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Current concepts on the role of inflammation in COPD and lung
cancer

Hongwei Yao and Irfan Rahman
Department of Environmental Medicine, Lung Biology and Disease Program, University of
Rochester Medical Center, Rochester NY, USA.

Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are leading cause of death, and both
are associated with cigarette smoke exposure. It has been shown that 50–70% of patients diagnosed
with lung cancer suffer from COPD, and reduced lung function is an important event in lung cancer
suggesting an association between COPD and lung cancer. However, a causal relationship between
COPD and lung tumorigenesis is not yet fully understood. Recent studies have suggested a central
role of chronic inflammation in pathogenesis of both the diseases. For example, immune dysfunction,
abnormal activation of NF-κB, epithelial-to-mesenchymal transition, altered adhesion signaling
pathways, and extracellular matrix degradation/altered signaling are the key underlying mechanisms
in both COPD and lung cancer. These parameters along with other processes, such as chromatin
modifications/epigenetic changes, angiogenesis, and autophagy/apoptosis are altered by cigarette
smoke, are crucial in the development of COPD and lung cancer. Understanding the cellular and
molecular mechanisms underlying these processes will provide novel avenues for halting the chronic
inflammation in COPD and devising therapeutic strategies against lung cancer.
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Introduction
Both chronic obstructive pulmonary disease (COPD) and lung cancer are associated with
cigarette smoking and/or various environmental pollutants exposure. They represent the fourth-
and second-leading causes of death in USA/worldwide respectively. COPD is shown to
increase the risk for developing lung cancer [1]. Hence, there are shared mechanisms (e.g.
chronic inflammation) in both COPD and lung cancer, or in the progression of COPD which
increase the susceptibility for lung tumorigenesis up to 4.5-fold (Figure 1). This review focuses
on current knowledge of specific processes/molecules that drive chronic inflammation which
are important in the pathogenesis of both COPD and lung cancer, and identify the potential
therapeutic targets for these chronic diseases (Figure 2).
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Chronic inflammation in COPD and lung cancer
Cigarette smoke contains more than 1014 oxidants/free radicals and 4700 reactive chemical
compounds including aldehydes, quinones, semiquinones, nitrosamines, benzo(a)pyrene, and
other carcinogens, and it is a risk factor in the development of COPD/emphysema and lung
cancer by inducing chronic inflammation. Macrophages, neutrophils, and lymphocytes, the
main orchestrators and amplifiers in the progression of COPD, are thought to fight against
cancers by eradicating dysplastic and neoplastic cells. However, these inflammatory cells can
be manipulated to induce immune escape of cancer cells especially in a tumor-promoting
microenvironment which is created by chronic inflammation seen in lungs of patients with
COPD [2]. For example, it has been shown that COPD-like airway inflammation induced by
nontypeable Haemophilus influenza promotes lung carcinogenesis in mice [3]. Furthermore,
repeated lung injury and repair triggered by chronic inflammation enhance cell turnover and
potential genetic error, epithelial-to-mesenchymal transition and ultimately lead to lung
tumorigenesis. Interestingly, patients with COPD who are treated with inhaled corticosteroids
have reduced incidence of lung cancer and death suggesting inhibition of inflammation can
halt lung tumorigenicity [4]. These studies highlight the key role of inflammation in both the
diseases.

NF-κB pathway in COPD and lung cancer
It is well known that canonical and non-canonical NF-κB pathways play crucial role in
pathogenesis/development of COPD by increasing the release of pro-inflammatory mediators
leading to chronic inflammation in the lung. Indeed, NF-κB-regulated genes including
cytokines, adhesion molecules, angiogenic factors, anti-apoptotic factors, and matrix
metalloproteinases (MMPs) that all have shown to be associated with tumor progression and
metastasis. Furthermore, NF-κB in lung epithelium functions as an extrinsic promoter by
inducing the influx of inflammatory cells, thus potentiating lung adenocarcinoma metastasis.
Treatment with NF-κB inhibitors (e.g. pyrrolidine dithiocarbamate, PDTC) and IκB protease
inhibitor (tosylphenylalanylchloromethane, TPCK) repress TGF-β1-induced cell migration in
human lung cancer cells [5]. Therefore, downregulation of NF-κB activation may improve the
efficacy of first-line therapy in both COPD and lung cancer.

