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Widespread context dependency of microRNA-
mediated regulation
Florian Erhard,1 Jürgen Haas,2,3 Diana Lieber,2,4 Georg Malterer,2 Lukasz Jaskiewicz,5

Mihaela Zavolan,5 Lars Dölken,6,7 and Ralf Zimmer1,7

1Institut für Informatik, Ludwig-Maximilians-Universität München, 80333 München, Germany; 2Max-von-Pettenkofer Institut,

Virologie, Ludwig-Maximilians-Universität München, 80336 München, Germany; 3Division of Pathway Medicine, University

of Edinburgh, Edinburgh EH17 8TR, United Kingdom; 4Institut für Virologie, Universitätsklinikum Ulm, 89081 Ulm, Germany;
5Biozentrum, University of Basel and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland; 6Department of Medicine,

University of Cambridge, Addenbrookes Hospital, CB20QQ Cambridge, United Kingdom

Gene expression is regulated in a context-dependent, cell-type-specific manner. Condition-specific transcription is de-
pendent on the presence of transcription factors (TFs) that can activate or inhibit its target genes (global context). Ad-
ditional factors, such as chromatin structure, histone, or DNA modifications, also influence the activity of individual
target genes (individual context). The role of the global and individual context for post-transcriptional regulation has not
systematically been investigated on a large scale and is poorly understood. Here we show that global and individual
context dependency is a pervasive feature of microRNA-mediated regulation. Our comprehensive and highly consistent
data set from several high-throughput technologies (PAR-CLIP, RIP-chip, 4sU-tagging, and SILAC) provides strong evi-
dence that context-dependent microRNA target sites (CDTS) are as frequent and functionally relevant as constitutive
target sites (CTS). Furthermore, we found the global context to be insufficient to explain the CDTS, and that flanking
sequence motifs provide individual context that is an equally important factor. Our results demonstrate that, similar to
TF-mediated regulation, global and individual context dependency are prevalent in microRNA-mediated gene regulation,
implying a much more complex post-transcriptional regulatory network than is currently known. The necessary tools to
unravel post-transcriptional regulations and mechanisms need to be much more involved, and much more data will be
needed for particular cell types and cellular conditions in order to understand microRNA-mediated regulation and the
context-dependent post-transcriptional regulatory network.

[Supplemental material is available for this article.]

Regulation of gene expression is highly context-specific. The

ENCODE Project (The ENCODE Project Consortium 2012) pro-

vided convincing evidence that whether or not a specific tran-

scription factor (TF) binds to a specific binding site (TFBS) is not

only dependent on the sequence of the binding site but also on its

chromatin state (Wang et al. 2012b), on DNA methylation (Wang

et al. 2012a), on other DNA binding factors (Yáñez-Cuna et al.

2012), and numerous additional factors, which are difficult to

measure and predict. All these factors form the so-called ‘‘cellular

context’’ that influences the expression level of genes.

Expression of genes is not only regulated at the level of

transcription but also post-transcriptionally in various ways, of

which regulation mediated by microRNAs is one of the most

prevalent (He and Hannon 2004). MicroRNAs are 20- to 24-nt long

noncoding RNAs that have been found in animals and plants.

They play a pivotal role in development, tumorigenesis, the im-

mune system, and during viral infections (for a review, see Bartel

2004). Within the RNA-induced silencing complex (RISC),

microRNAs are responsible for target recognition by binding to

target sites, often located in the 39-UTR of mRNAs. This is pre-

dominantly mediated by the so-called seed region (nucleotides 2–8

of the microRNA). In general, RISC causes down-regulation of

the target mRNA either by inhibiting translation or promoting

degradation (Bartel 2009). Neither the exact mode of binding nor

the mechanisms of down-regulation are completely understood

(Eulalio et al. 2008; Kozak 2008; Guo et al. 2010; Djuranovic et al.

2011; Mishima et al. 2012; Meijer et al. 2013).

Computational prediction of microRNA targets is a difficult

task (Sethupathy et al. 2006; Ritchie et al. 2009; Thomas et al.

2010). This is a consequence of the low specificity of seed matches

alone: There are several lines of evidence suggesting that additional

factors such as target site location (Grimson et al. 2007), additional

base-pairing at the microRNA 39 end (Brennecke et al. 2005), target

site accessibility (Kertesz et al. 2007), other RNA binding proteins

(Jacobsen et al. 2010), microRNA and mRNA copy numbers (Ben-

Moshe et al. 2012; Carroll et al. 2013), differential isoform usage

(Sandberg et al. 2008; Boutet et al. 2012), and additional unknown

factors or interplay between any of these play important roles in

distinguishing functional from nonfunctional target sites. In-

terestingly, several of these additional factors are not static but may

change dynamically, providing context for target recognition: For

instance, depending on which RNA binding proteins (RBPs) are

expressed at what level in a given cell-type, RISC may or may not
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bind at a certain binding site. This is an example of individual

context, since an RBP is able to affect individual target sites of

a microRNA. In contrast, dynamic microRNA expression de-

termines a global context, i.e., if a microRNA is differentially

expressed, all of its targets are affected. This important distinction

is often neglected; and often, only the global context is considered

(Carroll et al. 2013).

Several examples of individual context-specific microRNA-

mediated regulation can also be found in the literature (for a re-

view, see Pasquinelli 2012). Bhattacharyya et al. (2006) identified

the RNA binding protein, ELAVL1, as a derepressor for miR-122

regulation of the SLC7A1 mRNA. In normal hepatocarcinoma

cells, SLC7A1 is repressed by a miR-122 target site in its 39-UTR.

Under different stress conditions, ELAVL1 is released from the

nucleus into the cytoplasm, which abolishes SLC7A1 repression.

The exact mechanism, however, remains unclear. Intriguingly,

ELAVL1 has also been implicated in activating a target site of the

microRNA let-7 in the 39-UTR of MYC (Kim et al. 2009), which

indicates that ELAVL1 can both induce and prevent microRNA-

mediated regulation. In addition to ELAVL1, DND1 (Kedde et al.

