,
explanation, expert systems, user modeling

1. Introduction: The Need for and Limitations of User Models

Natural Language (even when limited) is a powerful medium for interacting
with users orfor providing documentation about a system. In fact, some argue
that natural language is "critical for the effective use of expert and advisory
systems" (Finin et al., 1986, p. 921), and sophisticated computer systems
using natural language are becoming more prevalent. However, one of the
reasons that natural language is so powerful is that human speakers show an
essential, inbuilt responsiveness to their hearers. Therefore, if a computational
system is to reap the benefits of natural language interaction, it must similarly
"tailor" its utterances to its users. Recognizing this, researchers have devised
user models and strategies for exploiting them in order to enable systems to
produce the "best" answer for a particular user in one shot. Systems employing
such models have convincingly demonstrated that a user model can be used
to guide the generation of utterances that are appropriately tailored to a user's
knowledge state and goals (e.g., Appelt, 1985; van Beek, 1986; Chin, 1987;
McCoy, 1988; Paris, 1988; Woltz et al., 1990).

Because these efforts were largely devoted to investigating how a user
model could be exploited to produce better responses, they typically assumed
that a detailed and correct model of the user was available a priori, and
that the information needed to generate appropriate responses was included
in that model. However, hand-crafting a detailed user model for each user
is prohibitively time-consuming and error-prone. Moreover, Sparck Jones
(1984, 1989) has questioned the feasibility of automatically acquiring the
complex and detailed user models assumed by existing generation systems. In
practice, the completeness and accuracy of a usermodel cannot be guaranteed.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 289

Thus, unless systems can compensate for incorrect or incomplete user models,
the impracticality of building user models will prevent much of the work on
tailoring from being successfully applied in real systems.

In this paper, we argue that one way for a system to compensate for an
unreliable user model is to be able to react to feedback from users about the
suitability of the texts it produces. By feedback we mean follow-up questions
evoked by previously generated responses (e.g., "What is an X?", "Why.),9"
indications that a clarification of a response is desired (e.g., by asking a
question again), or simple indications that a response was not understood
(e.g., "Huh?", "I don't understand.").

The ability to recover when the user is not satisfied with an explanation
will alleviate some of the burden now placed on user modeling. With this
capability, a system no longer requires a detailed and correct user model
in order to supply users with the information they seek. It is not forced to
attempt to provide a response that will be understood and that will be the most
appropriate in one shot. Instead, the system can rely on the user to provide
feedback when necessary. By responding to this feedback, the system can
overcome the limitations of its user model.

This paper is structured as follows. First, we motivate the importance
of user feedback by describing the results of studies of naturally occurring
advisory interactions. We then describe an architecture for text generation in
which a system employs information in a user model when it is available, but
also allows the user to ask questions about the text generated. We identify
the requirements that such an approach places on the generation process
and present our tex(planner which satisfies these requirements. We also
describe the user model employed by our system and explain how it affects
the generation process. We then work through a detailed example to illustrate
how this approach can alleviate some of the problems faced by systems that
rely on a priori user models alone. Finally, we discuss related work and
present some directions for future research.

2. The Importance of Feedback from the User

While dialogue participants have some models of their interlocutors, they
rarely start with detailed and correct models. Yet, they are capable of commu-
nicating effectively, even when their initial model tums out to be incorrect. In
conversation, humans often rely on feedback from their hearer (Ringle and
Bruce, 1988). They expect their intedocutors to ask further questions, request
clarification, or simply provide an indication that something was not under-
stood. With this feedback, speakers are able to provide further information,

290 JOHANNA D. MOORE AND CI~CtLE L. PARIS

[The student and teacher are discussing an assignment to implement an infix calculator
using two stacks to keep track of the operators and numbers read in. The student is unsure
what data type the entries in the operator stack should be and about whether to store the
operator or its precedence on the operator stack.]

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

TEACHER

STUDENT

OK, I wasn't sure how to make the operator stack.

OK, the operator stack...

Is . . . i t . . . it be a long integer or something like that?

It can be long integers or characters. Sounds like it would naturally fall
into characters. OK? Or we could define capital P-L-U-S to be 1, the
word capital M-I-N-U-S to be 2, the word divide, D-I-V-I-D-E, to be 3,
and the word mult, capital M-U-L-T, to be 4, and the word E-X-P, for
exponentiation to be 5. OK? Then we'll have a variable called operator.
OK? And we'll say this. If we read in the character plus sign, then
operator equals 1. Right?

Isn't it, isn't it, the plus and the minus 1?

No, that's the precedence, OK? We're gonna assign another variable
called precedence. OK? So if we read in the plus sign, we're going to
say operator equals capital P-L-U-S, precedence equals 1. We read in the
minus sign, we're gonna say operator equals M-I-N-U-S, precedence
equals 1. Right?

Oh.. . uh. . . uh.. .

That's one way of doing it. Or, we could do... We have to keep track
of what the operator was, OK? And we can also write a routine called
"precedence" which will return the precedence of an operator, which
says, if operator equals P-L-U-S, return 1. If operator equals minus
return 1. OK? So we can call this routine whenever we have an operator.

But you can't put characters on the, on the long integers stack.

It's not advisable. If you want to put characters on the stack, we would
declare the stack to be of type character. Which you might want to do.. .

To have a character...

Sure. And the character stack, that particular stack is the operator stack,
right? You read in the plus, you put the plus sign on top of the character
stack.., on the operator stack of type character. So you can do it anyway
you feel comfortable with it. But hopefully it should work.

In the array, for each element, do you store the operator or the prece-
dence?

You store the operator.

Only?

Well, you can find out the precedence, right? From any operator you
can find out the precedence. OK? From the precedence, can you find
out the operator?

No.

TEACHER Right.

Fig. 1. Sample human--human dialogue.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 291

often based on what they have already said. This phenomenon is particu-
larly illustrated in advisory interactions, such as the one shown in Figure 1,
collected by Moore.

In this dialogue, a student and teacher are discussing an assignment to
implement an infix calculator using two stacks to keep track of the operators
and numbers read in. In this portion of the dialogue, the student asks how to
create the operator stack. The student appears to be confused about what data
type, long integers or characters, would be most appropriate. The instructor
first suggests using a character array and then describes a method of asso-
ciating numbers with operators so that an integer array could be used. This
causes the student to ask a follow-up question indicating that he has confused
the numbers used to encode the operators and the numbers indicating the
precedence of operators. Later the student asks a vaguely articulated question
"Oh.. . Uh. . . u h . . . " and the teacher responds by offering another method
of solving the problem. The student then asks another follow-up question
to resolve an incompatibility between his belief (that the precedence must
be stored) and the instructor's response (that implies it need not be stored.)
The instructor elaborates by giving a reason to justify his previous response.
Clearly, the instructor does not have a complete model of his listener; if he had,
he would have anticipated the listener's need for the elaborated explanation
and given it the first time around.

Yet, as the dialogue illustrates, the advice-seeker and the expert are able
to communicate. This is because, when hearers do not fully understand a
response, they ask follow-up questions, requesting clarification, elaboration,
or re-explanation of the expert's response. These follow-up questions are not
necessarily well-formulated, as people cannot always pinpoint just what it
is they do not understand. In such cases, the follow-up question is vaguely
articulated in the form of mumbling, hesitation, repeating the last few words
of the expert's response, or simply stating "I don't understand." In the sample
dialogue it takes the form of "Oh.. . uh. . . u h . . . " Often the expert does not
have much to go on, but must still provide further information, again relying
on the hearer to ask more questions if necessary.

From our analysis of dialogues such as this one (Moore, 1989a), we
concluded that experts do not have detailed and correct models of advice-
seekers. Other researchers, e.g., (Falzon, 1987; Cahour, 1990, 1991), have
shown how experts build a user model from a dialogue. At the beginning of
an interaction, experts quickly assign a stereotype to their interlocutor, and
their answers are driven by the chosen stereotype. As the dialogue proceeds,
they refine this stereotypic model, and adapt their answers appropriately.
Furthermore, if their interlocutor's reactions to their answers indicate that

292 JOFIANNA D. MOORE AND Ct~CILE L. PARIS

they made a mistake in assigning the stereotype, experts change the user
model and correspondingly change their behavior.

These studies suggest that, in order to communicate effectively, a system
must be able to recognize when the user's reactions indicate that the system's
responses are unsatisfactory, and be able to respond appropriately. These
capabilities increase the robustness of a system in three ways: a system can
start to communicate by generating responses with incomplete or incorrect
information in the user model, and await feedback from the user. The user
model can then be built or refined from interactions with the user, employing
techniques for user model acquisition suggested in several recent works, e.g.,
(Kobsa, 1984; Sleeman, 1985; Chin, 1989; Lehman and Carbonell, 1989;
Mastaglio, 1990; Bunt, 1990; Quilici, 1990; Kass, 1991; Shifroni and Shanon,
1992; Wu, 1991). Finally, the system can recover from an inaccurate user
model by addressing the user's follow-up questions.

3. A System That Employs Feedback

We have constructed an advice-giving system that participates in explanatory
dialogues with its users. This system generates coherent multi-sentential texts,
deciding both what to say and how to organize the selected content. It makes
use of information in a user model when it exists, but it is not critically
dependent on the quality of the information in that model. In particular, it
can provide altemative explanations, elaborate on previous explanations, and
respond to follow-up questions in the context of the on-going dialogue, even
when the user is not very explicit about what aspect of the explanation was
not clear.

3.1. EXPLAINER OVERVIEW

Our generation system was developed as part of the Explainable Expert
Systems (EES) framework (Neches et al., 1985; Swartout and Smoliar, 1987),
a domain-independent shell for creating expert system applications. A key
feature of the EES framework is that it provides an explicit representation of the
knowledge needed to support explanation of the terminology and reasoning
processes used by the expert system. When an expert system is built using
EES, a development history is created that records the goal structure and
design decisions behind the expert system (Chandrasekaran and Swartout,
1991; Swartout et al., 1991). This structure, the domain knowledge base, and
the execution trace of the expert system's behavior are all available for use
by the explanation facility.

An overview of the generation system (and its relation to the expert system)

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 293

Expert System]

" DesignHistory] L

~' ~ Comnlunicative

al [P l a n n e r ~ Interface [-

Dialogue [Plan

History [Operators

E x p l a n a t i o n G e n e r a t o r

Query/Response

Fig. 2. Architecture of the explanation system.

SPL Plan

is shown in Figure 2. To interact with the user, the expert system posts a
communicative goal (e.g., get the hearer to adopt the goal of performing
an action, make the hearer know a concept, justify a conclusion) to the text
planner. The text planner then constructs a text to achieve this communicative
goal. As will be discussed in Section 3.2, the system must understand its own
explanations in order to be able to answer follow-up questions in context and
offer elaborating or clarifying explanations. To this end, our system explicitly
plans the explanations it produces using a set of explanation strategies. The
planning process is recorded to capture the "design" of the explanation.

The explanation is presented to the user and recorded in the dialogue his-
tory. At this point, the user can pose a question, which will be interpreted
by the query analyzer. Queries are often follow-up questions regarding the
text generated by the system. Even though we assume the user poses queries
in a restricted sublanguage, ambiguities may still arise. For example, sim-
ple queries such as "Why?" mean different things in different contexts. In
our system, context includes the information recorded in the dialogue his-
tory, the expert system's state, and the user model. To interpret the user's
input, the query analyzer examines these knowledge sources to produce a
communicative goal that is then posted to the text planner.

294 JOHANNA D. MOORE AND Ct~CILE L. PARIS

3.2. REQUIREMENTS FOR HANDLING FEEDBACK

Users' questions must be interpreted and answered in the context of the on-
going interaction, and the system's previous explanations make up part of this
context. When the user does not fully understand a response, the generation
facility must be able to determine what portion of the text failed to achieve its
purpose, so that it can clarify misunderstood explanations and elaborate on
prior explanations. To provide these capabilities, a system must "understand"
the text it generates in terms of what it was trying to convey as well as how
that information was conveyed. That is, it must represent and be able to reason
about the intentional structure behind an explanation, including the goal of the
explanation as a whole, the subgoal(s) of individual parts of the explanation,
and the rhetorical means used to achieve these goals (Moore and Paris, 1989;
forthcoming).

