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Pathogenesis of Chronic Obstructive Pulmonary Disease
William MacNee

Edinburgh Lung and the Environment Group Initiative/Colt Research Laboratories, Medical School, University of Edinburgh,
Edinburgh, Scotland, United Kingdom

The current paradigm for the pathogenesis of chronic obstructive
pulmonary disease is that chronic airflow limitation results from an
abnormal inflammatory response to inhaled particles and gases in
the lung. Airspace inflammation appears to be different in suscepti-
ble smokers and involves a predominance of CD8� T lymphocytes,
neutrophils, and macrophages. Studies have characterized inflam-
mation in the peripheral airspaces in different stages of disease
severity. Two other processes have received considerable research
attention. The first is a protease–antiprotease imbalance, which
has been linked to the pathogenesis of emphysema. However, the
hypothesis of an increased protease burden associated with func-
tional inhibition of antiproteases has been difficult to prove and is
now considered an oversimplification. The second process, oxida-
tive stress, has a role in many of the pathogenic processes of chronic
obstructive pulmonary disease and may be one mechanism that
enhances the inflammatory response. In addition, it has been pro-
posed that the development of emphysema may involve alveolar
cell loss through apoptosis. This mechanism may involve the vascu-
lar endothelial growth factor pathway and oxidative stress.

Keywords: apoptosis; emphysema; inflammation; oxidative stress; pro-
tease–antiprotease imbalance

Chronic obstructive pulmonary disease (COPD) is a slowly pro-
gressive condition characterized by airflow limitation, which is
largely irreversible (1). Cigarette smoking is the main etiologic
factor in this condition, far outweighing any of the other risk
factors. The pathogenesis of COPD is therefore strongly linked
to the effects of cigarette smoke on the lungs. There is a general
relationship between the extent of the smoking history and the
severity of the airflow limitation; however, there is a huge indi-
vidual variation. Fletcher and Peto (2), in an 8-yr prospective
study of working men in West London, showed that the average
decline in FEV1 in smokers is faster (60 ml/yr) than in nonsmok-
ers (30 ml/yr). However, smokers who develop COPD have an
average decline in FEV1 of greater than 60 ml/yr, and only 15
to 20% of smokers develop clinically significant COPD. It is
from these studies that the concept of the susceptible smoker
developed.

SUBTYPES OF COPD

Chronic Bronchitis

The cough and sputum production that define chronic bronchitis
result from an innate immune response to inhaled toxic particles
and gases in cigarette smoke. In chronic bronchitis there is in-
flammation in the epithelium of the central airways and in the
mucus-producing glands (3). This airway inflammation is associ-
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ated with increased mucus production, reduced mucociliary
clearance, and increased permeability of the airspace epithelial
barrier.

The contribution of mucus hypersecretion to the airflow limi-
tation in COPD is still uncertain. It appears that it contributes
little in the early stages of COPD, because mucus production
in smokers with normal lung function does not appear to predict
later development of COPD (4). However, chronic mucus hyper-
secretion may contribute in the later stages of the disease, be-
cause of an increased risk of exacerbations that may accelerate
the loss of FEV1. Chronic mucus hypersecretion may be a reflec-
tion of the inflammatory response in the submucosal glands
(2). Inflammatory cells release serine proteases that are potent
secretagogues for mucus (5). Oxidants derived from cigarette
smoke and released from inflammatory leukocytes may also
be involved in overproduction of mucin by induction of the
MUC5AC gene (6).

Emphysema

Emphysema is defined as enlargement of the distal airspaces,
beyond the terminal bronchioles, caused by destruction of the
airway walls (7). Emphysematous lung destruction reduces maxi-
mal expiratory airflow by decreasing the elastic recoil force that
drives air out of the lungs. The centrilobular or centriacinar
form of emphysema results from dilation or destruction of the
respiratory bronchioles and is the type of emphysema most
closely associated with tobacco smoking. The panlobular or pa-
nacinar form of emphysema, which is usually associated with �1-
antitrypsin (�1-AT) deficiency, results in more even dilation and
destruction of the entire acinus. It has been suggested that one
or the other of these types predominates in severe disease and
that the centriacinar type is associated more with severe small-
airway obstruction (8).