2007) and PUM1 (Kedde et al. 2010) have also been identified

to influence microRNA regulation. There may be other RNA

binding proteins that interfere with or facilitate microRNA/target

interactions.

These examples illustrate that the presence of a functional

target site is not sufficient for regulation. It may be active under

certain conditions but nonfunctional in a different context. Pres-

ently, our knowledge about context-dependent microRNA-mediated

regulation is only based on a few examples, and the underlying

molecular mechanisms are poorly understood.

By immunoprecipitation of microRNA/target complexes

using monoclonal antibodies to RISC complex components fol-

lowed by high-throughput sequencing of the protein-protected

microRNA target sites, the complete targetome of cellular and

viral microRNAs has become accessible. More than 10,000 puta-

tive microRNA binding sites, so-called clusters, are obtained in

a single HITS-CLIP (high-throughput sequencing of RNA isolated

by crosslinking immunoprecipitation) or PAR-CLIP (photo-

activated ribonucleotide-enhanced crosslinking immunoprecipi-

tation) experiment. Although the annotation of the responsible

microRNA to an identified cluster still leaves room for improve-

ment, >75% of microRNA target interactions can be correctly an-

notated, thereby allowing in-depth analyses of microRNA regula-

tory networks (Gottwein et al. 2011; Haecker et al. 2012; Riley et al.

2012; Skalsky et al. 2012; Erhard et al. 2013a).

To study context-specific microRNA-mediated regulation, we

generated AGO2-PAR-CLIP data from two human B-cell lines. In

addition, we reanalyzed two recently published sets of AGO2-PAR-

CLIP data from two different human B-cell lines (Gottwein et al.

2011). These four cell lines represent different stages of B-cell de-

velopment and are either infected by Kaposi’s sarcoma-associated

herpes virus (KSHV), coinfected by both KSHV and Epstein-Barr-

Virus (EBV), or not infected. Thus, each cell line provides a distinct

context for microRNA-mediated regulation. All data sets were

reanalyzed using a new algorithm called PARma (Erhard et al.

2013a). PARma considers the topology of the microRNA/target

interaction and the position of UV light-induced cross-links in

more detail than state-of-the-art methods, and it provides quality

control scores for both—the identification of microRNA target site

clusters and the annotation of the interacting microRNA to these

sites. For two of these four cell lines, we generated three additional

data sets, including RIP-chip, 4sU-tagging-derived RNA half-lives,

and large-scale SILAC-based proteomics. This allowed us to com-

prehensively analyze the effect of context-dependent microRNA/

target interactions on the recruitment of the target mRNAs to

AGO2 complexes, on target RNA stability, and on target protein

levels. By considering viral as well as host microRNAs, we inves-

tigated both microRNA/target interactions that coevolved within

a species as well as interactions of an exogenous microRNA with

endogenous target sites. The results provide compelling evidence

that context dependency of microRNA-mediated regulation is not

restricted to a few examples but is a widespread and general feature

of post-transcriptional regulation mediated by both cellular and

viral microRNAs.

Results

Differential analysis of PAR-CLIP data

To comprehensively study regulation of cellular gene expression

by both cellular and Kaposi’s sarcoma-associated herpes virus

(KSHV)-encoded microRNAs, we applied AGO2-PAR-CLIP to two

human B-cell lines—the body cavity-based lymphoma cell line

BCBL1, which is latently infected with KSHV, and the Burkitt

lymphoma cell line DG75, which is KSHV negative. Applying

PARma (Erhard et al. 2013a) with stringent criteria (see Supple-

mental Methods), we identified 15,577 clusters, 12,333 of which

mapped to known transcripts (Ensembl v60).

In order to assess the quality of the PAR-CLIP data sets, we first

computed the positional distribution of all target sites in mRNAs

(Fig. 1A). Target sites of viral microRNAs shared the well-described

features of cellular microRNA target sites: They preferentially bind

to the 39 untranslated region (39-UTR) and rarely to the 59-UTR of

transcripts (Grimson et al. 2007; Hafner et al. 2010). Within the 39-

UTR, target sites tend to accumulate at the very beginning, i.e.,

immediately after the stop codon, and at the transcript end, i.e.,

immediately upstream of the poly-A tail (Grimson et al. 2007). We

furthermore checked the accuracy of the microRNA assignment to

target sites by confirming that virtually no reads mapped to KSHV

microRNA target sites in the KSHV negative cell line DG75 (a fea-

ture that is not used by PARma to assign microRNAs) (see Fig. 1B).

The few instances with random reads in DG75 may nevertheless be

bona fide KSHV microRNA target sites: As we observed random

reads spread across a multitude of transcripts at low frequency,

these reads presumably result from infrequent unspecific immu-

noprecipitates or insufficient removal of background total RNA

rather than microRNA-specific signatures. This is further sup-

ported by a significantly lower frequency of T to C conversions and

lower consistency across replicates for these reads (Fig. 1B; Sup-

plemental Fig. S1).

We further validated our PAR-CLIP data set using published

data for the same cell lines: (1) PAR-CLIP targets are highly con-

sistent with RIP-chip data (Fig. 1C,D; Dölken et al. 2010); (2) KSHV

microRNA targets are selectively enriched in BCBL1 and not DG75

in the RIP-chip experiments (cf. Fig. 1C,D); and (3) PAR-CLIP target

sites lead to a measurable reduction of target mRNA half-lives

(Fig. 1E; Supplemental Table S2).

To be able to perform a more in-depth analysis on KSHV

microRNA targets in human B-cells, we also included recently

published PAR-CLIP data from two additional B-cell lines, namely

BC1 and BC3 (Gottwein et al. 2011). We reanalyzed all data sets

using PARma, which yielded 21,628 clusters, 16,425 of which

mapped to known transcripts (see Supplemental Table S1; see

Supplemental Table S6 for individual read mapping statistics).
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Figure 1. (Legend on next page)
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Intriguingly, the overlaps of target sites of both ubiquitously

expressed cellular and KSHV microRNAs were surprisingly small

(Fig. 2A,B). Such extreme differences of called target sites may be

due to experimental bias or context dependency, i.e., a major

fraction of microRNA target sites is only active in some of the cell

lines considered.