Our system achieves this understanding by explicitly representing the
"design" of the explanations it produces. The system constructs explanations
to achieve its communicative goals, recording all of its decisions in a textplan.
This text plan includes the intentional and rhetorical structure of the text being
produced, as well as any assumptions about the user's goals and knowledge
that were made while planning the response. This is an important aspect of
the system: since we cannot rely on having complete user models, the system
may have to make assumptions about the hearer in order to use a particular
explanation strategy. Such assumptions are recorded in the text plan and
available for later reasoning if there is any indication that a communication
failure has occurred.

Text plans thus provide the context necessary to interpret follow-up ques-
tions and recover when feedback from the user indicates that the system's
explanation is not satisfactory (Moore and Swarout, 1989). When the user
indicates that an explanation was unsatisfactory, the system reasons about the
text plan that produced the explanation in order to determine the focus of at-
tention, and to decide which of the system's communicative goals might have
failed, or which of the assumptions made may have been erroneous. The text
plans recorded in the dialogue history are also used to guide the planning of
elaborating and clarifying responses (Moore, 1989b) and to avoid repeating
information that has already been communicated (Moore and Paris, 1989). 1

We now present the system in more detail and describe the user model
employed in the system.

i Furthermore, we have also demonstrated how these text plans can be used to select a
perspective when describing or comparing objects (Moore, 1989a).

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 295

3.3. THE TEXT PLANNER

The text planner constructs a text to achieve the system's communicative
goals. In our plan language, communicative goals are represented in terms
of the effects that the speaker intends the text to have on the hearer's beliefs
or goals. For example, the speaker may intend that the hearer believe some
proposition, know about some concept, have some goal, or perform a certain
action, z To satisfy communicative goals, the planner makes use of explana-
tion strategies that map communicative goals to the linguistic resources for
achieving them.

To enable the system to produce coherent multi-sentential texts, these
linguistic resources include knowledge about the rhetorical relations defined
in Rhetorical Structure Theory (RST) (Mann and Thompson, 1987), a theory
of text coherence. RST defines a set of approximately 25 relations (e.g.,
MOTIVATION, EVIDENCE) that may exist between adjacent spans in a coherent
English text. The definition of each relation specifies constraints on the two
spans of text being related, as well as the effect on the hearer's beliefs, desires,
or intentions that this relation may be used to achieve.

Explanation strategies are encoded in plan operators. Each operator con-
sists of:
- a n e f f e c t : a characterization of the goal that this operator can be used

to achieve. An effect may be a communicative effect, such as "hearer
believes a proposition", or a linguistic effect such as "provide motivation
for an act" or "inform user of a proposition".

- a c o n s t r a i n t l i s t : a list of conditions that "must" be true before the
operator can be applied. Constraints may refer to facts in the system's
domain knowledge bases, information in the user model, information in
the dialogue history, or information about the evolving text plan.

- a n u c l e u s : a subgoal to express the main topic. Every operator must
contain a nucleus.

- s a t e l l i t e s : additional subgoal(s) that will lead to the inclusion of informa-
tion needed to achieve the effect of the operator. When present, satellites
may be marked as required or optional.

An example plan operator is shown in Figure 3. This operator encodes the
knowledge that the communicative goal of persuading the hearer to do an act
can be achieved by motivating the act in terms of a user goal. The constraints
of this operator indicate that, in order to persuade the hearer to do an act, the

2 Details of the representational primitives used in our system are beyond the scope of this
paper. Interested readers are referred to Moore (1989a) and Moore and Paris (forthcoming).
For clarity, we provide English paraphrases of the terminology in our examples.

296 JOHANNA D. MOORE AND CI3CILE L. PARIS

In Formal Notation:

EFFECT: (PERSUADED ?hearer (GOAL ?hearer (DO ?hearer ?act)))
CONSTRAINTS: (AND (STEP ?act ?goal)

(GOAL ?hearer ?goal))
NUCLEUS: (FORALL ?goal

(MOTIVATION ?act ?goal))
SATELLITES: nil

English Translation:

To achieve the state in which the hearer is persuaded to do an act,
IF the act is a step in achieving some goal(s) of the hearer,
THEN motivate the act in terms of those goal(s).

Fig. 3. Plan operator for persuading user to do an act.

system should look for domain goals that are shared by the hearer and that
the act is a step in achieving) If any such goals are found, the planner will
post one or more MOTIVATION subgoals.

Using a hierarchical planning mechanism (Sacerdoti, 1975), the text plan-
ner constructs text to achieve communicative goals. When a goal is posted,
the text planner searches its library of plan operators to find those capable of
achieving this goal. To determine whether a plan operator may be applied,
the planner must check the operator's constraints. When constraints contain
unbound variables, satisfying them will cause the text planner to search the
expert system's knowledge bases, the dialogue history, and the user model
for acceptable bindings for these variables. This will be discussed further in
Section 4.

All the plan operators that can achieve the current goal and whose con-
straints are satisfied are considered candidate operators. Plan selection heuris-
tics enable the planner to choose among them, taking into account the user
model, the dialogue that has occurred so far, as well as other factors which are
discussed in the following section. Once a strategy is selected, it may in tum
post subgoals for the planner to refine. As the system plans explanations to
achieve its communicative goals, it keeps track of any assumptions it makes

3 This plan operator actually contains other constraints that refer to the information con-
tained in the dialogue history and the evolving text plan. These are not relevant to our discussion
here and are thus omitted for simplicity. See Moore and Pads (forthcoming).

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 297

about what the user knows as well as altemative strategies that could have
been used to achieve its goals.

The primitive operators in our plan language are speech acts, such as
INFORM, REUONNEND. 4 Whenever a speech act is posted as a subgoal, the
grammar interface constructs a specification of this speech act in Sentence
Plan Language (SPL) (Kasper, 1989). When text planning is complete, these
SPL specifications are passed to the surface generator, Penman (Matthiessen,
1984; Mann and Matthiessen, 1985), which produces English utterances.
Transforming a speech act into an SPL specification is currently done in a
straightforward manner. The speech act type dictates the mood (e.g., declar-
ative, imperative) of the sentence, the predicate of the proposition to be
expressed determines the verb type, and nominal groups are constructed for
each concept involved in the speech act. This approach has been taken in
many generation systems that plan multi-sentential texts, e.g., (McKeown,
1985; McCoy, 1985; Paris, 1987).

In the process of building an SPL specification, new text planning goals
may be posted as side effects. This occurs because the text planner reasons
about concepts and processes at an abstract level, in the system's knowl-
edge representation language. Because a single system concept may actually
represent a very complex structure (e.g., "transformations that enhance main-
talnability"), the system must "unpack" this structure to construct a nominal
group to express such concepts. It is only when this unpacking is done that
the system recognizes that certain concepts (e.g., "maintainability") will be
mentioned in the final text.

To provide an informative and understandable text, the system must phrase
its utterance using terms the user knows and understands. After having "un-
packed" a complex data structure, the system checks the user model to see
if each additional term to be expressed is known to the user. If, according
to the user model, a term is not known to the user, the system can do one
of two things: (1) it can assume that the term is known, generate the text
using a simple lexical item and record the assumption that was made in the
text plan, or (2) the system can post a goal to define the unknown term to
the text planner. 5 This phenomenon is discussed further in the Section 4. In
this way, our system can opportunistically define a new term when the need

4 Here we are using the term "speech act" where Appelt (1985) would use "surface speech
act".

5 Bateman and Paris (1989, 1991) are studying the problem of choosing the appropriate
syntactic structures and lexical items for a specific user or for classes of users. Their system
thus does further planning to express a concept in English. If the phrasing component is unable
to phrase a concept in terms the user understands, however, it would return control to the text
planner by posting a goal to define a concept.

298 JOHANNA D. MOORE AND CI~CILE L. PARIS

arises. This is often done in human speech, as illustrated in the following
explanation given by a doctor when asked about the possible ways to treat
migraine (italics indicate our present concem, not spoken emphasis). 6

So, for example, say that you told me that you had three to four headaches,
and you weren't sure when they would come in the month, [. . .] what
I would recommend with that frequency is that you should be on some-
thing prophylactically. Prophylactically basically means preventing the
headache from occurring before it actually starts. If you had infrequent
headaches, maybe several times a year, where you were quite sure when
you were going to have the headaches, then I would recommend more
something abortive. That means that when the headache came on, I wouM
treat you at that point. I would rather, to help prevent side effects from
you having to take a medicine on a daily basis, just try to abort them, if
they were infrequent.

Because a new term can be introduced in virtually any statement, it would
be unwieldy to include a subgoal for defining a new term in each step of each
plan operator that might result in introducing a new term. We believe that
a more elegant approach is to post the goal to define a term when the need
arises, and work the definition into the evolving text plan according to the
rules of discourse as represented in plan operators. This is what happens in
our system.

When all subgoals have been refined into SPL specifications, planning is
complete. The result of the planning process is a text plan for achieving the
original communicative goal. It provides an explicit representation of the
explanation produced by the system, indicating how parts of the plan are
related, and what purposes different parts of the generated explanation serve.
This text plan can thus be thought of as a "design record" telling the system
what it was trying to explain, how it explained it, what assumptions were
made, and what altemative strategies could have been selected at various
points during the planning process.

The completed text plan is recorded in the dialogue history and passed
to the grammar interface which examines the plan tree to determine where
sentence boundaries should be placed and which, if any, connective markers
should be included in the text. The output of the grammar interface is an
ordered list of SPL specifications. These are then passed, a sentence at a time,
to the Penman system for translation into English.

6 This example is taken from transcripts gathered by Claudia Tapia and Johanna Moore at
the University of Pittsburgh.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 299

After a response has been generated, the system awaits feedback from the
user. This feedback may be a follow-up question (e.g., "Why?", "What's the
difference between CAR and FIRST?", "What is a generalized variable?"), an
indication that the user does not understand the system's response ("Huh?"),
an indication that the user has no further questions ("OK"), or a response to
a question posed by the system. 7 The text plans in the dialogue history in
conjunction with the user model and the expert system's problem-solving
state provide the information necessary to allow the query analyzer to choose
appropriate interpretations for the user's questions. This context is necessary,
as even simple questions (such as "Why?") can often be interpreted differently
depending on what the user knows, the information currently available in the
problem-solving space, or the content of the earlier discussions (Buchanan
and Shortliffe, 1984). A detailed example of this phenomenon can be found
in Moore and Swartout (1989).

Having interpreted the user's feedback, the query analyzer either returns
control to the expert system, or formulates the appropriate communicative
goal and passes it on to the text planner to produce a response. If the text
planner must produce a response, it plans text as before, except that it now
also uses the text plan for the previous response (as recorded in the dialogue
history) to guide its decision process.

3.4. THE USER MODEL

Although we argue that requiring a complete and correct user model is unre-
alistic, we believe that knowledge about the user is necessary for providing
explanations the user will find relevant and understandable. For instance,
when attempting to persuade a user to perform an action, the system should
motivate the action in terms of the user's goals, as represented by the second
constraint in the operator shown inFigure 3 page 296: (GOAL USER ?goal) .8
Knowledge about the user is also important when selecting the most appropri-
ate strategy to produce an explanation. For example, in our system, there are
many different strategies for describing a concept to the user. Using one strat-
egy, the system describes an object by stating what superclass it belongs to
and describing its attributes and its parts. Another strategy calls for giving ex-
amples of the concept being described. Yet another strategy draws an analogy

7 To aid the user in supplying feedback, we also developed a hypertext-like pointing
interface (Moore and Swartout, 1990). Using this interface, the user is allowed to highlight
parts of the explanation given by the system to request clarifications or elaborations. When the
user selects a portion of the text, a menu containing all the questions that might be asked about
this portion at this point in the dialogue is displayed, and the user chooses the appropriate one.