Adaptive immune response and immunosculpting in COPD and lung cancer
Chronic inflammation of COPD is characterized by accumulation of neutrophils, macrophages,
B cells, CD4+-, CD8+-T cells, dendritic cells, and eosinophils, particularly in the smaller
airways, and the severity of COPD is associated with the infiltration of these inflammatory-
immune cells. The role of inflammatory cells in COPD has focused on oxidants, proteinases,
perforin and granzymes released from these cells leading to alveolar wall destruction and
mucus hypersecretion. Recently, it has been shown that adaptive immune response also
participates in the pathogenesis of COPD since mature lymphoid follicles with a germinal
center and separated T and B cells zone occur in lungs of patients with COPD [6–8]. These
lymphoid follicles are rarely found in the lungs of nonsmokers, but they are present in airways
and are correlated with the severity of COPD [6]. This may be due to the large antigen load
associated with bacterial and viral infections in lower respiratory tract during severe stages of
COPD [6]. Another possibility underlying these findings may attribute to increased exposure
to neoantigens from degraded extracellular matrix (ECM) or carbonyl modifying proteins by
cigarette smoke leading to autoimmune impairment in advanced stages of COPD [8–10].

As aforementioned, host immune cells mediate antitumor effects by eradicating aberrant cells
which is termed as immunosurveillance. However, these cells including macrophages,
neutrophils, and T lymphocytes (CD4+ and CD8+) can communicate with cancer cells through
a reciprocal and self-perpetuating interaction resulting in increased growth and resistance to
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immune destruction by sculpting/mounting tumor immunogenicity or attenuating anti-tumor
immune response in local milieu [2,11,12]. Indeed, the ability of alveolar macrophages to
induce T cell and anti-tumor immune responses is significantly compromised in many patients
with lung cancer. Hence, the studies on ligands and signaling pathways of communication
between cancer and immune/inflammatory cells may provide therapeutic options for not only
augmenting antitumor immune response but also blocking or overcoming immunosculpting at
the same time.

Adhesion molecules: integrins and TGF-β pathways in COPD and lung cancer
Integrins are heterodimeric transmembrane receptors, and are involved in a variety of cellular
functions as well as in lung inflammation. Integrin αvβ6 is one of the integrins which is located
in epithelial cells, and its expression is increased during lung inflammation or injury.
Interestingly, integrin αvβ6 plays an important role in maintaining normal lung homeostasis
and preventing lung destruction since ablation of integrin αvβ6 leads to airspace enlargement
in mice by regulating TGF-β/MMP-12 pathway [13]. The inhibition of MMP-12 by integrin
αvβ6 is dependent on its ability to bind and activate latent TGF-β [13]. In addition, inhibition
of mucus hypersecretion (goblet cells) by TGF-β also contributes to its protective effect in
COPD through its type II receptor (TβRII). However, the levels of TGF-β 1 mRNA and protein
are up-regulated in the airway and alveolar epithelial cells in patients with COPD, and the
levels of TGF-β1 mRNA are positively correlated with the smoking history and degree of small
airway obstruction suggesting the pro-fibrogenic, pro-remodeling, and a cell-specific role of
TGF-β in COPD [14]. Given that a potential role as an inhibitor of normal epithelial cell
proliferation and repair, TGF-β activation may prevent proliferative response to environmental
carcinogens, such as cigarette smoke, under normal conditions. However, it is interesting to
note that human lung cancer cells can escape from autocrine growth inhibitory effect of TGF-
β due to the loss/deficiency of TβRII. Restoration of TGF-β signaling through expression of
TβRII may be a potential strategy for chemotherapeutic intervention of lung cancer since the
majority of non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) show
weak or no expression of TβRII. However, at the late stages of lung cancer, TGF-β promotes
tumor spreading by enhancing invasion and angiogenesis [5]. Not much information is
currently available regarding TGF- β pathways as a potential therapeutic target in clinic for
lung cancer.