There are some traces of batch effects (Fig. 2B), but experi-

mental bias does not explain all differences: Replicate experiments

for all four cell lines yielded highly reproducible results (Fig. 2B,C;

Supplemental Fig. S1), and differences were also observable for

inner-laboratory comparisons, i.e., there are target sites of consti-

tutively expressed microRNAs that are reproducibly missing in

DG75 and reproducibly observable in BCBL1 and vice versa, and

these cell lines have been measured simultaneously, using the

exact same protocol in the same laboratory (the same is true for

BC1 and BC3) (see Supplemental Discussion for a detailed analysis

of technical bias and further discussion). To further analyze po-

tential context dependency of microRNA/target site interactions,

we used a per-microRNA differential analysis of all PAR-CLIP ex-

periments (Supplemental Figs. S4, S8–S11).

Intriguingly, when we considered all target sites of a single

microRNA, there was no clear correlation of target sites across cell

lines (Fig. 2C; Supplemental Fig. S2). Instead, distinct clusters of

target sites emerged, for instance, several kshv-miR-K12-4-3p target

sites that appear to be active in BCBL1 only and not in BC1 or BC3.

This suggests that context-dependent microRNA-mediated regula-

tion may be substantially more important than generally expected.

An obvious explanation for this would be that all these targets are

not expressed in BC1 and BC3 or are expressed at very low levels

such that PAR-CLIP is not able to identify them. This would be one

kind of global context. Low levels or absence of mRNA is detectable

by expression measurements that are indicated on the left side of

the heatmaps in Figure 2C and is, in fact, not a general feature of

these target sites, arguing in favor of an individual context that

determines the activity of many of these sites. Additionally, there

are mutually exclusive target sites (MES): Target sites of the same

microRNA that are missing in BCBL1 and active in BC1 or BC3

and target sites missing in BC1 and BC3 but active in BCBL1, i.e.,

the target sites in one condition are not a subset of the target sites

in the other condition. Thus, the presence of MES cannot be

explained by a higher expression or activity of the respective

microRNA or mRNA, i.e., by global context.

Context-dependent target sites of KSHV microRNAs

Taken together, our differential analysis of PAR-CLIP data suggests

that microRNA-mediated regulation is substantially and generally

dependent on the cellular context. To experimentally test this

hypothesis, we used three sets of additional high-throughput

methods to investigate the consequences of context-dependent

microRNA-mediated regulation. First, using RIP-chip, we tested

whether context-dependent microRNA/target interactions, as

found in the PAR-CLIP data, had a measurable impact on the re-

cruitment of the target mRNA to RISC in their specific context

only. Second, using microarray-based transcriptomics, including

metabolic labeling of RNA, and SILAC-based proteomics experi-

ments, we tested whether such context-dependent microRNA/

target interactions also have a measurable impact on mRNA half-

lives and on mRNA as well as on protein levels of their targets in

their specific context only. All these experiments were performed

by comparing DG75 to BCBL1. We selected all KSHV microRNAs

that showed a KSHV-specific activity pattern, i.e., the set of target

sites was depleted of reads in DG75 and included reproducible

target sites of all three KSHV positive cell lines (Supplemental Figs.

S3, S8, S9). Furthermore, all selected KSHV microRNAs are expressed

in all KSHV-positive cell lines according to the microRNA reads from

the PAR-CLIP experiment (see Supplemental Table S4) and showed

a clear pattern of MES as introduced above.

Context-dependent microRNA targets are associated with RISC
in a context-dependent manner

First, we looked at the recruitment of the mRNA targets of these

KSHV microRNAs to AGO2-complexes. We recently used RIP-chip

to identify KSHV and EBV microRNA targets in human B-cells

(Dölken et al. 2010). Since then, we performed two additional RIP-

chip replicates of the KSHV-positive cell line, BCBL1, to perform

a more solid statistical analysis (Erhard et al. 2013b).

Data were normalized using principal component analysis as

described (Erhard et al. 2013b) and differential enrichment values

were computed for BCBL1 and DG75 as the second principal

component (PC2), indicating whether an mRNA is more strongly

associated with RISC in BCBL1 in comparison to DG75. All PAR-

CLIP target sites were mapped to genes; and genes with any KSHV

target site in BCBL1, with a constitutive target site in all KSHV-

positive cell lines, and with exclusive sites in BCBL1 or BC1/BC3

were compared to all other genes with any PAR-CLIP target site as

background (Fig. 3).