8 The variable ?hearer is globally bound to USER.

300 JOHANNA D. MOORE AND Ct~CILE L. PARIS

with a similar concept. One of the factors that influences the choice of strategy
in a particular situation is what the user knows, i.e., drawing an analogy will
only be effective if the user is familiar with a concept similar to the one being
described. Similarly, the system should only choose the strategy of giving
examples if the user will find the examples illustrative, i.e., the user knows
the example concepts. Finally, knowledge about the user is useful in decid-
ing which lexical items and syntactic structures should be used to express
a concept in English (e.g., Jameson and Wahlster, 1982; Reithinger, 1987;
Bateman and Paris, 1989; Haimowitz, 1990). Therefore, having information
about the current user is important in providing meaningful explanations.

However, we do not wish our system to be critically dependent on either the
completeness or correctness of the user model. Rather, we take the approach
that the system should make use of any information it has available about
the user, but be ready to react to feedback from the user indicating that
the system's utterance was not satisfactory. The system described here is
capable of performing adequately even if it has no information about the
user, or if that information does not accurately reflect the user's knowledge
and goals. When necessary, the system makes assumptions and relies on the
user to ask follow-up questions if the response generated is not sufficient. Our
system constructs an initial user model, updates it in simple ways during the
interaction, and uses it to guide the text planner. The tasks of building and
maintaining the user model are currently done in a straightforward way, as
this was not the focus of our work. These tasks are clearly complex, but we
believe that the ability to reason about the user's feedback in the context of
the text plans recorded in our dialogue history will aid our system in detecting
and correcting inaccuracies in the user model. We also believe that integrating
the results of recent work on user model acquisition such as Kass (1991) will
prove promising.

3.4.1. Representation and content of the user model
In this work, we use an overlay technique (Carbonell, 1970; Carr and Gold-
stein, 1977) to model the user. The user's knowledge and goals are thus
assumed to be some subset of the system's knowledge and goals. Using this
technique, a user model is incomplete if the user knows something that is not
indicated in the user model. A user model is incorrect if it indicates that the
user knows some concept or holds some belief when, in fact, the user does
not. Note that we are ignoring another sense in which a user model might be
incorrect. In particular, we are ignoring the case in which the user holds some
belief that is incompatible with the system's model. Detecting misconceptions
has been studied extensively in the area of Intelligent Tutoring systems (e.g.,

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 301

Brown and Burton, 1978; Stevens et al., 1979; Sleeman and Brown, 1981;
Sleeman, 1983; Wenger, 1987, Chapters 16 and 17) and in Computational

Linguistics (e.g., Pollack, 1986a; Quilici et al., 1988). There has also been
research in correcting misconceptions once detected (e.g., Maya, 1980; Joshi
et al., 1984; McCoy, 1988; Quilici et al., 1988). In our current work, we do
not attempt to detect inconsistencies between the user model and the system's
knowledge, nor will we try to correct such errors.

In our system, the user model records four types o f information about
the user: the user 's goals, the user 's knowledge about methods for achieving
goals and performing acts (e.g., the user is competent to perform an act), the
concepts the user is familiar with, and facts the user believes (i.e., relations
between concepts). The user model thus contains the following types of
assertions:

- (GOAL USER g) : The system believes that the user has a goal, g.

- (BEL USER (CONCEPTc)) :Thesys tembe l i eves tha t theuse r i s f ami l i a r
with a concept, c. 9 This assertion means that the user knows a description

o f the concept c. 1~ This assertion does not imply that the user knows
any particular attributes o f c. As will be seen later, our user modeling
acquisition component employs inference rules such as those defined in
Kass (1991) to gather more information about the user 's knowledge.

- (BEL USER p) : The system believes that the user believes some fact, p,
about the world, p can be a fact in the domain model. For example, (BEL
USER (ISA CAR-FUNCTION ACCESS-FUNCTION)) indicates that the
user believes that the CAR function is an access function. Alternatively, p
can refer to a fact in the problem-solving knowledge. For example, (BEL
USER (STEP APPLY-TRANSFORMATIONS-THAT-ENHANCE-MAINTAIN-
ABILITY ENHANCE-MAINTAINABILITY)) indicates that the user be-
lieves that applying transformations that enhance maintainability is a
step towards achieving the goal o f enhancing maintainability.

9 Throughout the paper, we often paraphrase this notation as "the user knows concept
c". We do not wish to imply that there is no difference between the notions of "know" and
"believe". In fact, we have chosen a notation that makes use only of the belief predicate BEL
precisely because we do not wish to enter into a philosophical dispute about the differences
between these.two notions. In this work, we have not found the need to distinguish between
"know" and "believe". A thorough treatment of the differences is beyond the scope of this
work; see for example, Kobsa (1989).

10 Note that this is a slight change from the way it is used in Kass (1991, p. 230), in which
(BEL USER (CONCEPT c)) is intended to mean that the user only knows of the existence
of the concept c, but does not necessarily know any more information about it. In particular,
in Kass (1991), this assertion is not intended to mean that the user knows the definition or any
properties of c.

302 JOHANNA D. MOORE AND CI~CILE L. PARIS

- (COMPETENT USER (DO USER act)): The system believes that the user
is competent to perform the primitive domain action, act.

- (COMPETENT USER (ACHIEVE USER goal)): The system believes that
the user is competent to achieve goal. That is, the user knows a method
for achieving the non-primitive domain action.

In addition, we allow for the use of stereotypes. An individual user model
can thus also include an assertion indicating a stereotype appropriate for the
user (e.g., (ISA USER stereotype)).

3.4.2. Obtaining the user model
Our system builds individual user models from the following sources:

- a set of user stereotypes;
- the user's interactions with the system, including the initial request to

the system and responses to the system's queries;
- observable artifacts, when available;

Obtaining information from user stereotypes. The system contains stereo-
typical user models, including models for system developers, domain experts,
and novice users. Each stereotype includes some assertions that the system be-
lieves about such a stereotypic user. For example, the stereotype for a system
developer in the domain of digital circuits indicates that the user knows the
logical predicates EXISTS and FORALL and the concepts 0BJECT-RELATION-
ASCRIPTION, and 0OTPUT-TERMINAL. On the other hand, the stereotype for
naive users in that domain indicates that only the concept of OUTPUT (as
opposed to OUTPOT-TERMINAL) is understood.

The system also contains a model of the "canonical user', which specifies
a set of basic concepts that we presume to be known to all users of a given
expert system. For example, in the domain of LISP programming, this set
includes the concepts of PROGRAM, VARIABLE and FUNCTION. In the digital
circuit domain, every user is presumed to know the concepts of CIRCUIT and
CONNECTORS.

As in Rich (1989) and Chin (1989), an individual user model inherits
information from the stereotypes that are applicable. Information from the
stereotype is used when no other more specific information overrides it.

Obtaining information from interactions. The system can often obtain
knowledge about the user's goals and beliefs from the interactive dialogue.
First, since the user is employing the expert system, the system infers that the
user shares its top-level goal. For example, the Program Enhancement Ad-
visor (PEA) (Neches et al., 1985) is an advice-giving system intended to aid

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 303

(~ Coneel~

Roles (relations)

Paraphrase in Englisb"

SETQ-FUNCTION has the function name, SETQ-SYMBOL,

and its use is to ASSIGN a VALUE to a SIMPLE-VARIABLE.

It has two arguments: a SIMPLE-VARIABLE, and a VALUE.

Fig. 4. PEA's knowledge about SETQ.

users in improving their Common LISP programs by recommending simple
transformations that enhance the user's code. The top-level goal of this sys-
tem is to enhance the program supplied by the user. The system can thus add
the assertion (GOAL USER ENHANCE-PROGRAM) to the usermodel atthe start
of the interaction. Furthermore, whenever the system asks the user questions
which explicitly request information about the user's goals, that information
is recorded in the user model. For example, PEA begins its dialogue with the
user by asking what characteristics of the program the user would like to
enhance. Thus the system can update the user model to indicate that the user
has the goal(s) of enhancing the chosen characteristic(s).

As the dialogue proceeds, the system can augment the user model. For
example, if the system explains a concept to the user and no follow-up
questions about this concept arise (or, if after a series of follow-up questions,
the user indicates that the description is understood), the system can update
the user model to indicate that the user knows the concept.

304 JOHANNA D. MOORE AND CI~CILE L. PARIS

Obtaining information from observable artifacts. Finally, in some applica-
tion domains, it is possible to gather information about the user from some
artifact created by the user. In the PEA domain, for example, the system can
glean some information about what LISP constructs the user knows from the
program to be enhanced. To do this, before beginning the interaction with
the user, the system makes one pass through the user's code to determine
what functions the user has employed. For each function in the user's code,
the system infers that the user knows the function, its use, and the concepts
associated with that use. The user model is updated appropriately. Note that,
because we use an overlay technique, the system can only make inferences
about fimctions that appear in its domain model.

For example, suppose the user's program contains the S-expression (SETQ
X 1). PEA's knowledge about the SETQ function indicates that SETQ can be
used to assign a value to a simple variable (as illustrated in Figure 4). As a
result, the system infers that the user knows the concept SETQ-FUNCTION, as
well as the concepts ASSIGN, VALUE and SIMPLE-VARIABLE.

Clearly this inference rule alone is too simplistic and may cause the system
to attribute too much or too little to the user's knowledge state (e.g., if the
user employed a function incorrectly). However, since our system allows the
user to ask follow-up questions and to ask for elaboration if he or she is not
satisfied with the system's explanations, such errors in the user model are not
critical. This is indeed an advantage of a system that is capable of reacting to
the user's feedback by providing elaborating and clarifying responses.

4. Exploiting the User Model During Text Generation

We now discuss the text planning mechanism in more detail, focusing on the
role of the user model during the generation process. The user model guides
the generation process at several stages. It affects plan selection through
operator constraints that refer to the user model and through plan selection
heuristics. In addition, the user model influences what and how much is
ultimately included in the text. Finally, it is also used to interpret and handle
the user's feedback. The next section provides a detailed example which
illustrates how the system combines employment of the user model and
feedback from the user to achieve effective communication.

4.1. CHECKING CONSTRAINTS AND MAKING ASSUMPTIONS

The planning process begins when a communicative goal is posted. The
planner identifies all of the operators that are potentially capable of satisfying
a given communicative goal by finding those whose effect field matches the

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 305

goal to be refined. For each operator found, the planner then checks to see if
its constraints are satisfied.

As noted in Section 3.3, constraints may refer to facts about the domain or
the problem-solving activity, as indicated in the expert system's knowledge
bases, or to facts concerning the user, as recorded in the user model, u When
the planner is checking the constraints on a plan operator, it attempts to find
variable bindings in the expert system's knowledge bases or the user model
that satisfy the constraints in the constraint list.

Two types of constraints may refer to the user model: one concerns spe-
cific beliefs or goals the user has, and the other concerns stereotypes that
apply to the user. Constraints of the first type were illustrated in Figure 3
page 296, e.g., (GOAL USER ?goa l) . A constraint of the second type is
a query about whether the user belongs to a specific stereotype, e.g., (ISA
USER SYSTEM-DEVELOPER). This type of constraint is useful because certain
explanation strategies are appropriate for some types of users and not others
(Paris, 1988; Cohen and Jones, 1989). For example, the system may have two
strategies available for justifying a conclusion: one which closely traces the
reasoning of the expert system, and one that summarizes it by highlighting
the main points. The first one is more appropriate for system developers (who
are trying to debug the system and thus need to know precisely how the rea-
soning was done), while the second is more appropriate for end users (Paris,
1991). This preference is indicated in the constraints of the corresponding
plan operators. In this way, the user model can trigger the use of specific
strategies.