Recent studies showed that integrin-induced cell adhesion and TGF-β-mediated fibrogenesis
are regulated by galectin-3, a galactose-binding protein. Furthermore, galectin-3 is involved
in cell cycle, apoptosis, angiogenesis, as well as airway inflammation. In addition, galectin-3
has also described as a receptor for advanced glycation end products which is increased in the
lenses and blood vessels of cigarette smokers. Interestingly, increased expression of galectin-3
occurs in small airway epithelial cells of patients with COPD as compared to non-smokers, as
well as in cigarette smoke-exposed rat lung suggesting a role of galectin-3 in pathogenesis of
COPD [15,16]. In lung cancers, differential expression of galectin-3 between different
histological cell types suggested an important role of galectin-3 in tumor cell adhesion,
apoptosis, and response to chemotherapy. Nuclear expression of galectin-3 is considered as a
significant prognostic predictor for recurrence in lung adenocarcinoma and squamous cell
carcinoma. Most importantly, the susceptibility to tobacco carcinogen [4-
(methylnitrosamino)-1-(3-pyridle)-1-butanone]-induced lung tumorigenesis is decreased in
galectin-3 deficient mice suggesting an important role of galectin-3 in progression of lung
cancer [17]. Further studies on the role of galectin-3 are needed to discern its potential
involvement in abnormal cell adhesion, apoptosis and angiogenesis in COPD and lung cancer.
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Hypoxia/angiogenesis in COPD and lung cancer
Hypoxia is shown to induce pulmonary inflammation by inducing activation of transcription
factor and triggering the expression of pro-inflammatory genes. In COPD, progressive airflow
limitation and destruction of the alveolar capillary may lead to decreased oxygen transport and
alveolar hypoxia. In this context, hypoxia-inducible factor (HIF) is activated leading to
enhancement of VEGF transcription and increased angiogenesis. Interestingly, the levels of
VEGF and its receptors are decreased in emphysematous lungs and in cigarette smoke exposed
lung epithelial cells, and cigarette smoke-induced emphysematous alveolar septa are almost
avascular (limited angiogenesis). This is due to the abnormality in induction of HIF and other
signaling molecules involved in hypoxia sensing in emphysema [18]. Therefore, oxygen
therapy will offer significant short-term benefits in hypoxemic patients with COPD. However,
chronic oxygen therapy results in oxidative cellular injury leading to aggravation of lung
inflammation and cell death. Apart from altered angiogenesis, VEGF pathway is also involved
in apoptosis since inhibition of VEGF receptor 2 increased the alveolar septal cell apoptosis
resulting in airspace enlargement (emphysema) [19,20]. It is interesting to note that the
expression/level of VEGF is increased in patients with chronic bronchitis [21] implicating a
paradoxical role of VEGF in the bronchi and airspaces of patients with COPD.

As tumor grow their microenvironment becomes hypoxic, and HIF is activated to induce
MMPs, urokinase-type plasminogen activator receptor, and VEGF leading to progression,
invasion, and metastasis of lung cancer. VEGF is shown to be positively correlated with
progression, metastasis, and poor prognosis in NSCLC (increased angiogenesis). Intravenous
injection of siRNA directed against HIF-1α and HIF-2α reduced angiogenesis and prolonged
the survival in a Lewis lung carcinoma cancer model [22]. Bevacizumab, a monoclonal
antibody against VEGF, has shown to be effective in phase II and III trials in combination with
standard first-line chemotherapy for NSCLC. Alternative anti-angiogenic approaches such as
VEGF-trap (Aflibercept) are currently being investigated in the treatment of NSCLC with or
without others chemotherapies.

MMPs in COPD and lung cancer
Emphysema is a consequence of an imbalance between antiproteinases and proteinases
(balance shifted towards proteinases) including elastase and MMPs from activated
inflammatory cells and epithelial cells in lungs. Lung structural cell death occurs when they
lose the attachment due to ECM degradation by MMPs as well as defective tissue repair.
Furthermore, ECM fragments have chemotactic activity to attract inflammatory cells into the
lung which aggravates the progression of emphysema in mice [23,24]. Hence, antagonism of
ECM fragments will ameliorate the progression of COPD/emphysema. Indeed, intratracheal
administration of L-arginine-threonine-arginine, a complementary peptide to elastin fragment
N-acetyl-proline-glycine-proline (PGP), attenuated LPS- and elastin/PGP-induced
neutrophilic inflammation and emphysema in mice [24]. Therefore, the development of new
compounds similar to L-arginine-threonine-arginine may represent a novel class of anti-
inflammatory therapy to intervene COPD.