There is a relationship between the degree of emphysema
and pack-yr of smoking, but not a strong one. Only about 40%
of heavy smokers develop substantial lung destruction from em-
physema, and emphysema can be found in some individuals who
have normal lung function (3).

Small-Airway Disease

A major site of airway obstruction in COPD is the smaller conduct-
ing airways (� 2 mm in diameter) (9). Studies have shown that
there are structural abnormalities in small airways in smokers
with and without COPD (10). There is also a relationship be-
tween the severity of COPD and the extent of occlusion of the
airway lumen by inflammatory mucous exudates. Inflammation
and peribronchial fibrosis contribute to the fixed airway obstruc-
tion in the small airways in COPD, and progression of the in-
flammation, resulting in destruction of the alveolar attachments
on the outer walls of the small airways, may also contribute.

INFLAMMATION IN THE LUNGS IN COPD

Studies of lung or bronchial biopsies and induced sputum have
shown evidence of lung inflammation in all cigarette smokers.
However, it appears that an enhanced or abnormal inflammatory
response to inhaled particles or gases, beyond the normal protec-
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TABLE 1. VARIATION OF INFLAMMATORY CELLS AND MARKERS OF INFLAMMATION IN THE BRONCHIAL SUBMUCOSA

CD45 CD3 Neutrophils EOS Mast Cells CD68 CD8 CD4

Severe COPD — ↓ 23 ↑ 14 → 14 → 14 ↑ 14 ↓ 23 → 23
Mild/moderate COPD ↑ 99, 100 ↑ 13, 14, 99, 101 → 99, 100 → 14, 99, 100 → 14, 99, 100 ↑ 99, 100 ↑ 13, 100 → 13, 23, 99, 100

→ 23 ↑ 14 → 14 → 23, 99
Control smokers → 100 → 23, 100 → 14, 100 → 14, 100 → 14, 100 → 14, 100 ↑ 13 → 13, 23, 100

↑ 13 → 23, 100
Control nonsmokers → 99, 100 → 13, 99, 100, 101 → 99, 100 → 99, 100 → 99, 100 → 99, 100 → 13, 99, 100 → 13, 99, 100

Definition of abbreviations: COPD � chronic obstructive pulmonary disease; EOS � eosinophils.
↑ � significantly increased values in comparison with that indicated by →; → � basal values or values nonsignificantly changed; ↓ � significantly decreased values

in comparison with that indicated by →. Numbers close to the arrows indicate references.
Adapted from Di Stefano and coworkers (12).

tive inflammatory response in the lungs, is a characteristic feature
of COPD and has the potential to produce lung injury (11).
Both innate and adaptive inflammatory and immune responses
are involved in the lung inflammation in smokers and in patients
with COPD. Studies have begun to characterize the lung in-
flammation in COPD in terms of its type, site, and degree, and
the relationship to severity of disease.

Studies of bronchial biopsy specimens from patients with
mild to moderate COPD show an increase in inflammatory cell
infiltration in the central airways, compared with nonsmokers
or smokers who have not developed the disease (12). In the
bronchial mucosa in patients with COPD, T lymphocytes pre-
dominate, mainly CD8� cells and macrophages (CD68� cells;
Table 1). It has been suggested that the presence of increased
CD8� T lymphocytes differentiates between smokers who do
and do not develop COPD and that there is a correlation be-
tween T-cell numbers, the amount of alveolar destruction, and
the severity of airflow limitation. However, smokers with normal
lung function also show, to a lesser extent, an increased number
of CD8� cells compared with control nonsmokers (13). Indeed,
there is a decrease in T-lymphocyte infiltration in bronchial
biopsy specimens from subjects with severe COPD (14).