Constraints that refer to the expert system's knowledge are treated dif-
ferently from constraints that refer to the user model. We assume that the
information in the expert system's knowledge bases is correct. Therefore,
constraints referring to aspects of this knowledge are treated as rigid con-
straints. If one of these constraints fails to be satisfied, the operator is rejected
from consideration immediately. In contrast, since we do not wish to assume
that our user model is either complete or correct, constraints referring to the
user model are treated as a specification of what the user should know (what.
goals the user should have, or what type of user he or she should be) in order
to understand the text that will be produced by the operator. When attempting
to satisfy a constraint referring to the user model, the planner may make
an assumption if the constraint is not satisfied according to the user model.
We allow the planner to make assumptions because the user model could be
incomplete.

11 In general, conslraints may also refer to information in the dialogue history or the evolving
text plan. See Moore and Paris (forthcoming) for details.

306 JOHANNA D. MOORE AND C}~CILE L. PARIS

For example, in checking the constraints of the plan operator in Figure 3
page 296, the system first checks the constraint (STEP ?ac t ?goa l) . This
constraint refers to an aspect of the expert system's problem-solving knowl-
edge, and only bindings for the variable ?goal satisfying this constraint will
be considered acceptable. Suppose that, as will be the case in the example
presented in Section 5, satisfying this constraint results in several possible
bindings for the variable ?goal. Some of these bindings will also satisfy the
constraint that the goal be a goal of the user: (GOAL USER .'?goal). Others
will not. Those bindings which do not satisfy this second constraint will not
be rejected immediately. Instead, they will be noted as possible bindings, and
each will be marked to indicate that, if this binding is used, the assumption
that this is a goal of the user is being made.

Every possible binding environment for each operator is considered a can-
didate. Selection heuristics choose one operator, and a binding environment
for that operator, from among the candidates. One of these heuristics can
be set to indicate that the system should prefer operators that avoid making
assumptions about the user's knowledge. When this is the case, the text plan-
ner prefers choosing binding environments that require no assumptions to be
made. However, in any given situation, the influence of the other selection
heuristics may outweigh this concem, as we will see in the next section. In
that case, or if no assumption-free binding environment exists for an operator,
one that requires assumptions will be chosen. Whenever the planner selects
an operator, any assumptions that are made are recorded in the plan structure
at the plan node where they occur.

Making assumptions at the grammar interface. There is another way that
assumptions may arise during the planning process. This occurs when the
planner reaches a primitive operator, i.e., a speech act such as INFORM. As we
noted above, in order for the text generator to produce English text, the text
planner must build a specification for each utterance in the input language
required by the Penman sentence generator.

Until this point in the text planning process, the system has reasoned about
concepts in the system's knowledge representation language. To generate text
involving these concepts, references to, or descriptions of, these concepts
must be planned. For example, consider the case where the system wishes to
express the concept ASSIGN-T0-GV, which is represented in the knowledge
base as follows:

ASSIGN-T0-GV = (ASSIGN (actor SETF-FUNCTION)
(object VALUE)
(destination GENERALIZED-VARIABLE))

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 307

During text planning, the system reasons only in terms of ASSIGN-TO-GV.
This would be the case, for example, if this concept were part of a more com-
plex predicate, such as (USE SETF-FUNCTION ASSIGN-T0-GV). However,
to express the concept in English, it must now be "unpacked". An appropriate
utterance expressing this concept might be: "The SEYFfunction assigns a value
to a generalized variable." To understand such an utterance, the hearer must
know the concepts ASSIGN, VALUE, and GENERALIZED-VARIABLE. When
building the SPL specification for an utterance, the grammar interface checks
to see if the user knows the filler of each role to be expressed. If he or she
does, the system can simply mention that concept by name in the generated
text. If, on the other hand, the user model does not indicate that the user is
familiar with the concept to be mentioned, an assumption is recorded at this
point in the text plan.

For example, suppose that in planning how to express the concept AS-
SIGN-TO-GV, the user model indicates that the user knows the concepts
ASSIGN and VALUE but has no indication that the user knows the concept
GENERALIZED-VARIABLE. When the system plans the specification for the
INFORM speech act involving ASSIGN-T0-GV, it will make an annotation at
the appropriate node in the plan structure indicating that the system made the
assumption that the user knew about GENERALIZED-VARIABLEs. If feedback
from the user indicates that this utterance was not understood, the system
uses information about such assumptions to determine how to recover from
the misunderstanding.

Alternatives to making assumptions. Making assumptions is not the only
possible recourse in these situations. One alternative is for the system to plan
text explaining any unknown concepts. In fact, our system can operate in
either of two modes: terse and verbose. In verbose mode, the system posts
subgoals to describe any unknown concepts.

Yet another aitemative is for the system to ask the user a question when-
ever it needs to use a concept that is not in the user model. In this way, the
system could determine whether or not the concept is familiar to the listener.
If so, planning could simply continue. If not, the system could engage in a
subdialogue to explain that concept before continuing with the current expla-
nation or, more drastically, could decide to abandon the current explanation
strategy entirely, in favor of one that does not make use of concepts which
are unfamiliar to the user.

308 JOHANNA D. MOORE AND Ct~CILE L. PARIS

4.2. SELECTING A STRATEGY

The planner employs plan selection heuristics based on several factors to
choose an operator and a binding environment. These factors include what
the user knows (as indicated in the user model), the conversation that has
occurred so far (as indicated in the dialogue history), the relative specificity
of the candidate operators, the assumption requirements of each operator (as
indicated in the possible binding environments found when satisfying the
constraints), and the amount of text an operator will generate.

Associated with each heuristic is a weight ranging from 0 to 1 indicating
how that heuristic should contribute to the overall assessment of the plan oper-
ators. The magnitude of the weight indicates how much influence a particular
heuristic should have on the decision. The polarity of the weight indicates
whether that influence should affect the score positively or negatively. Posi-
tive weights indicate preference, while negative weights indicate avoidance.
For example, setting the weight associated with the assumption heuristic to
-0.9 can be paraphrased as "Strongly avoid operators that require making as-
sumptions about the bearer's beliefs and goals." After each operator is given a
score for each heuristic, the total score for each operator is set to the weighted
sum of the individual scores. The candidate with the highest score is chosen.

The selection heuristics and the method for computing individual candi-
date scores are as follows:

- Assumption I-Ieuristie: Avoid/Prefer operators that require making as-
sumptions about the hearer's beliefs or goals. To compute the candidates'
scores for this heuristic, the system counts the number of assumptions
each candidate would require, as well as the maximum number of as-
sumptions that any candidate in the candidate set would require. Each
candidate is then assigned a score equal to the number of assumptions
the operator requires divided by the maximum number of assumptions
required by any operator in the set.

- User Model I-Ieuristie: Prefer/Avoid operators that make use of concepts
the hearer knows. To compute the score for a candidate, the system counts
the number of concepts known to the user that appear in the nucleus and
required satellite(s) of the candidate. This is an estimate of the number
of familiar concepts that will be mentioned in the text if this candidate is
chosen. Again, individual scores are normalized by dividing each score
by the maximum score assigned to any candidate for this heuristic.

Note that this heuristic differs from the assumption heuristic. The as-
sumption heuristic is concerned with avoiding (or preferring!) concepts
the user does not know. In contrast, the user model heuristic tries to

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 309

maximize (minimize) usage of concepts that the user does know. As an
example, consider an operator that explains a concept, el, by drawing an
analogy with concept e2, which is known to the user. Because it makes
no assumptions, this candidate receives a score of 0 from the assumption
heuristic. Because it mentions cz, it gets a score of 1/n from the user
model heuristic (where n = the maximum number of known concepts
used by any candidate). Another candidate operator may make 1 as-
sumption and mention 1 known concept. All other things being equal,
we would like the planner to choose the first candidate. It can only do
this if we have two separate heuristics to keep track of these different
concems.

- Coherence Heuristic: Prefer/Avoid operators that make use of concepts
previously mentioned in the dialogue history. The score for this heuristic
is computed by counting the number of concepts that appear in the
nucleus and satellite(s) of each operator that also appear in the dialogue
history. The score is then normalized by dividing it by the maximum
score assigned to any operator for this heuristic. Preferring the use of
concepts previously mentioned in the dialogue history would result in a
highly cohesive dialogue.

- Specificity Heuristic: Prefer/Avoid specific operators overmore general
ones. To compute scores, the operators are sorted from most general
to most specific, based on the specificity of their constraints. 12 Each
operator is given a score corresponding to its place in the sorted list. The
score is then normalized by dividing by the total number of candidates
in the list.

- Verbosity Heuristic: Prefer/Avoid operators that generate verbose re-
sponses. This is computed by counting the number of subgoals in the
nucleus and required satellites, and normalizing the score by dividing it
by the maximum score assigned to any operator.

The behavior of the explanation system can be modified by changing the
weights on these heuristics. Although the weights are currently set by hand, we
hope to devise a characterization of the types of explanations that are suitable
for certain classes of users. This knowledge could then be encoded into a set of
stereotypes that would determine a collection of weights appropriate to each
stereotype. For example, it may be the case that for novice users the system
should avoid making assumptions, should prefer operators that make use of
concepts the user knows, and should avoid operators that generate verbose
responses (the longer the text, the greater the chance of including concepts the

12 See Moore (1989a) for details on how specificity of constraints is computed.

310 JOHANNA D. MOORE AND CI~CILE L. PARIS

In Formal Notation:

EFFECT: (GOAL ?hearer (DO ?hearer ?act))
CONSTRAINTS: (NUCLEUS)
NUCLEUS:

(RECOMMEND ?speaker ?hearer ?act)
SATELLITES:

(((PERSUADED ?hearer
(GOAL ?hearer (DO ?hearer ?act))) *optional*)

((COMPETENT ?hearer (DO ?hearer ?act)) *optional*))

English Translation:

To make the hearer want to do an act,

IF this text span is to appear in nucleus position, THEN
1. Recommend the act

AND optionally,
2. Achieve state where the hearer is persuaded to do the act

3. Achieve state where the hearer is competent to do the act

Fig. 5. High-level plan operator for recommending an act (repeated).

user does not understand). In other circumstances, different settings would
be appropriate.

4.3. OPERATOR EXPANSION

Once a plan operator has been selected, it is recorded in the plan node as
the selected operator, and all other candidate plan operators are recorded as
untried alternatives. The planner then instantiates the selected operator by
posting its nucleus and required satellites as subgoals to be refined.

At this point, the planner must decide whether or not to expand optional
satellites. As already mentioned, the planner currently has two modes, terse
and verbose. In terse mode, no optional satellites are expanded. In verbose
mode, the planner consults the user model and the dialogue history to deter-
mine whether or not each optional satellite subgoal should be expanded. If a
satellite corresponds to a goal that has previously been achieved (as recorded
in the dialogue history), or the user already has the knowledge or goal that
this satellite would communicate (as indicated in the user model), then the
satellite will not be expanded. Otherwise, it will be expanded.

For example, consider, the plan operator shown in Figure 5 which has

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 311

two optional satellites. 13 The first satellite calls for persuading the hearer
to perform the act. The second satellite corresponds to making the hearer
competent to perform the act. Now suppose that the planner is in verbose
mode. If the user model indicates the user already has the goal of performing
the act, then the first satellite will not be expanded. Similarly, if the system
believes that the user already knows how to do the act being recommended,
the second satellite will not be expanded.

5. Integrating a User Model and Feedback: An Extended Example

Here we illustrate how our system employs a user model to generate responses,
and relies on feedback to compensate for inaccuracies in that model. Our
example is taken from the Program Enhancement Advisor (PEA) (Neches et
al., 1985), which, as mentioned before, is an advice-giving system intended
to aid users in improving their Common LISP programs by recommending
transformations that enhance the user's code. 14 The user supplies PEA with
a program and indicates which characteristics of the program should be
enhanced (any combination of readability, maintainability, and efficiency).
PEA then recommends transformations. After each recommendation is made,
the user is free to ask questions about the recommendation.