Proteinases are also shown to induce the release of growth and other factors, such as TGF-β
and VEGF, which play a pivotal role in tumorigenesis and metastasis of lung cancer. Several
MMP inhibitors including batimastat (BB-94), marimastat (BB-2516), prinomastat
(AG-3340), BMS-275291 and ONO-4817, are currently being investigated to evaluate the
efficacy in maintenance and remission after other treatments or in combination with standard
chemotherapy in NSCLC [25–27]. However, these inhibitors act against all MMPs, and will
result in side-effects because some MMPs play a beneficial role in host defense during

Yao and Rahman Page 4

Curr Opin Pharmacol. Author manuscript; available in PMC 2010 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tumorigenesis. Hence, tumor-specific MMP inhibitors need to be developed for intervening
lung tumorigenesis, invasion and metastasis.

Cell cycle regulator in COPD and lung cancer
Cigarette smoke is a potent genotoxic stimulus of DNA damage through oxidant stress/
carcinogens, thereby arrests cell cycle. It has been shown that the expression of
p21CIP1/WAF1/SDI1 (p21), a cyclin-dependent kinase (CDK) inhibitor, is increased in alveolar
epithelial cells exposed to cigarette smoke extract, and in alveolar macrophages and biopsies
isolated from smokers [28,29]. Furthermore, the anti-apoptotic protein Bcl-XL is increased in
alveolar macrophages from smokers suggesting that p21 may play an important role in cigarette
smoke-mediated lung inflammation by inhibiting alveolar macrophages apoptosis. Indeed,
genetic ablation of p21 attenuated lung inflammation which is associated with decreased
number of macrophages in lungs of mice exposed to cigarette smoke [30]. Chimeric
experiments also demonstrated that p21-expressing hematopoietic cells are required for
cigarette smoke-mediated lung inflammation (Yao et al, unpublished data). The mechanism
for pro-inflammatory effect of p21 is associated with activation of NF-κB pathway, p21-
activated kinase and galectin-3 which are crucial in cigarette smoke-mediated chronic lung
diseases including COPD. Interestingly, p21 expression is also increased in lung epithelial cells
in vitro, and in lungs of mouse exposed to cigarette smoke, and from smokers [28,29,31]. It is
well known that p21 is necessary and sufficient to trigger replicative senescence. Therefore,
cigarette smoke-mediated p21 activation may cause senescence in lung epithelial cells leading
to increased release of pro-inflammatory mediators since senescent cells are more prone to
produce pro-inflammatory mediators [31,32]. Oxidative stress increases cytoplasmic
expression of p21, and promotes transition from the G1 to the G2/M phase of the cell cycle
resulting in imbalance of apoptosis/proliferation towards hyperproliferation in lung epithelial
cells [29]. This may enhance the epithelial transition from normal to hyperplastic to
carcinomatous in smokers and patients with COPD. However, some CDK inhibitors (e.g. R-
roscovitine) are shown to enhance the resolution of neutrophil-dependent inflammation in
carrageenan-elicited acute pleurisy and bleomycin-induced lung injury in mice, which are used
to treat NSCLC with encouraging results suggested the differential role of CDK inhibitors in
lung inflammation and tumorigenesis [33,34].

Autophagy/apoptosis in COPD and lung cancer
Autophagy is a dynamic process responsible for the turnover of cellular organelles and proteins,
which are essential for maintaining cell homeostasis and conferring adaption to adverse
environmental stimuli. However, excessive autophagy will lead to cell death. Recently, it has
been shown that autophagy regulated the inflammatory immune response via controlling
inflammasome activation [35]. Interestingly, increased autophagy and apoptosis of epithelial/
endothelial cells are shown to occur in lungs of patients with COPD, in lungs of mouse exposed
to cigarette smoke, and in cells treated with cigarette smoke extract suggesting a critical role
of autophagy and apoptosis in pathogenesis of COPD [36]. The mechanism underlying these
observations is not known but it may be associated with increased oxidative stress in response
to cigarette smoke since reactive oxygen species are known to induce autophagy [37]. This is
confirmed by the study showing overexpression of extracellular superoxide dismutase
attenuated hypoxia-induced increase of early growth response protein-1 (Egr-1) which is an
important transcription factor for autophagy in lungs [38]. Interestingly, inhibition of HDACs
(in particular HDAC6) activity results in the complex formation of Egr-1 with E2F-4,
enhancing expression of microtubule-associated protein light chain 3 (LC3), the best
characterized autophagy protein [36]. Therefore, cigarette smoke-mediated decrease in
deacetylases, such as HDACs and SIRT1, regulates autophagy by acetylating autophagic
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proteins or enhancing transcriptional activation of autophagic genes through chromatin
modifications.