The mechanism by which CD8� T lymphocytes accumulate
in the airways of the lungs in COPD is not fully understood. T
cells in peripheral airways in patients with COPD show increased
expression of CXCR3, a receptor activated by interferon-induc-
ible protein 10, and expression of interferon-inducible protein
10 itself is increased in bronchiolar epithelial cells. This could
contribute to the accumulation of CD8� cells, which preferen-
tially express CXCR3. Circulating CD8� cells are also increased
in number in patients with COPD who do not smoke (15), and
there is an increase in CD4� cells in patients with COPD, particu-
larly as the disease progresses (16, 17). This suggests chronic
immune stimulation. It may be that chronic colonization of the
lower respiratory tract of patients with COPD by bacterial and
viral pathogens is responsible for this enhanced inflammatory
response (10). Studies suggest an increase in B lymphocytes and
in bronchial-associated lymphoid tissue in small airways as the
disease progresses (10). It is also possible that cigarette smoke
itself damages airway cells, creating new autoantigens that drive
the immunoinflammatory response (18).

The role of T cells in the pathogenesis of COPD is not fully
understood. CD8� cells have the potential to release tumor ne-
crosis factor �, perforins, and granzymes, in addition to activating
the Fas–Fas ligand apoptotic pathway. An association has been
shown between CD8� cells and apoptosis of alveolar epithelial
cells in subjects with emphysema (19).

Increased numbers of activated neutrophils are found in spu-
tum from patients with COPD (20). The lack of significant in-
creased neutrophil numbers in the lung parenchyma may be due to
the fact that these cells make a rapid transit through the airways and

the lung parenchyma (21). Neutrophils have the potential to secrete
serum proteinases, including neutrophil elastase, cathepsin G, and
proteinase 3, as well as matrix metalloproteinase 8 (MMP-8) and
MMP-9. These proteases may contribute to alveolar destruction
and are also potent stimuli of mucus secretion.

The role that neutrophils play in the pathogenesis of COPD
is not entirely clear. Relationships have been shown between
circulating neutrophils and the fall in FEV1 (22). Similarly, neu-
trophil numbers in bronchial biopsy specimens and induced spu-
tum are related to disease severity (14) and the rate of decline
in lung function (23).

Cigarette smoking is known to increase circulating neutrophil
leukocyte count and to cause sequestration of neutrophils in the
lung capillaries (24) by decreasing their deformability. Cigarette
smoke also has a direct stimulatory effect on granulocyte produc-
tion in the bone marrow, possibly mediated by granulocyte-macro-
phage colony–stimulating factor and granulocyte colony–stimu-
lating factor released from macrophages (25). It is possible that
neutrophils are activated within the pulmonary microcirculation
to release reactive oxidant species and proteases that may have
a direct injurious effect.

Once sequestered, neutrophils adhere to endothelial cells,
and the adhesion molecule E-selectin has been shown to be
upregulated in the airway epithelial cells of patients with COPD
(26). Neutrophils can then migrate to the respiratory tract under
the control of chemotactic factors, such as leukotriene B4, inter-
leukin 8 (IL-8), and related CXC chemokines, including growth-
related oncogene-� and epithelial cell�derived neutrophil at-
tractant 78. These chemotactic factors have been shown to be
increased in the airways in patients with COPD (27, 28).

There is a 5- to 10-fold increase in the numbers of macro-
phages in the airways, lung parenchyma, and bronchoalveolar
lavage fluid (BALF) in patients with COPD. Macrophage num-
bers in the airways correlate with the severity of COPD (29).
Cigarette smoke activates macrophages to release inflammatory
mediators, including tumor necrosis facto �, IL-8 and other CXC
chemokines, monocyte chemotactic peptide-1, leukotriene B4,
and reactive oxygen species. Macrophages also secrete proteases,
including MMP-2, MMP-9, and MMP-12; cathepsins K, L, and
S; and neutrophil elastase, taken up from neutrophils. Compared
with macrophages from normal smokers, those from patients
with COPD are more activated, secrete more inflammatory pro-
teins, and have greater elastolytic activity, which is further en-
hanced by exposure to cigarette smoke (30, 31). Increased num-
bers of macrophages in the lungs of patients with COPD and
in the lungs of smokers may result from increased recruitment
of monocytes from the circulation in response to monocyte che-
motactic chemokines such as monocyte chemotactic peptide-1,
which has been shown to be increased in sputum and BALF in
patients with COPD (31). CXC chemokines also act as chemo-
attractants to monocytes. The concentration of growth-related
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TABLE 2. VARIATION OF INFLAMMATORY CELLS AND MARKERS OF INFLAMMATION IN THE CENTRAL
AND PERIPHERAL AIRWAYS