Consider the sample dialogue shown in Figure 6. At the beginning of the
interaction, PEA initializes the user model with information from the stereo-
typic canonical user model. In PEA, this set includes some very basic concepts
about LISP programming and text editing that the system considers should be
known to anyone using the PEA system. In particular, the system assumes that
all users are capable of performing replacement acts, that they know what
programs, functions, S-expressions and storage-locations are, and that they
understand the characteristics that PEA can enhance, i.e., readability, main-
tainability, and efficiency. This canonical user model is shown in Figure 7. If
the system knew of the applicability of other stereotypes, these would also be
included in the user model. 15

13 The constraint of this operator, NUCLEUS, refers to the evolving text plan. This constraint
is not explained here as it is not relevant to the discussion at hand. See Moore and Paris
(forthcoming).

14 PEA recommends transformations that improve the "style" of the user's code. It does not
attempt to understand the content of the user's program.

15 The system currently has no sophisticated way of triggering the use of a stereotype, such
as by noticing that the user has employed certain terms (Chin, 1989; Chappel and Cahour,
1991). Stereotypes such as "system developers", "domain-expert", "domain-novice" must be
specified at the outset of the interaction. We intend to use linguistic clues to trigger stereotypes
in the future.

312 JOHANNA D. MOORE AND C]~CILE L. PARIS

SYSTEM

USER

SYSTEM

USER

SYSTEM

USER

SYSTEM

USER

SYSTEM

What characteristics of the program would you like to en- [1]
hance?
Readability and maintainability. [2]

You should replace (SETQ X 1) with (SETF X 1). [3]

Why? [4]

I am trying to enhance the maintainability of the program [5]
by applying transformations that enhance maintainability. A
transformation that enhances maintainability is defined as a
transformation whose right-hand side's use is more general
than its left-hand side's use. SETF can be used to assign a
value to any generalized variable. In contrast, SETQ can only
be used to assign a value to a simple variable.

Huh? [6]

Simple variables are storage locations named by symbols. This [7]
concept can be generalized to a storage location that can be
named by any access function. These storage locations are
called generalized variables.

Huh? [8]

For example, the car of a cons is a generalized variable named [9]
by the access function CAR and the cdr of a cons is a generalized
variable named by the access function CDR.

Fig. 6. Sample dialogue.

Next, the system examines the user's program to gather information about
what LISP constructs the user knows. As was explained in Section 3.4.2, it does
so by making one pass through the user's code to determine what functions
have been employed, and for each function it recognizes, it records in the
user model the function, its use, and any concepts related to this use. In this
example, let us assume that this results in adding assertions indicating that the
user knows the concepts: CAR-FUNCTION, CDR-FUNCTION, SETQ-FUNCTION,
CAR-OF-CONS, CDR-OF-CONS, SIMPLE-VARIABLE, ASSIGN and VALUE.

The system then begins the dialogue by asking what characteristics of
the program the user would like to enhance. When the user responds with
a choice of characteristics, the information that the user has the goal(s) of
enhancing (hose characteristics is added to the user model. In this case, the
following two entries are added to the user model:

(GOAL USER ENHANCE-READABILITY)
(GOAL USER ENHANCE-MAINTAINABILITY)

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 313

(COMPETENT USER (D0 USER REPLACE))
; The user is capable of performing replacement acts

(BEL USER (CONCEPT PROGRAM))
; The user knows the concept of a program

(BEL USER (CONCEPT LISP-FUNCTION))
; The user knows the concept of a LISP function

(BEL USER (CONCEPT STORAGE-LOCATION))
; The user knows the concept of storage location

(BEL USER (CONCEPT S-EXPR))
; The user knows the concept of an S-expression

(BEL USER (CONCEPT SYMBOL))
; The user knows the concept of a symbol

(BEL USER (CONCEPT ACCESS-FUNCTION))
; The user knows the concept of an access-function

(BEL USER (CONCEPT READABILITY))
; The user knows the concept of readability

(BEL USER (CONCEPT MAINTAINABILITY))
; The user knows the concept of maintainability

(BEL USER (CONCEPT EFFICIENCY))
; The user knows the concept of efficiency

Fig. 7. Canonical user model in PEA.

The resulting user model is shown in Figure 8.
The system can now begin recommending transformations to achieve the

user's goals. To make a recommendation, the expert system posts a commu-
nicative goal to the text planner. In the current example, the following com-
municative goal is posted: (GOAL USER (D0 USER REPLACE-I)), where
REPLACE-1 corresponds to replacing (SETQ X 1) with (SETF X 1). The
plan operator of Figure 5 page 310 is chosen. In this example, the system is
in terse mode. The optional satellites are thus not expanded. (Note that the
second optional satellite would not be expanded even in verbose mode since
the user model indicates that the user is competent to perform replacement
acts.) Thus only the nucleus of the operator is expanded. This is a speech
act, so planning is complete and the system recommends that the user replace
(SETQ x 1) with (SETF x 1) in tum 3 of the sample dialogue.

The user responds by asking "Why?", turn 4, thus indicating that he or she
is not immediately convinced that this replacement should be done and wants
the system to justify this recommendation. As a result of this question, the
query analyzer posts the communicative goal to achieve the state in which

314 JOHANNA D. MOORE AND C]~CILE L. PARIS

(GOAL USER ENHANCE-READABILITY)
(GOAL USER ENHANCE-MAINTAINABILITY)
(BEL USER (CONCEPT CAR-FUNCTION))
(BEL USER (CONCEPT CDR-FUNCTION))
(BEL USER (CONCEPT SETQ-FUNCTION))
(BEL USER (CONCEPT CAR-OF-CONS))
(BEL USER (CONCEPT CDR-OF-CONS))
(BEL USER (CONCEPT SIMPLE-VARIABLE))
(BEL USER (CONCEPT ASSIGN))
(BEL USER (CONCEPT VALUE))

The user model also inherits the following assertions from the
canonical user model:

(COMPETENT USER (DO USER REPLACE))
(BEL USER (CONCEPT PROGRAM))
(BEL USER (CONCEPT LISP-FUNCTION))
(BEL USER (CONCEPT STORAGE-LOCATION))
(BEL USER (CONCEPT S-EXPR))
(BEL USER (CONCEPT SYMBOL))
(BEL USER (CONCEPT ACCESS-FUNCTION))
(BEL USER (CONCEPT READABILITY))
(BEL USER (CONCEPT MAINTAINABILITY))
(BEL USER (CONCEPT EFFICIENCY))

Fig. 8. Contents of user model in example.

user is persuaded to do the recommended act, i.e, (PERSUADED USER (GOAL
USER (D0 USER REPLACE-I))). One of the strategies for persuading the
listener to perform an act is to find goals that this act is a step in achieving and
to motivate the act in terms of these goals. The plan operator that embodies
this strategy was shown in Figure 3 on page 296. This operator is shown again
in Figure 9 for convenience.

When attempting to satisfy the constraints of this operator, the system first
checks the constraint (STEP REPLACE- 1 ?goa l) . This constraint states that,
in order to use this operator, the system must find a domain goal, ?goal, that
REPLACE-1 is a step in achieving. To find such goals, the planner searches
the expert system's development history for goals that led to recommending
REPLACE-1. In this example, the applicable expert system goals, listed in

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 315

In Formal Notation:

EFFEC'I2. (PERSUADED ?hearer (GOAL ?hearer (DO ?hearer ?act)))
CONSTRAINTS: (AND (STEP ?act ?goal)

(GOAL ?hearer ?goal))
NUCLEUS: (FORALL ?goal

(MOTIVATION ?act ?goal))
SATELLITES: nil

English Translation:

To achieve the state in which the hearer is persuaded to do an act,
IF the act is a step in achieving some goal(s) of the hearer,
THEN motivate the act in terms of those goal(s).

Fig. 9. Plan operator for persuading user to do an act.

order from most to least specific, are:

APPLY-SET0-TO-SETF-TRANSFORMATION
APPLY-LOCAL-TRANSFORMATIONS-WHOSE-RHS-

USE-IS-MORE-GENERAL-THAN-LHS-USE
APPLY-LOCAL-TRANSFORMATIONS-THAT-ENHANCE-MAINTAINABILITY
APPLY-TRANSFORMATIONS-THAT-ENHANCE-MAINTAINABILITY
ENHANCE-MAINTAINABILITY
ENHANCE-PROGKAM

Thus, six possible bindings for the variable ?goal result from the search for
domain goals that REPLACE-1 is a step in achieving.

The second constraint of the current plan operator, (GOAL ? h e a r e r
? g o a l)), is a constraint on the user model stating that ?goal must be a
goal of the hearer. Not all of the bindings found so far will satisfy this con-
straint. As noted before, those which do not will not be rejected immediately,
as we do not assume that the user model is complete. Instead, they will be
noted as possible bindings, and each will be marked to indicate that, if this
binding is used, an assumption is being made, namely that the binding of
?goal is assumed to be a goal of the user.

In this example, since the user is employing the system to enhance a
program and has indicated a desire to enhance the readability and maintain-
ability of the program, the system has inferred the user shares the top-level
goal of the system ENHANCE-PROGRAM, as well as the two more specific goals

316 JOHANNA D. MOORE AND CI~CILE L. PARIS

ENHANCE-READABILITY and ENHANCE-MAINTAINABILITY. Therefore, the
two goals that completely satisfy the first two constraints of the operator
shown in Figure 9 are ENHANCE-PROGRAM and ENHANCE-MAINTAINABILITY.
But note that ENHANCE-MAINTAINABILITY is a refinement of ENHANCE-
PROGRAM. In order to avoid explaining parts of the reasoning chain that the
user is familiar with the most specific goal is chosen, when one goal is a sub-
goal of another. Therefore, ENHANCE-MAINTAINAB ILITY is now the preferred
candidate binding for the variable ?goal.

The plan operator is thus instantiated with ENHANCE-MAINTAINABILITY
as the binding for the variable ?goal. The operator is recorded in the plan
node as the selected operator, and all other candidate operators are recorded
as untried alternatives.

The nucleus of this operator is now expanded. Note that the nucleus
contains the special form FORALL. In general, the FORALL form causes the
planner to create a subgoal for each of the possible bindings of the variable
that FORALL ranges over. In this case, since there is only one such binding,
the single subgoal

(MOTIVATION REPLACE-I ENHANCE-READABILITY)

is posted.
One strategy for satisfying this type of motivation goal is to inform the

hearer of the goal that the system is trying to achieve and then to establish
that the act in question is part of the means for achieving the goal. The plan
operator for this strategy is shown in Figure 10.

This operator is selected and planning continues in this fashion until all
subgoals have been refined to speech acts. The completed text plan, shown
in Figure 11, is recorded in the dialogue history, and the system's utterance
in tum 5 of the dialogue is generated:

SYSTEM I am trying to enhance the maintainability of the pro-
gram by applying transformations that enhance main-
tainability. A transformation that enhances maintain-
ability is defmed as a transformation whose right-hand
side's use is more general than its left-hand side's use.
SETF can be used to assign a value to any generalized
variable. SETQ can only be used to assign a value to a
simple variable.

Note that this strategy first states the goal that the system is trying to
achieve, and then explains how the recommended act is part of achieving
this goal. In this case, the system is enhancing maintainability by applying

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 317

EFFECT: (MOTIVATION ?act ?goal)
CONSTRAINTS: (AND (STEP ?act ?goal)

(GOAL ?hearer ?goal))
NUCLEUS: (INFORM ?speaker ?hearer ?goal))
SATELLITES: (((MEANS ?goal ?act) *required*))

English Translation:

To motivate a goal in terms of an act,
IF the goal is a goal of the hearer,

and the act is a step towards achieving the goal
THEN

Inform the hearer of the goal
AND explain the means by which this goal is achieved.