The differential RIP-chip enrichment was significantly shifted

toward higher values for genes with BCBL1 exclusive sites in

comparison to the background (P < 0.0007, Kolmogorov-Smirnov

test), indicating that BCBL1-exclusive target sites indeed lead to

a stronger association of the target mRNA in BCBL1 to RISC. This

was also true for constitutive KSHV target sites (P < 0.009) as well as

for all KSHV target sites active in BCBL1 (P < 3.10�8). However,

BC1/BC3-specific target sites, which were not active in BCBL1,

Figure 1. Validation of PAR-CLIP experiments. (A) The distribution of relative positions of target sites on mRNAs is shown. The x-axis represents the
average length of 59 untranslated regions (59UTR), the coding regions (CDS), and the 39 untranslated regions of all transcripts with at least one PAR-CLIP
cluster. Each transcript was divided into 60 bins, and the relative frequency of target sites falling into each bin is shown on the y-axis. The data clearly
illustrate the preferences of target sites in the 39UTR as compared to CDS and 59UTR. Viral microRNAs have the same preferences as cellular microRNAs. (B)
The normalized number of reads in each cluster (rows) for each of the independent PAR-CLIP experiments (columns) is shown for KSHV microRNA target
sites in the four PAR-CLIP libraries. KSHV-negative cell lines (columns 1 and 2) almost exclusively have no reads, whereas for KSHV-positive cell lines, dozens
to hundreds of reads are observed per target site. Replicates are highly correlated, indicating high reproducibility. The additional annotations on the left
side indicate the part of the transcript where a cluster is located (orange, 59-UTR; yellow, coding; green, 39-UTR; gray, not located on known mRNA) and
the expression of the transcript in all experiments (red, at least twofold lower expression than the mean expression value for this transcript across all
experiments; light red, at least 1.4-fold lower expression than the mean; light blue, at least 1.4-fold higher expression; blue, at least twofold higher
expression). We also visualized and inspected individual target sites (Supplemental Fig. S1). (C,D) The log2 RIP-chip enrichment distributions of mRNAs
only containing target sites of cellular microRNAs, only containing KSHV microRNA target sites, and containing target sites from both cellular and KSHV
microRNAs in the uninfected cell line DG75 and the KSHV positive cell line BCBL1, respectively. KSHV targets are enriched in BCBL1 but not in DG75.
(E ) The mRNA half-life ratios are shown for the same sets of genes as in C and D. The half-life of mRNAs with KSHV target sites is significantly reduced in BCBL1.
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Figure 2. Comparison of PAR-CLIP data sets. (A) The number of target sites observed only in individual cell lines (outermost labeled circles), in two cell
lines (circles on the edges between cell lines), and in all three cell lines (center circle), for KSHV microRNA target sites. Relatively few target sites appear to be
active in multiple cell lines (see Supplemental Fig. S2A for overlaps of cellular microRNA targets). (B) Summary of all pairwise overlaps for clusters of cellular
and viral microRNAs in all data sets. The Jaccard index (J) is the number of clusters in the intersection divided by the total number of clusters in any of the
two experiments. Jaccard indices of ;70% for all replicate measurements indicate high reproducibility, whereas comparisons across cell lines show
relatively low overlap (J < 40%) (see also Supplemental Fig. S2). (C ) The PAR-CLIP read heatmap for target sites of the KSHV microRNA miR-K12-4-3p (see
Fig. 1B for more information about PAR-CLIP read heatmaps). Between KSHV-positive cell lines, there is no correlation, but there are distinct clusters of
target sites. No obvious dependency between clusters and mRNA expression level is observable.
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were indistinguishable from the background (Fig. 3A; Supple-

mental Table 1). In particular, genes with active KSHV microRNA

target sites in BCBL1 showed a twofold enrichment of genes that

are significantly (PC2 score > 2) more associated with RISC in

BCBL1 than in DG75 over background genes. In contrast, genes

with KSHV microRNA target sites that are exclusively active in BC1

or BC3 and not in BCBL1 are indistinguishable from background

genes (Fig. 3B).

This provides strong evidence that a major fraction of the

KSHV microRNA target sites identified by PAR-CLIP exclusively in

BC1/BC3 and not in BCBL1 do not mediate a strong recruitment of

their target mRNA to RISC in BCBL1, i.e., they are indeed context-

dependent target sites. Context-dependent microRNA/target in-

teractions, as defined by differential analysis of PAR-CLIP data, can

thus be confirmed using an independent RIP-chip experiment.

Target mRNA stability is affected in a context-dependent
manner

Next, we analyzed the context-dependent effects of the KSHV

microRNAs on target RNA stability. Since microRNAs can induce

destabilization of the mRNA transcripts (Bartel 2009), microRNA/

target interactions that are active in BCBL1 should decrease the

target mRNA half-life in BCBL1 as compared to DG75. Target sites

inactive in BCBL1 (and only active in BC1/BC3) in contrast should

not decrease mRNA half-life.

Previously, we applied metabolic labeling of newly tran-

scribed RNA followed by microarray analysis to separate newly

synthesized and preexisting RNA (Dölken et al. 2008). We com-

puted RNA half-lives based on the ratios of newly synthesized to

total RNA for both DG75 and BCBL1 (Dölken et al. 2010) and

considered the differences in target mRNA half-lives in between

BCBL1 and DG75.

Intriguingly, the mRNA half-life of KSHV microRNA targets in

BCBL1 was decreased by ;20 min (P < 3.10�5) on average, whereas

for KSHV microRNA targets not active in BCBL1, no significant

decrease was observed (Fig. 3C; Supplemental Table 1). Further-

more, the half-life difference values of BCBL1-exclusive target

genes were significantly smaller than half-life difference values of

BC1- or BC3-exclusive target genes (P < 0.008, Wilcoxon rank sum

test) (Fig. 3D). Thus, context-dependent microRNA/target interac-

tions impact on mRNA stability in a context-dependent manner.

Interestingly, constitutive KSHV microRNA target sites showed

an even stronger decrease in the mRNA half-life than for context-

dependent target sites (>35 min on average, P < 10�5). A possible

explanation is that constitutive microRNA/target interactions are

less susceptible to the cellular context, resulting in more substantial

target suppression. Therefore, constitutive interactions likely rep-

resent the most important targets for the virus.

Protein levels are differentially regulated for context-
dependent microRNA targets

We now asked whether context-dependent microRNA targets are

also reflected in steady-state mRNA or protein levels in two dif-

ferent contexts. It is important to note that protein levels in a cell

depend on multiple factors, including protein half-lives and

microRNA-independent post-transcriptional regulation, most of

which are well described to have a substantially greater impact on

protein levels than generally exerted by microRNAs. Therefore,

targets of the viral microRNAs may not necessarily show differ-

ential expression between DG75 and BCBL1 on protein or mRNA

levels (Supplemental Fig. S3; Dölken et al. 2010). Especially viral

microRNAs are likely to counteract the cellular response to infection

(Cullen 2011; Kincaid and Sullivan 2012), which is reflected by the

fact that KSHV microRNAs target multiple induced genes (Dölken

et al. 2010).