It has been shown that lung cancer is resistant to pro-apoptotic effect of anti-neoplastic agents
due to defective apoptotic pathway in lung cancer cells. Autophagy is also known as type II
programmed cell death, and prolonged autophagy results in cancer cell death implying that
autophagy can be exploited as a therapeutic target for cancer [39,40]. Indeed, induction of
autophagy by mTOR inhibitor (Rad001) enhances radiosensitization in the presence of
caspase-3 inhibitor in a mouse model of lung cancer. Furthermore, knockdown of ATG5 and
Beclin-1, two essential pro-autophagic proteins, increases the survival of H460 lung cancer
cells under irradiation, and Beclin-1 haploinsufficiency in mice increases the incidence of
lymphomas and carcinomas in lungs [41]. These results suggest a clinical therapeutic potential
of autophagy inducers on lung cancer, particularly the cells which are defective in apoptosis
pathway or resistant to pro-apoptotic agents.

Chromatin remodeling/epigenetics in COPD and lung cancer
Chromatin remodeling includes post-translational modifications of core histone proteins and
DNA methylation which is shown to regulate pro-inflammatory gene expression during the
development of COPD and lung carcinogenesis. Increased histone acetylation is observed on
the promoters of pro-inflammatory genes in airway epithelial cells and alveolar macrophages
in patients with COPD, and the degree of acetylation is positively correlated with disease
severity [42]. The mechanism that underlies hyperacetylation of histones/non-histone proteins
in lungs of patients with COPD is associated with reduced histone deacetylase (HDAC) 2 level/
activity [42,43]. This is also observed in lungs of rodents exposed to cigarette smoke [43,44].
Therapeutic strategies aimed to elevate HDAC2 activity/level, such as by phenolic antioxidants
and theophylline, are being investigated to reduce the lung inflammatory response and
attenuate corticosteroid resistance in patients with COPD [45]. Methylation of p16 promoter
is frequent in sputum of patients with COPD, and this methylation is positively correlated with
heavy cigarette smoking suggesting the involvement of DNA methylation in COPD. Further
studies on specific histone/DNA modifications and signaling mechanisms that govern
chromatin remodeling will provide the prospects of new biomarkers and/or therapeutic targets
for inflammatory airways diseases, such as COPD.

Similar to COPD, lung cancer also exhibits profound alteration in chromatin structure.
Genome-wide DNA demethylation with site-specific hypermethylation occurs in lung cancer
cells leading to silencing of a variety of tumor-suppressor genes by recruitment of HDACs.
The mechanisms underlying these observations may be due to aberrant expression/activity of
DNA methyltransferases (DNMTs) and demethylases in cancer cells. Methylation in the
promoters of multiple genes is shown in adenocarcinomas and NSCLC, and this methylation
is associated with tumor progression and recurrence [46]. Therefore, determination of DNA
methylation on specific gene may provide the useful biomarkers for early detection and/or
chemoprotective intervention in lung cancer. Modifications of core histone proteins increase
the complex of epigenetic alterations mediated by aberrant DNA methylation in cancer cells.
Increased HDAC1, and decreased HDAC5 and HDAC10 are correlated with advanced stage
of disease and adverse outcome in lung cancer patients. DNA demethylating agents and HDAC
inhibitors synergistically induce apoptosis in lung cancer cells, and prevent lung cancer
development in animals exposed to tobacco carcinogens. To date, there are several clinical
data available for HDAC inhibitors (e.g. vorinostat and N-acetyldinaline) in treatment of
advanced NSCLC [47], and these agents are being investigated in randomized phase III trails.
However, the specificity on a particular isoform of HDAC, optional therapeutic doses, timing,
and mode of administration are still under evaluation for these agents.
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SIRT1 in COPD and lung cancer
SIRT1, a class III HDAC, is shown to regulate inflammation, senescence, autophagy/apoptosis,
and aging by deacetylating histones/non-histone proteins including transcription factors, co-
activators and other signaling molecules, such as NF-κB FOXO, and p53. Anti-inflammatory
property of SIRT1 is associated with decreased NF-κB transcriptional activity by deacetylating
RelA/p65 at lys310 residue [48]. Given that a significant reduction of SIRT1 in rodent lungs
exposed to cigarette smoke and in lungs of patients with COPD [48,49], activation of SIRT1
may be a potential pharmacotherapy for COPD. Indeed, inhibition of SIRT1 enhanced NF-
κB activation whereas up-regulation of SIRT1 by SRT1720 and resveratrol attenuated
proinflammatory mediators release in response to cigarette smoke exposure [49]. However, it
is not known whether SIRT1 activators protect lung against cigarette smoke-induced immune-
inflammatory and injurious responses, senescence, and endothelial dysfunction (acetylation of
eNOS, adiponection, and caveolins). The ability of SIRT1 to affect cell survival and cell cycle
progression suggests that SIRT1 might be directly involved in tumorigenesis. It has been shown
that SIRT1 is up-regulated in a number of different types of cancers including mouse lung
carcinomas and human lung cancer. Down-regulation of SIRT1 by antisense oligonucleotides
induces apoptosis in lung cancer cells suggesting its therapeutic use in lung cancer [50]. The
tumorigenic role of SIRT1 may be due to deacetylation and inactivation of the anti-apoptotic/
tumor suppressor genes p53 and p73 as well as deacetylation of histone H4 (lys16) on the
promoters of these genes. Therefore, further studies on SIRT1 regulation (and possibly SIRT6)
and its role in various cell processes would differentiate its involvement in the development
of COPD or lung cancer in response to toxicants/pollutants, and provide the potential
therapeutic targets for these diseases.