Fig. 10. Plan operator for motivating any action by stating how a shared goal is achieved.

transformations that enhance maintainability. Replacing SETQ with SETF is an
instance of a transformation that enhances maintainability. The explanation
gives a definition of the concept "transformations that enhance maintainabil-
ity", and then an explanation of why the instance fits this definition.

To generate this response, the system builds a definition of the concept
from information in its domain model. It then explains how SETQ-T0-SETF
fits the definition, i.e., SETF has more general usage than SETQ, by stating the
respective uses of SETQ and SETF. To present the use of SETF, the speech act
(INFORM SYSTEM USER (USE SETF-FUNCTION ASSIGN-T0-GV)), must
be uttered. To express this speech act, the system needs to expand the concept
ASSIGN-TO-GV:

ASSIGN-T0-GV = (ASSIGN (actor SETF-FUNCTION)
(object VALUE)

(destination GENERALIZED-VARIABLE))

Recall from Section 4.1, that the SPL specification for this process includes
the concepts ASS IGN, VALUE and GENERALIZED-VARIABLE. The system must
now decide whether lexical items attached to each concept ("assign", "value",
and "generalized-variable") can be used to express each concept, or whether
it needs to plan a definition for one or more of them. This is in part determined
by looking at the user model to check whether the user knows the concepts
involved. If he or she does, then the concept is referred to by the lexical item
attached to the concept. Otherwise, the behavior of the system will depend

318 J O H A N N A D. M O O R E A N D CI~CILE L. PARIS

(PERSUADED USER (GOAL USER (DO USER REPLACE-I)))

I
(MOTIVATION REPLACE- 1 ENHANCE-1)

(INFORM SYSTEM USER ENHANCE-l)

"I am trying to enhance the maintainability
of the program"

means "by"
S

(MEANS REPLACE-I ENHANCE-l)

N b "

(INFORM SYSTEM USER APPLY-l)

"applying transformations that enhance
maintainability"

background

st..-
(KNOW USER (DEFN C-1 C-3))

(INFORM SYSTEM USER (DEFN C-1 C-3))
"A transformation that enhances maintainability
is defined as a transformation whose right-hand

side's use is more general than its left-hand side's use"

elaboration
$

(BEL USER
(STEP REPLACE-1 APPLY-I))

I
(ELABORATION-GEN-SPEC

REPLACE-1 APPLY-1)

(KNOW USER (/NSTANCE-OF C-2 C-3))

Assumotion:

(BEL USER
(CONCEPT GENERALIZED-VARIABLE))

"SETF can be used to assign a value
to any generalized variable"

contrast "in contrast"
N S

(BEL USER (BEL USER
(USE SETF ASSIGN-TO-GV)) (USE SETQ ASSIGN-TO-SV))

"SETQ can only be used to assign a
value to a simple variable"

RST relation connecting the two te~t spans
N: Nucleus of the RST relation
S: Satellite of the RST relation

REPLACEd = Replace (SETQ X 1) with (SETF X 1)
ENHANCEd = Enhance maintainability
APPLY-1 = Applying transformations that enhance maintainability
C-1 = Transfomaatinns that enhance maintainabillity
C-2 = SETQ-to-SETF transformation
C-3 = Transformation whose rlght-hand side's use is more general than its left-hand side's use
ASSIGN-TO-GV --- Assign a value to a generalized variable
ASSIGN-TO-SV = Assign a value to a simple variable

F ig . 11. C o m p l e t e d t e x t p l a n f o r u t t e r a n c e [5] o f t h e s a m p l e d i a l o g u e .

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 319

on its current mode. In terse mode, the planner makes an assumption that the
user knows the concept, and awaits feedback from the user about the success
of the generated text. In verbose mode, a communicative goal to define the
object would be posted to the text planner, and a longer text including the
definition would immediately be generated.

In our example, the system is in terse mode, and the user model indicates
that the user knows the concepts ASSIGN and VALUE but has no indication that
the user knows the concept GENERALIZED-VARIABLE. (The contents of the
user model were shown in Figure 8 page 314.) Thus, when planning the SPL
specification for the INFORM involving ASSIGN-T0-GV, the system makes an
annotation at that node in the plan structure indicating that the system made
the assumption that the user knows the concept GENERALIZED-VARIABLE.
(See Figure 11). This is the case because the user model could be incomplete.

In this example, the user responds with the vaguely-articulated ques-
tion, "Huh?" on line 6. The system thus examines the text plan that pro-
duced the previous response (tum 5) to determine what could have gone
wrong. There it finds a record that it made the assumption that the con-
cept GENERALIZED-VARIABLE was known to the user. This assumption is
now questioned, and the query analyzer posts a goal to satisfy it. This demon-
strates that keeping track of the assumptions that were made in planning a text
aids in allowing a system to elaborate even when the user cannot formulate a
precise follow-up question.

Now consider what would happen if the user model incorrectly indicated
that the user knew the concept GENERALIZED-VARIABLE. In that case, no
assumption would be recorded in the text plan, and, therefore, the system
could not determine that this concept might be causing the misunderstanding~
In this case, the recovery mechanism would conclude that the top-level goal
failed and would try to replan the entire explanation. If no other strategies
were available, the system would present the user with a menu of follow-up
questions that it can answer about its prior explanation. This menu would
include "What is a generalized variable?".

Continuing with the example, the system must now construct a plan for
achieving the goal (BEL USER (CONCEPT GENERALIZED-VARIABLE)). In
its library of plan operators, the system has several plan operators for making
the hearer know about concepts. It may describe a concept by stating the
concept's attributes and its parts, by drawing an analogy with a similar con-
cept, by giving examples of the concept, by generalizing a concept the user
is familiar with, or by identifying the object as a member of a superclass and
explaining the essential differences between the object and the superclass.

In this case, the three plan operators shown in Figure 12 are ap-

320 JOHANNA D. MOORE AND CI~CILE L. PARIS

plicable: DESCRIBE-BY-SUPERCLASS, DESCRIBE-BY-ABSTRACTION, and
DESCRIBE-BY-EXAMPLE. The other strategies for describing a concept, e.g.,
DESCRIBE-BY-ANALOGY and DESCRIBE-BY-PARTS-AND-USE, are not ap-
plicable because some of their constraints are not satisfied. For example,
the strategy DESCRIBE-BY-ANALOGY is not a candidate operator because the
knowledge base does not contain a concept that is a sibling of GENERAL-
IZED-VARIABLE.

To choose from among these candidate plan operators, the planner employs
the selection heuristics described in Section 4.2. We discuss only the heuristics
that concem the user model, and assume that the scores for the remaining
heuristics are the same for the three operators.

None of these operators require an assumption about the user to be made, as
the user model indicates that the user knows the concepts STORAGE-LOCATION
(the super-concept used in DESCRIBE-BY-SUPERCLASS), SIMPLE-VARIABLE
(the sub-concept used in DESCRIBE-BY-ABSTRACTION), and CAR-0F-C0NS
and CDR-0F-CONS, (the two possible bindings for ?example in DES-
CRIBE-BY-EXAMPLE). So the score for the assumption heuristic for all of
these operators is 0.

The user model heuristic varies, however, as the second operator,
DESCRIBE-BY-ABSTRACTION, would present text that makes a connection
with four elements of the user's knowledge, (STORAGE-LOCATION, SIMPLE-
VARIABLE, SYMBOL and ACCESS-FUNCTION), while the other two opera-
tors would only relate to two concepts the user already knows (STORAGE-
LOCATION and ACCESS-FUNCTION for DESCRIBE-BY-SUPERCLASS, and
CAR-OF-CONS and CDR-OF-CONS, for DESCRIBE-BY-EXAMPLE). With all
other factors equal, the operator DESCRIBE-BY-ABSTRACTION is thus ranked
highest by the plan selection heuristics, and it is chosen. The final text pro-
duced by employing this operator first describes SIMPLE-VARIABLEs and
then abstracts this concept to introduce GENERALIZED-VARIABLEs (turn 7).

The user then indicates that he or she still does not understand this descrip-
tion ("Huh?", on line 8). To handle this query, the query analyzer again begins
by examining the text plan that produced the system's previous response to
determine which goal might have failed. It determines that, in this case, it
is the top-level goal, (BEL USER (CONCEPT GENERALIZED-VARIABLE)),
that failed and must therefore be replanned. This time, when the planner se-
lects an operator for achieving this goal, it uses a set of recovery heuristics to
determine which of the untried altematives should be tried next. 16 One of the

16 See Moore (1989a) for a detailed discussion of both the heuristics for determining which
goal may have failed and the recovery heuristics and their application in handling "Huh?"
questions.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 32 !

Operator 1:

NAME: describe-by-superclass
EFFECT: (BEL ?hearer (CONCEPT ?concept))
CONSTRAINTS:

(AND (SUBCLASS ?concept ?super-concept)
(BEL ?hearer (CONCEPT ?super-concept))
(DIFFERENCE ?cliff ?concept ?super-concept))

NUCLEUS: (INFORM ?speaker ?hearer (CLASS-ASCRIPTION
?concept ?super-concept))

SATELLITES: (((FORALL ?diff
(ELABORATE-OBJECT-ATTRIBUTE ?concept ?diff))))

Score for the heuristics related to the user model:
assumption-score: 0 ; No assumptions need to be made
user-model-score: 2/4 ; The text will relate to 2 already known concepts

Operator 2:

NAME: describe-by-abstraction
EFFECT: (BEL ?hearer (CONCEPT ?concept))
CONSTRAINTS: (AND (SUBCLASS ?sub-concept ?concept)

(BEL ?hearer (CONCEPT ?sub-concept))
(IMMEDIATE-SUBCLASS ?concept ?super-concept))

NUCLEUS:
((SETQ ?diffs (FIND-ESSENTIAL-DIFFERENCES ?sub-concept ?super-concept))
(SETQ ?subc-attrs (GET-ATTRS-OF-CONCEPT-FROM-DIFFS ?sub-concept ?diffs))
(SETQ ?concept-attrs (GET-ATTRS-OF-CONCEPT-FROM-DIFFS ?concept ?diffs))
(INFORM ?speaker ?hearer

(CLASS-ASCRIPTION ?sub-concept (?super-concept ?subc-attrs))))
SATELLITES: (((ABSTRACTION ?sub-concept ?concept ?super-concept ?concept-attrs)))

Score for the heuristics related to the user model:
assumption-score: 0 ; No assumptions need to be made
user-model-score: 4/4 ; The text will relate to 4 already known concepts

Operator 3:

NAME: describe-by-example
EFFECT: (BEL ?hearer (CONCEPT ?concept))
CONSTRAINTS: (AND (INSTANCE-OF ?example ?concept))

(BEL ?hearer (CONCEPT ?example))
NUCLEUS: (((FORALL ?example

(ELABORATE-CONCEPT-EXAMPLE ?concept ?example)))
SATELLITES: nil

Score for the heuristics related to the user model:
assumption-score: 0 ; No assumptions need to be made
user-model-score: 2/4 ; The text will relate to 2 already known concepts

Fig. 12. Three plan operators for describing a concept.

322 JOHANNA D. MOORE AND Ct~CILE L. PARIS

recovery heuristics says that if the goal to be replanned is of the form (BEL
USER (CONCEPT ? c o n c e p t)) , then the strategy of giving examples should
be tried next, if applicable.