Indeed, when mRNA or protein levels were considered in-

dividually, no significant shift in expression fold changes was ob-

served for any set of microRNA targets (Fig. 3E; Supplemental Fig.

S3). Thus, in spite of the fact that mRNA half-lives are significantly

decreased by KSHV microRNAs, there is no observable effect on

steady-state levels of either mRNAs or proteins. However, if protein

fold changes are normalized to mRNA fold changes, a small but

statistically significant difference can be observed between BCBL1-

specific targets and BC1/BC3-specific targets (P < 0.01, Wilcoxon

rank sum test) (Fig. 3F). Since this normalization effectively

removes all effects of mRNA levels and half-lives, this indicates that

KSHV microRNAs not only have an impact on mRNA half-life in

a context-dependent manner but also on how many proteins are

produced per mRNA molecule. Constitutive targets of KSHV

microRNAs did not show this pattern, presumably because of their

strong impact on mRNA half-lives (Fig. 3).

Taken together, RIP-chip data, RNA half-life data, as well as

mRNA and protein expression data, provide good evidence that

a substantial amount of KSHV microRNA target sites as found by

differential analysis of PAR-CLIP data is indeed context-dependent,

resulting in a differential association with RISC and a context-

dependent impact on target gene expression.

Context-dependent target sites of cellular microRNAs

We next selected context-dependent microRNA/target interac-

tions that are either active in BCBL1 or DG75 but not in both.

Thus, we first selected all microRNAs that are not differentially

expressed between BCBL1 and DG75 (less than twofold) and are

reliably detected in the PAR-CLIP experiments (at least 100 reads

in all four data sets). Furthermore, all microRNAs had to have at

least 20 target sites as identified by a 7-mer seed by PARma. All

identified microRNAs showed a clear pattern of context de-

pendency in their target sites (Supplemental Figs. S10, S11). Using

the same criteria as in the analysis of KSHV microRNAs, context-

dependent target sites were defined (Supplemental Fig. S4; see

Supplemental Table S5).

Again, context-dependent microRNA/target interactions as

defined by the differential PAR-CLIP analysis resulted in highly

significant differential association with RISC (Fig. 4A; Supple-

mental Table 1). Specifically, context-dependent targets are more

than twofold enriched in significantly differentially RISC-associ-

ated mRNAs (PC2 score > 2) for both cellular contexts. Further-

more, target mRNA half-lives are again significantly lowered by the

context-dependent activity of the microRNA/target interactions

(P < 0.0002, Wilcoxon rank sum test) (Fig. 4B). Thus, as in the

analysis of KSHV microRNAs, context-dependent target sites of

cellular microRNAs also lead to differential RISC-association and

have functional impact on target mRNA half-lives in a context-

dependent manner.

The analysis of steady-state expression levels revealed a clear

pattern of context-dependent targets: Both sets of context-dependent

targets are clearly shifted in comparison to the background with

respect to both mRNA and protein fold changes (Fig. 4C,D). Spe-

cifically, genes tend to have higher expression in the context

where the microRNA/target interactions are active, indicating that

a significant number of targets are context-dependent because
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they are not expressed or are expressed at low levels in one con-

dition, i.e., affected by the global context.

Importantly, this is not solely due to a completely abrogated

expression in the nonactive context since proteins are detected for

almost half of all context-dependent targets in both cell lines; and

in more than two-thirds of the cases, the fold change is smaller

than twofold (Fig. 4E). Thus, it is not the absence or presence of

target mRNAs that lead to context dependency of target sites.

Rather, this indicates a complex dependency of the target site ac-

tivity on the exact target mRNA expression levels. However, there

may be a subpopulation within both sets of context-dependent

targets, where a missing activity of a target site may be explained by

the complete absence of the target mRNA (Fig. 4F).

mRNA levels and flanking sequence motifs explain context-
dependent microRNA/target interactions

Thus, we analyzed to which extent mRNA expression levels con-

tribute to the cellular context and whether there are other factors

that are necessary to explain the widespread context dependency

of target sites. First, we tested whether the target mRNA level is

the only contributor that constitutes the cellular context for

microRNA-mediated gene regulation.

Read counts are not only subject to biological variance but

also to a substantial amount of sampling noise since many clusters

only have a few dozen reads. To compare PAR-CLIP read count fold

changes with mRNA fold changes in a more robust manner, it is

therefore important to estimate the extent of this sampling noise.

We used a population-based estimate of variance using a condi-

tional gamma distribution (see Supplemental Methods). This ap-

proach is similar to recent methods to estimate the significance of

differential expression in RNA-seq data (Anders and Huber 2010;

Robinson et al. 2010). Importantly, our noise model nicely reflects

variation observed in replicate experiments (Supplemental Fig. S6).

If this noise model is applied to the comparison of mRNA

fold change-corrected PAR-CLIP target sites, >50% of all context-

dependent target sites, i.e., at least 14% of all target sites of the

selected set of cellular microRNAs, cannot be explained as judged

by the P-value distribution (Fig. 5). This means that in these cases,

the PAR-CLIP read count fold change is significantly higher than

expected from the corresponding mRNA fold change, and this

difference also cannot be explained by sampling noise inherent to

low-count data such as PAR-CLIP. Thus, target site activities are not

simply linearly dependent on mRNA levels.

Furthermore, as illustrated in Figure 5B, there are several in-

stances in which the target gene is not differentially expressed (i.e.,

data points around zero on the mRNA log2 fold change axis) but

where the target sites show a >16-fold elevated activity. In these

cases, mRNA expression alone clearly cannot explain target site ac-

tivity. Thus, other factors contribute to context-specific microRNA

function.