Conclusions and future directions
Both COPD and lung cancer are tobacco smoking-associated chronic diseases that cluster in
families and aggravate with age, and 50–70% of patients diagnosed with lung cancer have
declined spirometric evidence of COPD. Furthermore, reduced lung function (FEV1) is the
important event for lung cancer indicating an association between COPD and lung cancer.
Nevertheless, a causal relationship between COPD and lung tumorigenesis is not yet known.
It is generally accepted that chronic inflammation plays a central role in pathogenesis of COPD
and lung tumorigenesis. Further investigations on the mechanisms of chronic inflammation,
such as immune dysfunction and immunosculpting, abnormal activation of transcription factors
(e.g. NF-κB), altered adhesion signaling pathways, epithelial-to-mesenchymal transition, and
oxidants/inflammation-driven ECM degradation will facilitate the understanding of how lung
cancer is associated with COPD. Cigarette smoke is known to influence the inflammation-
related processes, such as angiogenesis, autophagy/apoptosis, and chromatin remodeling,
which are critical in the development of COPD and cancer. Thus, understanding the cellular
and molecular mechanisms underlying these processes and multiple pathways will provide
novel avenues in the treatment of cigarette smoke-induced lung chronic inflammatory diseases
including COPD and lung cancer.
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Figure 1. Cells and mediators involved in the pathogenesis of COPD and lung cancer
Exposure to cigarette smoke or other pollutants/toxicants induces the release of chemokines
from macrophages and epithelial cells which further attract other inflammatory and immune
cells including neutrophils, T-cells, and B-cells into the lungs. As a result of influx of these
inflammatory cells, proteases, perforin, and granzyme are released leading to alveolar wall
destruction and mucus hypersecretion. Furthermore, activated B-cells produce autoantibodies
against elastin, epithelium, and endothelium leading to autoimmune impairment in lungs.
Epithelial cells and macrophages also release TGF-β leading to small airway remodeling
through activation/differentiation of fibroblasts to myofibroblasts. Cigarette smoke is shown
to induce the release of VEGF from epithelial cells leading to angiogenesis which plays an
important role in progression, invasion, and metastasis of lung cancer. Interestingly, VEGF
receptor 2 in endothelial cells is downregulated by cigarette smoke leading to endothelial
dysfunction which occurs in emphysema.
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Figure 2. Inflammation and its related pathways in COPD and lung cancer
Cigarette smoke is an important risk factor for COPD and lung cancer by inducing
inflammation and oxidative stress in the lung. Furthermore, a number of proven and suspected
carcinogens contained in cigarette smoke can induce gene mutations/epigenetic changes,
ultimately leading to lung tumorigenesis. In addition, cigarette smoked-mediated processes,
such as abnormal immunity, angiogenesis, cell proliferation/autophagy/apoptosis, and
chromatin modifications, would differentiate and contribute to the development of COPD and
lung cancer.
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