In this case, as indicated in the recorded text plan, the list of untried
altematives for describing a concept are:

DESCRIBE-BY-SUPERCLASS
DESCRIBE-BY-EXAMPLE

Thus, there are examples of the concept GENERALIZED-VARIABLE that
are familiar to the user. Since DESCRIBE-BY-EXAMPLE is on the list of ap-
plicable alternatives, it will be chosen. This plan operator was shown as
the third operator in Figure 12. To be applicable, this plan operator re-
quires that there be at least one concept, ?example, that is an immediate
subclass of GENERALIZED-VARIABLE and that is familiar to the user. PEA's
knowledge base contains several concepts that are immediate subclasses of
GENEKALIZED-VARIABLE, including CAR-OF-CONS, CDR-OF-CONS, CADR-
0F-C0NS, etc. In this example, the user model indicates that the user is fa-
miliar with the concepts CAR-0F-C0NS and CDI:t-0F-C0NS. Using these two
concepts as bindings for the variable ?example, 17 the system generates the
recovery response on line 9 of the sample dialogue.

In this example, we have shown how our system is able to interpret and
answer a user's follow-up question in context. The system was able to generate
an explanation even in the absence of a complete user model, and, by recording
the assumptions that were made, the system was able to respond intelligently
to an indication that its explanation was not understood. Furthermore, we
have seen that if the user indicates that an explanation was not understood
and no assumptions were made, the system chooses an alternative strategy
for producing a clarifying explanation.

6. Related Work

Many systems have employed a user model to improve the quality of the texts
they generate (e.g., Appelt, 1985; McCoy, 1985; van Beek, 1986; Paris, 1988;
Wolz et al., 1990). Others are capable of making inferences about the user's
current goals and plans (e.g., McKeown, 1988; Pollack, 1986b; Carberry,
1988), or about the user's preferences (e.g., Hoeppner et al., 1984; Morik and
Rollinger, 1985) in order to provide relevant advice to the user. These systems
reflect the emphasis of the research at the time: how can a system exploit a

17 Currently, all the possible bindings for the variable example would be expressed in the
text. This is clearly inappropriate if there are many such examples. On-going workis addressing
exactly these issues (see Mittal and Paris, 1992).

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 323

user model to improve its behavior, and what needs to be included in such
a model to be useful. The focus of these efforts is on how to take advantage
of a user model to improve the system's responses. These systems were thus
attempting to generate the "best" answer in one shot, given an appropriate
user model.

It is only recently that there has been a realization of the importance
of dialogue capabilities in explanation systems, where the content of the
explanation may be negotiated, and clarifications or elaborations of uncertain
points sought. This concern is reflected in current research efforts, each taking
a different approach to the problem of allowing dialogues. In Hartley and
Smith (1988), a menu of follow-up questions is provided after an explanation
is presented. In the MMI2 project, the system records the dialogue mainly
to interpret anaphora in the user's queries (Chappel and Cahour, 199t). The
system also handles clarification subdialogues, but of a different nature than
the ones we handle here. In MMI2, subdialogues are initiated by the system
when it needs to obtain more information from the user in order to perform
its problem-solving activity.

In addition, Cawsey's EDGE system allows for interruptions from the user
while a text is being generated (Cawsey, in press). EDGE plans tutorial ex-
planations about the structure and input/output behavior of simple electrical
circuits. EDGE plans an extended explanation at a high-level, following a spec-
ified curriculum. This plan is fleshed out as the dialogue progresses, causing
sentences to be generated. After each sentence is generated, the system pauses
to allow feedback from the user. The user supplies feedback by choosing an
item from a menu. Because of the representation of the curriculum, i.e., a
description of the topics that are to be covered in the explanation, if the user
asks about a topic that is planned to be addressed later, EDGE Can make a com-
ment such as "We'll be getting to that in a moment." If this is not the case,
or if the user insists, EI~E answers the user's question immediately. Once
the interruption has been addressed, EDGE proceeds with its explanation as
specified in the overall explanation plan. In essence, Cawsey's system takes a
more global view of the dialogue than does ours because it plans an extended
explanation. To handle interruptions from the user, EDGE does not need to
reason about its own previous utterances. It only needs to reason about the
high-level goals (the topics) it is trying to accomplish. This approach is par-
ticularly appropriate in a tutoring discourse where the system has a notion of
an overall curriculum it wishes to present. However, in expert system applica-
tions, the system presents the user with a recommendation or result and only
provides explanations when the user requests them. It is not appropriate for
the system to plan extended explanations, testing the user's understanding,

324 JOHANNA D. MOORE AND Ct~CILE L. PARIS

and elaborating without provocation. Rather the structure of the dialogue only
emerges as the user asks questions. Thus a system such as ours must be able
to reason about its previous utterances on demand. As a result, our system
must use the dialogue history in more sophisticated ways, i.e., in selecting
plans to achieve discourse goals and interpreting and responding to users'
questions in context.

It is clear that these methods are complementary, and that a complete sys-
tem would need to incorporate them all. In particular, it would be interesting
to merge Cawsey's technique with ours to obtain a more flexible system. A
system might indeed need to both plan extended explanations and yet allow
for clarification subdialogues initiated by the user to take place, as allowed in
our system.

7. Future Work

There are still numerous issues to be addressed. We outline here the most
important ones.

7.1. BUILDING AND UPDATING THE USER MODEL

As we explained here, our system uses a few simple heuristics to gather
information about the user. We are investigating the incorporation of the
more sophisticated inference rules proposed by Kass (1991) for acquiring a
user model from an advisory dialogue.

In addition, our current system updates the user model only by adding
information from the user's responses to the system's questions. Clearly, the
system could make more sophisticated updates if it had a model of how
the user's follow-up behavior should affect the user model. For example, if
the system generates a definition of a concept, and the user does not ask a
follow-up question immediately after the definition has been presented, the
system could update the user model to indicate that the user now knows this
concept. We believe that empirical studies are needed to determine what a
system should conclude from users' follow-up behavior in advisory dialogues.
However, because our system maintains a dialogue history that contains the
user's questions as well as the text plans that produced the system's responses,
we believe that our approach provides the framework for supporting the kind
of reasoning about prior explanations that a more sophisticated updating
scheme would require. 18

is Furthermore, the issue of what, i f any, are the differences between a dialogue history and
a user model and when things should migrate from the dialogue history to the user model is
still an open question. See Schuster et al. (1988) for the opinions of several researchers on this
subject.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 325

7.2. P L A N SELECTION

In the current implementation, the preferences (or weights) that affect the
plan selection heuristics are set by hand and they remain constant throughout
the dialogue. Clearly there are many research issues to be studied here. For
example, rather than setting the weights by hand, the system could allow the
user to express pragmatic goals such as "be brief/verbose", "tie in explanations
with things the user already knows", "give general explanations" and so forth.
The system would then require a set of rules to determine how these pragmatic
goals should be translated into an appropriate set of weights for the selection
heuristics. Altematively, the explainer could alter the weights automatically
as the dialogue progresses if the user's feedback indicates that the current
weights are inappropriate. Or the system may be able to make use of the
information in the user model to set the weights. For example, just as certain
types of explanations are suitable for certain classes of users (Paris, 1988,
1991), particular sets of preferences might be suitable for some classes of
users. This knowledge could be encoded into a set of stereotypes that would
determine a collection of weights appropriate to each stereotype.

8. Concluding Remarks

A user model can be used to guide the generation process in providing
explanations that are appropriate to users. However, it is not feasible to
provide systems with complete and correct user models. It is thus important
that a system not be critically dependent on the quality of its user model in
order to provide adequate responses to its users. To communicate effectively,
systems must be able to accept and handle feedback from users. In particular,
they must be able to clarify misunderstood explanations, elaborate onprevious
explanations, and respond to follow-up questions in the context of an on-going
dialogue.

We have described an explanation system that combines the capabilities
of employing information in a user model when it is available and employing
feedback from the user. Our explanation generation facility plans explanations
from a rich set of strategies, keeping track of the system's discourse goals,
the plans used to achieve them, and any assumptions made while planning a
response. Our system maintains a recorded history of the text plans used in
producing responses so that it can later reason about its own responses when
feedback from the user indicates that an explanation was not satisfactory.
Thus our system does not rely on the user model alone, but, instead, reacts to
feedback and recovers from communication failure when it occurs.

In addition to enabling effective communication, the ability to take feed-

326 JOHANNA D. MOORE AND CI~CILE L. PARIS

back into consideration can greatly facilitate the acquisition and maintenance
of user models. It allows the system to discover additional information about
the user and also makes it possible to identify cases where the user model
contains erroneous information. Moreover, while the user model is being con-
structed, the system must be able to produce explanations with an incomplete
and possibly incorrect user model. Thus we believe that systems having the
capabilities both to exploit a user model and to react to feedback when that
model proves insufficient show the most promise.

Acknowledgments

The research described in this paper was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under a NASA Ames coop-
erative agreement number NCC 2-520. Johanna Moore is currently supported
by grants from the Office of Naval Research Cognitive and Neural Sci-
ences Division, the National Science Foundation, and the National Library of
Medicine. C6cile Paris gratefully acknowledges the support of DARPA under
the contract DABT63-91-C-0025 while writing this paper.

The authors would like to thank William Swartout, who has advised us
on this work since its inception. We would also like to thank Vibhu Mittal,
B6atrice Cahour, and the anonymous reviewers who provided useful com-
ments on earlier drafts of this paper.

References

Appelt, D. E.: 1985, Planning English Sentences. England: Cambridge University Press,
Cambridge.

Bateman, J. A. and C. L. Paris: 1989, 'Phrasing a Text in Terms the User Can Understand'.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
Detroit, MI, August 20-25, pp. 1511-1517.

Bateman, J. A. and C. L. Paris: 1991, 'Constraining the Deployment of Lexicogrammatical
Resources During Text Generation: Towards a Computational Instantiation of Register
Theory'. In: Eija Ventola (ed.): Functional and Systemic Linguistics: Approaches and
Uses. Mouton de Gruyter: Chapter 5, pp. 81-106.

Brown, J. S. and R. R. Burton: 1978, 'Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills'. Cognitive Science 2(2), 155-192.

Buchanan, B. G. and E. H. Shortllffe: 1984, Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project. Addison-Wesley Publishing
Company.

Bunt, H. C.: 1990, 'Modular Incremental Modelling of Belief and Intention'. In Proceedings
of the Second International Workshop on User Modeling.

Cahour, B.: 1990, 'Competence Modelling in Consultation Dialogs'. In: L. Berlinguet and
D. Berthelette (eds.): Proceedings of the International Congress, Work With Dispay Units'
89, Montreal, Canada, September 1990. Amsterdam: North-Holland.

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 327

Cahour, B.: 1991, La Moddlisation de l'lnterlocuteur: Elaboration du ModUle et Effets au
Cours de Dialogues de Consultation. PhD thesis, Universit8 Paris 8, France.

Carberry, S. M.: 1988, 'Modeling the User's Plans and Goals'. Computational Linguistics
14(3), 23-37.

Carbonell, J. R.: 1970, 'AI in CAI: An Artificial Intelligence Approach to Computer-Aided
Instruction'. IEEE Transactions on Man-Machine Systems 11, 190-202.

Cart, B. and I. Goldstein: 1977, 'Overlays: A Theory of Modelling for Computed Aided
Instruction'. AI Memo 406.

Cawsey, A.: in press, 'Planning Interactive Explanations'. International Journal of Man-
Machine Studies.

Chandrasekaran, B. and W. Swartout: 1991, 'Explanations in Knowledge Systems: The Role
of Explicit Representation of Design Knowledge'. IEEE E~pert 6(3), 47-50.

Chappel, H. and B. Cahour: 1991, 'User Modeling for Multi-Modal Co-Operative Dialogue
with KBS'. Deliverable D3, Esprit Project P2474.

Chin, D. N.: 1987, Intelligent Agents as a Basis for Natural Language Interfaces. PhD thesis,
University of California at Berkeley.

Chin, D. N.: 1989, 'KNOME: Modeling What the User Knows in UC'. In: A. Kobsa and W.
Wahlster (eds.): User Models in Dialog Systems. Symbolic Computation Series. Berlin,
Heidelberg, New York, Tokyo: Springer-Verlag.