RNA binding proteins (RBPs) likely constitute such additional

contributors. Thus, we performed a motif search in regions flank-

ing context-dependent target sites (seed site 680 bp). For motif

discovery, we used MERCI (Vens et al. 2011), which is based on

efficiently enumerating all discriminative k-mers of two sets of

sequences. Specifically, we searched for k-mers that do not occur in

the negative set and occur at least n times in the positive set, and

we only considered target sites from mRNAs that are not differ-

entially expressed. n was chosen according to the total number of

sequences in the positive set. MERCI identified 20–30 k-mers when

we compared target sites of cellular microRNAs exclusively present

in BCBL1 to those exclusively present in DG75 and target sites of

viral microRNAs exclusively present in BCBL1 to those in BC1/BC3

or vice versa (Fig. 6A; Table 1; Supplemental Table S3). These dis-

criminative k-mers occur in 75%–90% of all context-dependent

target sites that cannot be explained by the mRNA level, and as few

as five motifs already can explain 30%–40% of all sites. In contrast,

discriminative k-mers found by chance in randomized sequences

only occur in a considerably lower number of sequences (Supple-

mental Fig. S7). Thus, these motifs are likely candidates of binding

sites for RBPs contributing to context-dependent recognition of

target sites by microRNAs.

In summary, from all context-dependent target sites identified

by PAR-CLIP and validated by RIP-chip experiments, 4sU tagging-

based mRNA half-lives, and mRNA and protein expression mea-

surements, >90% can either be explained by differential mRNA

levels or by the presence of a putative RBP binding motif (Fig. 6B).

Context-dependent target sites are less conserved than
constitutive sites

Finally, we asked whether context-dependent target sites have

distinct evolutionary conservation patterns as compared to con-

stitutive target sites. Following the approach of Friedman et al.

(2009), for each target site we computed the branch length along

the phylogenetic tree of 46 vertebrates by summing all branches in

which the seed of a cluster is fully conserved in the genome-wide

multiple alignment of 46 vertebrate species. The branch length

thus incorporates both the evolutionary age as well as the loss of

a target site in specific lineages. Specifically, a target site that

emerged in the last common ancestor of primates and rodents and

has not been lost in any primate or rodent lineage, has a branch

length of 2.342 (Fig. 7, shaded areas).

Figure 3. PAR-CLIP targets in RIP-chip experiments, mRNA half-life measurements, and expression measurements. (A) Differential RIP-chip enrichment
scores (PC2 scores; positive values indicate higher enrichment in BCBL1 than in DG75). Generally, KSHV microRNA targets active in BCBL1 are significantly
shifted toward higher values as compared to all other genes with any PAR-CLIP target site, in contrast to KSHV target sites exclusively active in BC1 or BC3
and not in BCBL1. B illustrates this further: The enrichment of genes with any KSHV site, with a constitutive or a BCBL1 exclusive site over genes with BC1/
BC3 exclusive sites among all genes with PC2 score > 2 is about twofold in all cases. (C ) Distributions of half-life differences between BCBL1 and DG75 for
all genes with PAR-CLIP target sites. Thus, positive values indicate a longer mRNA half-life in BCBL1 than in DG75. Genes with KSHV microRNA targets
active in BCBL1 tend to have shorter half-lives in BCBL1 than in DG75. This is highly significant for all BCBL1 target genes as well as the constitutive targets
but not for BCBL1-specific targets, even if their half-life is on average ;20 min shorter in BCBL1 than in DG75. However, KSHV microRNA targets that are
inactive in BCBL1 do not show any shift in their half-lives. (D) The difference between targets active exclusively in BCBL1 is statistically significantly different
from targets active exclusively in BC1 or BC3, when their ranks among all PAR-CLIP targets are considered. (E) Genes are scattered according to their mRNA
log2 fold changes between BCBL1 and DG75 on the x-axis and to their protein log2 fold changes on the y-axis. In both dimensions, none of the KSHV target
sets is significantly down-regulated on either the mRNA or protein level (Supplemental Fig. S5). However, target sites active in BCBL1 appear to be shifted
toward the bottom right. These sites correspond to genes whose protein level fold change between BCBL1 and DG75 is lower than expected from the
mRNA level. (F) The ranks of protein fold changes normalized to their mRNA levels for all gene sets considered. Normalized protein fold changes are
significantly lower for genes with BCBL1-specific target sites than for genes with target sites inactive in BCBL1 (P < 0.01, Wilcoxon rank sum test) (see also
Supplemental Fig. S3).
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Intriguingly, constitutive target sites of conserved cellular

microRNAs are significantly more strongly conserved than con-

text-dependent sites (P < 0.003, two-sided Kolmogorov-Smirnov

test). For instance, although >80% of constitutive sites are con-

served beyond the last common ancestor of primates and rodents,

only ;65% of context-dependent sites are conserved beyond this

clade; and 20% of context-dependent sites even show a signature

of recent evolution within the primate lineage. Importantly, this

does not reflect the overall conservation level of the respective

39-UTRs, but is specific to the seed sites (Supplemental Fig. S5).

Target sites of viral microRNAs, independent of whether they are

context-dependent or constitutive, show patterns of much weaker

conservation. This can be expected because there are no conserved

viral microRNAs, and pathogenicity of KSHV may rather induce

positive selection of its microRNA target sites on host mRNAs.

Discussion
In this study, we analyzed PAR-CLIP data from four human B-cell

lines, three of which are infected with Kaposi’s sarcoma-associated

herpes virus (KSHV), using an improved computational approach

to identify target sites of both cellular and viral microRNAs

(PARma) (Erhard et al. 2013a). The overlap in target sites between

the four cell lines was surprisingly low (;40%), indicating a large

set of context-dependent microRNA/target interactions. Three

additional sets of high-throughput data (RIP-chip, 4sU-tagging-

derived RNA half-lives, and SILAC proteomics data) supported this

observation: Context-dependent microRNA targets are associated

with RISC in a context-dependent manner and have a measurable

functional impact on their targets in a context-dependent man-

ner. This was observed for the targets of both cellular and viral

microRNAs. The latter offered an important control as they were

exclusively observed in the cells expressing the viral microRNAs.