Cohen, R. and M. Jones: 1989, 'Incorporating User Models into Expert Systems for Educational
Diagnosis'. In: A. Kobsa and W. Wahlster (eds.): User Models inDialog Systems, Symbolic
Computation Series. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 35-51.

Falzon, P.: 1987, 'Les Dialogues de Diagnostic: L'6valuation des Connaissances de
l'Interlocutettr'. Technical Report 747, INRIA, Rocquencourt, France.

Finin, T. W., A. K. Joshi, and B. L. Webber: 1986, 'Natural Language Interactions with
Artificial Experts'. Proceedings of the IEEE 74(7), July.

Haimowitz, I.: 1990, 'Modeling All Dialogue System Participants to Generate Empathetic
Responses'. In Proceedings of the Second International Workshop on User Modeling,
Honolulu, HI.

Hartley, R. and M. Smith: 1988, 'Question-Answering and Explanation Giving in On-Line
Help Systems'. In: I. Self (ed.): Artificial Intelligence and Human Learning, Chapman
and Hall, pp. 338-360.

Hoeppner, W., K. Morik, and H. Marburger: 1984, 'Talking it Over: The Natural Dialog
System HAM-ANS'. Technical Report ANS-26, Research Unit for Information Science
and Artificial Intelligence, University of Hamburg.

Jameson, A. and W. Wablster: 1982, 'User Modelling in Anaphora Generation: Ellipsis and
Definite Description'. In Proceedings of 82 European Conference on Artificial Intelligence,
pp. 222-227.

Joshi, A., B. Webber, and R. Weischedeh 1984, 'Living Up to Expectations: Computing Expert
Responses'. In Proceedings of AAA1-84, pp. 169-175. American Association of Artificial
Intelligence.

Kasper, R. T.: 1989, 'A Flexible Interface for Linking Applications to Penman's Sentence
Generator'. In Proceedings of the Darpa Workshop on Speech and Natural Language.

Kass, R.: 1991, 'Building a User Model'. User Modeling and User-Adapted Interaction 1(3),
203-258.

Kobsa, A.: 1984, 'Generating a User Model from WH-Questions in the VIE-LANG System'.
Technical Report 84-03, Department of Medical Cybernetics, University of Vienna.

Kobsa, A.: 1989, 'A Taxonomy of Beliefs and Goals for User Models in Dialog Systems'. In:
A. Kobsa and W. Wahlster (eds.): User Models in Dialog Systems. Symbolic Computation
Series. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

Lehman, J. E and L G. Carbonell: 1989, 'Learning the User's Language: A Step Towards
Automated Creation of User Models'. In: Ao Kobsa and W. Wahlster (eds.): User Models

328 JOHANNA D. MOORE AND Ct~CILE L. PARIS

in Dialog Systems. Berlin, New York: Springer-Verlag.
Mann, W. C. and C. M. 1. M. Matthiessen: 1985, 'Nigeh A Systemic Grammar for Text

Generation'. In: R. Benson and J. Greaves (eds.): Systemic Perspectives on Discourse:
Selected Papers Papers from the Ninth International Systemics Workshop. Ablex, London.
Also available as USC/ISI Research Report RR-83-105.

Mann, W. C. and S. A. Thompson: 1987, 'Rhetorical Structure Theory: A Theory of Text
Organization'. In: L. Polanyi (ed.): The Structure of Discourse. Ablex Publishing Cor-
poration, Norwood, N.J. Also available as USC/Information Sciences Institute Technical
Report Number RS-87-190.

Mastaglio, T. W.: 1990, User Modelling in Cooperative Knowledge-Based Systems. PhD
thesis, Department of Computer Science, University of Colorado, Boulder.

Matthiessen, C. M. I. M.: 1984, 'Systemic Grammar in Computation: The Nigel Case'. In
Proceedings of the First Conference of the European Association for Computational Lin-
guistics, Pisa, Italy. European Association for Computational Linguistics. Also available
as USC/ISI Research Report RR-84-121.

Mays, E.: 1980, 'Correcting Misconceptions about Data Base Structure'. In Proceedings
3-CSCSI, Victoria, B. C. Canadian Society of Computational Studies of Intelligence.

McCoy, K. E: 1985, Correcting Object-Related Misconceptions. PhD thesis, University of
Pennsylvania, December. Published by University of Pennsylvania as Technical Report
MS-CIS-85-57.

McCoy, K. E: 1988, 'Reasoning on a Highlighted User Model to Respond to Misconceptions'.
Computational Linguistics 14(3), 52-63.

McKeown, K. R.: 1985, Text Generation: Using Discourse Strategies and Focus Constraints
to Generate Natural Language Text. Cambridge University Press, Cambridge, England.

McKeown, K. R.: 1988, 'Generating Goal-Oriented Explanations'. International Journal of
Expert Systems 1(4), 377-395.

Mittal, V. and C. Paris: 1992, 'Generating Object Descriptions: Integrating Examples with
Text'. In Proceedings of the 1992 Canadian Artificial Intelligence Conference. Canadian
AI.

Moore, J. D. and C. L. Paris: 1989, 'Planning Text For Advisory Dialogues'. In Proceedings
of the Twenty-Seventh Annual Meeting of the Association for Computational Linguistics,
pp. 203-211, Vancouver, B.C., Canada, June 26-29.

Moore, J. D. and C. L. Paris: forthcoming, 'Planning Text for Advisory Dialogues: Capturing
Intentional, Rhetorical and Attentional Information'.

Moore, J. D. and W. R. Swartout: 1989, 'A Reactive Approach to Explanation'. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI,
August 20-25, pp. 1504--1510.

Moore, J. D. and W. R. Swartout: 1990, 'Pointing: A Way Toward Explanation Dialogue'.
In Proceedings of the National Conference on Artificial Intelligence, Boston, MA, July
29-August 3, pp. 457-464.

Moore, J. D.: 1989a, A Reactive Approach to Explanation in Expert and Advice-Giving
Systems. PhD thesis, University of California, Los Angeles.

Moore, J. D.: 1989b, 'Responding to "Huh?": Answering Vaguely Articulated Follow-Up
Questions'. In Proceedings of the Conference on Human Factors in Computing Systems,
Austin, Texas, April 30-May 4, pp. 91-96.

Morik, K. and C.-R. Rollinger: 1985, 'The Real Estate Agent - Modeling Users by Uncertain
Reasoning'. AIMaganize 6, 44-52.

Neches, R., W. R. Swartout, and J. D. Moore: 1985, 'Enhanced Maintenance and Explanation
of Expert Systems Through Explicit Models of Their Development'. IEEE Transactions
on Software Engineering SE-11(11), 1337-1351.

Paris, C. L.: 1987, The Use of Explicit User Models in Text Generation: Tailoring to a
User's Level of Expertise. PhD thesis, Columbia University. To be published in the

EXPLOITING USER FEEDBACK TO COMPENSATE FOR THE UNRELIABILITY 329

"Communication in Artificial Intelligence" series, Steiner and Fawcett (eds.): Frances
Pinter, 1992.

Paris, C. L.: 1988, 'Tailoring Object Descriptions to the User's Level of Expertise'. Compu-
tational Linguistics 14(3), 64-78.

Paris, C. L.: 1991, 'Generation and Explanation: Building an Explanation Facility for the
Explainable Expert Systems Framework'. In: C. L. Paris, W. R. Swartout, and W. C.
Mann (eds.): Natural Language Generation in Artificial Intelligence and Computational
Linguistics. Boston, Dordrecht, London: Kluwer Academic Publishers, pp. 49-81.

Pollack, M. E.: 1986a, 'A Model of Plan Inference that Distinguishes between the Beliefs
of Actors and Observers'. In Proceedings of the ACL-86, pp. 207-214. Association of
Computational Linguistics.

Pollack, M. E.: 1986b, Inferring Domain Plans in Question-Answering. PhD thesis, University
of Pennsylvania. Published by University of Pennsylvania as Technical Report MS-CIS-
86-40.

Quilici, A., D. Michael, and F. Margot: 1988, 'Providing Explanatory Responses to Plan-
Oriented Misconceptions'. ComputationalLinguistics 14(3), 38-51.

Quilici, A.: 1990, 'The Correction Machine: Using Common-Sense Planning Knowledge to
Construct and Exploit User Models'. In Proceedings of the Second International Workshop
on User Modeling. AAAI and the University of Hawaii.

Reithinger, N.: 1987, 'Generating Referring Expressions and Pointing Gestures'. In: G. Kern-
pen (ed.): Natural Language Generation: Recent Advances in Artificial Intelligence, Psy-
chology, and Linguistics. Boston, Dordrecht: Kluwer Academic Publishers, pp. 71-81.

Rich, E.: 1989, 'Stereotypes and User Modelling'. In: A. Kobsa and W. Wahlster (eds.): User
Models in Dialog Systems. Symbolic Computation Series. Berlin, Heidelberg, New York,
Tokyo: Springer-Verlag.

Ringle, M. H. and B. C. Bruce: 1981, 'Conversation Failure'. In: W. G. Lehnert and M. H.
Ringle (eds.): Knowledge Representation and Natural Language Processing. Hillsdale,
New Jersey: Lawrence Erlbaum Associates, pp. 203-221.

Sacerdoti, E. D.: 1975, 'A Structure for Plans and Behavior'. Technical Report TN-109, SRI.
Schuster, E., D. Chin, R. Cohen, A. Kobsa, K. Morik, K. Sparck Jones, and W. Wahlster: 1988,

'Discussion Section on the Relationship Between User Models and Discourse Models'.
Computational Linguistics 14(3), 5-22.

Shifroni, E. and B. Shanon: 1992, 'Interactive User Modeling: An Integrative Explicit-Implicit
Approach'. User Modeling and User-Adapted Interaction 2, 331-365 (this issue).

Sleeman, D. H. and J. S. Brown (eds.): 1981, Intelligent Tutoring Systems. London: Academic
Press.

Sleeman, D. H.: 1983, 'Inferring Student Models for Intelligent Computer-Aided Instruction'.
In: R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.): Machine Learning: An
Artificial Intelligence Appproach. Tioga.

S1eeman, D. H.: 1985, 'UMFE: A User Modelling Front End SubSystem'. International
Journal of Man-Machine Studies 23, 71-88.

Sparck Jones, K.: 1984, 'User Models and Expert Systems'. Technical Report No. 61,
University of Cambridge Computer Laboratory.

Sparck Jones, K.: 1989, 'Realism about User Modelling'. In: A. Kobsa and W. Wahlster (eds.):
User Models in Dialog Systems. Symbolic Computation Series. Berlin, Heidelberg, New
York, Tokyo: Springer-Verlag.

Stevens, A., A. Collins, and S. E. Golding: 1979, ' Misconceptions in Student's Understanding'.
International Journal of Man-Machine Studies 11, 145-156.

Swartout, W. R. and S. W. Smoliar: 1987, 'On Making Expert Systems More Like Experts'.
Expert Systems 4(3).

Swartout, W. R., C. L. Paris, and J. D. Moore: 1991, 'Design for Explainable Expert Systems'.
IEEE Expert 6(3), 58-64.

330 JOHANNA D. MOORE AND CI~CILE L. PARIS

van Beek, E: 1986, 'A Model for User Specific Explanations from Expert Systems'. Technical
Report CS-86-42, University of Waterloo.

Wenger, E.: 1987, Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann
Publishers.

Wolz, U., K. R. McKeown, and G. E. Kaiser: 1990, 'Automated Tutoring in Interactive
Environments: A Task-Centered Approach'. Machine-Mediated Learning 3(1), 53-79.

Wu, D.: 1991, 'Active Acquisition of User Models: Implications for Decision-Theoretic
Dialog Planning and Plan Recognition'. User Modeling and User-Adapted Interaction
1(2), 149-172.