Thus, we propose a new layer of complexity in microRNA tar-

geting: Depending on the cellular context, specific microRNA/

target interactions may be active or not, even if both microRNA

and target mRNA are expressed. Furthermore, we could show that

the evolutionary conservation differs between context-dependent

and constitutive target sites, indicating that selective pressure may

be different for context-dependent and constitutive target sites or

that they have different evolutionary ages.

Cellular context may be formed directly by the quantities of

microRNAs and mRNAs: Dependent on the exact copy numbers of

microRNAs and mRNAs in each cell, intricate regulatory mecha-

nisms may emerge leading to highly complex patterns of regula-

tion (Mukherji et al. 2011). Furthermore, due to the many-to-many

relationship of regulators and targets, microRNAs and mRNAs

are embedded in a highly complex regulatory network (Hobert

2008). Our analyses indicate that the quantities of microRNAs and

target mRNAs are direct contributors to the cellular context.

However, based on our results, >50% of all observed context-de-

pendent microRNA/target interactions cannot be explained by

microRNA or mRNA levels and, therefore, are likely dependent on

indirect factors.

Differential isoform usage might constitute relevant contexts.

It may lead to target sites that are active in one condition and in-

active in another, even if the corresponding microRNA is consti-

tutively expressed and the target appears constitutively expressed

on the gene level. Especially differential usage of polyadenylation

sites has been shown to be a major contributor to the cellular

context during development and proliferation (Sandberg et al.

2008; Boutet et al. 2012). However, in our data sets, alternative

polyadenylation sites cannot be distinguished, and more involved

experiments would be necessary to identify context-dependent

target sites due to possible alternative polyadenylation.

The presence of RNA binding proteins (RBPs) may prevent

microRNA binding to nearby sites (Bhattacharyya et al. 2006) or

also induce binding (Kim et al. 2009). In a recent study, the whole

RNA binding proteome of a cell line was examined by PAR-CLIP

coupled to high resolution mass spectrometry (Baltz et al. 2012).

This study revealed two important aspects of RBPs: First, in a single

cell type, about 800 different RBPs can be identified. This un-

expectedly high number of RBPs allows for highly complex

combinatorics of competitive or activating RBP–microRNA inter-

actions. Second, crosslinking events were observed for almost 30%

of all uridines in 39-UTRs, suggesting that mRNAs are broadly cov-

ered by RBPs. Indeed, we could identify a handful of sequence

motifs that are able to explain a large fraction of context-dependent

target sites, indicating that RBPs may play important roles in

shaping the cellular context for microRNA-mediated regulation.

Thus, there is an intriguing analogy of the transcriptional and

post-transcriptional layer of regulation: DNA, which is the material

for transcriptional regulation, is covered by histones, transcription

factors, and other DNA binding proteins; and the composition and

dynamics of these proteins contribute to the cellular context (The

ENCODE Project Consortium 2012). This cellular context de-

termines to which extent a certain transcription factor can bind

to a specific target site and exerts its regulatory role. Context-

dependent regulatory networks may differ dramatically across

different cell types or conditions (Neph et al. 2012). Similarly,

mRNAs, which are the units for post-transcriptional regulation, are

covered by RBPs; and we argue that their composition and dy-

namics contribute to a cellular context for microRNA-mediated

regulation. Additionally, factors other than these covering proteins

Figure 4. Analysis of context-dependent targets of cellular microRNAs. (A) Distributions of the differential RIP-chip scores as compared to all genes with
any PAR-CLIP target sites (see also Fig. 3A). Both targets exclusively active in DG75 as well as in BCBL1 are significantly shifted toward stronger association
with RISC in their respective context. The vertical lines indicate a threshold for strongly differentially RISC-associated genes. In both cases, the respective
context-dependent targets are more than twofold enriched over the background genes (;10% of background genes in comparison to >20% of the target
genes in both cases). (B) The rank distribution of half-life differences for both sets of context-dependent targets is shown (see also Fig. 3D). BCBL1-specific
targets are significantly shifted toward lower half-life difference ranks in comparison to DG75-specific targets indicative for effects of context-dependent
microRNA/target interactions in the respective context only. (C,D) The distributions of mRNA and protein fold changes between BCBL1 and DG75 for
context-dependent targets of cellular microRNAs, respectively, as compared to the background of all genes with any PAR-CLIP target site. Clearly, based
on mRNA as well as on protein levels, context-dependent targets are more highly expressed in their target context. This indicates that the target mRNA
expression directly contributes to the cellular context of microRNA-mediated regulation. (E) Depiction of how many genes with context-dependent target
sites (n = 311) are constitutively (less than twofold) expressed in both cell lines on an mRNA level and have a protein detected in both cell lines (n = 97), how
many are differentially expressed but with a detected protein (n = 54), how many do not have a protein and are differential (n = 63), and how many without
a detected protein are constitutive (n = 97). (F) Scatterplot of the microarray intensity measurements for all genes with a PAR-CLIP target site. Interestingly,
there seem to be subpopulations of target genes that have extremely low expression values in one of the two contexts and high intensities in the other,
where respective target sites are exclusively active. These may indeed correspond to not expressed genes in their inactive target context (see also
Supplemental Fig. S4).
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may further shape the cellular context for both transcriptional and

post-transcriptional regulation: For transcriptional regulation,

distinct modifications of chromatin or the DNA may also de-

termine context. Furthermore, chromosomal conformations may

place distal binding sites of transcription factors to promotors of

different genes in three-dimensional space and may therefore also

be important.

mRNAs may even provide more opportunities for context-

dependent regulation: Although DNA usually is restricted to

a single cellular compartment, the nucleus, the life cycle of mRNAs

may span multiple compartments and subcompartments. This

cellular localization may itself be regulated, and depending on the

localization, mRNAs may be translated or not. For instance, se-

questering of mRNAs to P-bodies by microRNAs leads to a reduced

Figure 5. Comparison of mRNA fold changes to PAR-CLIP read count fold changes. (A) Scatterplot comparing mRNA fold changes to PAR-CLIP read
count fold changes of all target sites of the cellular microRNAs analyzed. For the PAR-CLIP data, a pseudocount of 1 was used. Green dots represent target
sites that can be explained by the mRNA fold change while respecting sampling noise of the read counts, whereas orange and red dots correspond to
significant outliers (P < 0.05 and P < 0.01, respectively). The P-value distribution in C of all these target sites suggests that at least 14.9% (363 instances with
P < 0.01 of overall 2436 target sites after subtraction of baseline indicated by the horizontal line) of all differential target site activities cannot be explained
by the mRNA fold change and sampling noise. B and D illustrate this for the context-dependent microRNA/target interactions only. Here, >50% of all sites
cannot be explained by mRNA levels (see also Supplemental Fig. S5).
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translation and mRNA decay (Pasquinelli 2012). Furthermore, the

single-stranded mRNA gives rise to complex secondary and tertiary

structures, and it has been shown that the accessibility of target

sites determines whether or not microRNAs can bind to the mRNA

(Kertesz et al. 2007). Interestingly, the conformation of RNAs is

highly flexible and may be reshaped in a context-dependent

way: Kedde et al. (2010) have shown that the activation of the RNA

binding protein, PUM1, induces a local change in a hairpin

structure of the 39-UTR of the CDKN1B mRNA. Upon PUM1 acti-

vation, an inaccessible binding site of miR-221/miR-222 is opened

for binding, leading to an efficient repression of CDKN1B.

The differential analysis of a collection of high-quality large-

scale experiments for microRNA target site discovery indicates that

context-dependent microRNA targeting is not restricted to a few

examples, but is a widespread phenomenon and a general feature

of microRNA-mediated regulation. Under natural conditions,

several factors may contribute to the cellular context that may

determine which target sites of a microRNA are active and which

are not. Thus, true target sites discovered in an experiment per-

formed in a particular cell line may not be active in a different

context. In addition, experiments that impose non-natural con-

ditions on cells may identify target sites that are active only in

such a non-natural context and at the same time may miss nat-

urally occurring target sites.

Thus, additional experiments to unravel context-dependent

microRNA targets are of great importance for both the identifica-

tion of microRNA targets in particular contexts as well as the in-

vestigation of key contributors that determine cellular context.

Methods

Cell lines
DG75-eGFP (named DG75 throughout this paper) and BCBL1 were
cultured in RPMI medium supplemented with 10% fetal calf serum
and pen/strep.

PAR-CLIP and sequencing

PAR-CLIP on DG75 and BCBL1 was performed by the Zavolan
laboratory as described (Kishore et al. 2011; Jaskiewicz et al. 2012),

and the data are available at GEO (acces-
sion number: GSE43909; see Supple-
mental Table S6 for sequencing statistics).
The PAR-CLIP sequencing data for BC1
and BC3 from Gottwein et al. (2011) have
been downloaded from GEO (acces-
sion number: GSE32113). We applied
PARma to the whole collection of all PAR-
CLIP data sets as described (Erhard et al.
2013a).

SILAC-based proteomics

SILAC and LC-MS/MS were performed as
described in the Mann laboratory at MPI

Figure 6. Role of sequence motifs for context-dependent target sites. (A) The fraction of context-dependent target sites that contain a certain number of
discriminative k-mers. Only target sites that cannot be explained by mRNA levels were used. A k-mer is discriminative if it occurs n times in the positive set
(e.g., cellular BCBL1-exclusive sites in red) and does not occur in the corresponding negative set (e.g., cellular DG75-exclusive sites) (see Table 1). We
sorted discriminative k-mers according to their number of occurrences in decreasing order and chose a cutoff for n based on our randomization exper-
iments (Supplemental Fig. S6; Supplemental Table S3). In all cases, between 75% and 90% of all context-dependent target sites can be explained by
a discriminative k-mer. (B) Putative explanations for the full sets of context-dependent target sites are illustrated. On average, >90% can be explained by
either differential mRNA levels or the presence of a discriminative k-mer.

Table 1. Identified motifs by MERCI

Positive set With motif Negative set With motif Min occurrences Motif count

Cellular BCBL1 94/107 Cellular DG75 0/76 7 29
Cellular DG75 65/76 Cellular BCBL1 0/107 5 25
Viral BCBL1 83/100 Viral BC1/BC3 0/99 6 29
Viral BC1/BC3 74/99 Viral BCBL1 0/100 6 20

We searched for motifs in flanking sequences (680 bp) of context-dependent seed sites not explained
by differential mRNA levels (Supplemental Table S3). These motif searches were done in a discrimina-
tive manner, i.e., by comparing a positive set to a negative set of sequences, e.g., BCBL1-exclusive sites
of cellular microRNAs (Cellular BCBL1) were compared to DG75 exclusive target sites of cellular
microRNAs (Cellular DG75). For each comparison, the identified motifs only occurred in the positive set
and not in the negative set.
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for Biochemistry in Munich. The raw files from the mass spec-
trometer have been analyzed using MaxQuant (version 1.2.2.5)
(Cox and Mann 2008), using standard parameters against all hu-
man proteins from Ensembl (v60).

RIP-chip analysis

For the RISC-IPs, 5 3 108 cells were taken for each replicate and
processed as previously described (Dölken et al. 2010) using 6 mg
purified monoclonal hAGO2 antibody (a-hAGO2; 11A9) or mono-
clonal BrdU-antibody (Abcam; used as control).

RNA half-life measurements by 4sU-tagging

The RNA half-life data for DG75 and BCBL1 have been published
previously (Dölken et al. 2010). In brief, newly transcribed RNA
was labeled for 1 h by adding 100 mM 4sU to the cell culture me-
dium. Total RNA was prepared using TRIzol, and newly transcribed
RNA was purified as described (Dölken et al. 2008). Three replicates
of newly transcribed, total, and preexisting RNA were measured.
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