Central Airways Peripheral Airways (� 3 mm in diameter)

Neutrophils CD68 CD4 CD8 IL-4 IL-5 Neutrophils CD68 CD4 CD8

Mild/moderate COPD → 102 → 102 → 102 → 102 ↓ 103 → 103 → 36, 104–106 ↑ 106, 107 → 36, 104–106 ↑ 36
→ 36, 104, 105 → 104–107

Chronic bronchitis with — — — — ↑ 103 → 103 — — — —
normal FEV1

Control smokers → 102 → 102 → 102 → 102 → 103 → 103 → 36, 104–106 → 36, 104–107 → 36, 104–107 → 36, 104–107

Definition of abbreviations: COPD � chronic obstructive pulmonary disease; IL � interleukin.
↑ � significantly increased values in comparison with that indicated by →; → � basal values or values nonsignificantly changed; ↓ � significantly decreased values

in comparison with that indicated by →. Numbers close to the arrows indicate references.
Adapted from Di Stefano and coworkers (12).

oncogene-� is increased markedly in sputum and BALF from
patients with COPD. Furthermore, monocytes from patients
with COPD show a greater chemotactic response to growth-
related oncogene-� than do cells from normal smokers and non-
smokers (32).

There is an increased number of dendritic cells in the airways
and alveolar walls of smokers (33). The role of dendritic cells
in COPD is not yet defined, but they may have an important
function in the innate and adaptive immune responses in COPD.

Airway epithelial cells can be activated by cigarette smoke
to produce inflammatory mediators, including tumor necrosis
factor �, IL-1�, granulocyte-macrophage colony–stimulating fac-
tor, and IL-8. The epithelium in the small airways may be an
important source of transforming growth factor � (TGF-�), add-
ing to the induction of local fibrosis (34). Epithelial cells can also
secrete antioxidants, secrete antiproteases, and transport immuno-
globulin-�, so they may be involved in adaptive immunity. Ciga-
rette smoke may impair these innate and adaptive immune re-
sponses of the airway epithelium and increase the likelihood of
infection.

Many of the inflammatory mediators that are expressed in
COPD are controlled by the transcription factor nuclear factor
(NF)-�B, which is upregulated in alveolar macrophages in pa-
tients with COPD and in airway cells in patients with mild/
moderate COPD in comparison with control nonsmokers (35).
Upregulation of NF-�B in lung cells in COPD may be a key
molecular mechanism involved in the ongoing inflammatory pro-
cess in the airways.

In general, with increasing severity of COPD there is a further
enhancement of the inflammatory response. Compared with mild/
moderate disease, there is a further increase in expression of
inflammatory proteins such as macrophage inflammatory protein
1�, a chemokine involved in the activation of mononuclear cells
and granulocytes. There are also further increases in the number
of neutrophils and macrophages in severe disease and a decrease

TABLE 3. VARIATION OF INFLAMMATORY CELLS IN THE LUNG PARENCHYMA

Neutrophils CD68 CD3 CD4 CD8 Eosinophils

Mild/moderate COPD → 38, 92 → 38 ↑ 92 → 38, 92 ↑ 38, 92 → 38
Smokers with normal FEV1 → 37, 38, 92 ↑ 37 ↑ 37 → 38, 92 → 38, 92 → 38

→ 38 → 92
Control nonsmokers ↑ 37 → 37, 38 → 37, 92 → 38, 92 → 38, 92 → 38

→ 38, 92

Definition of abbreviation: COPD � chronic obstructive pulmonary disease.
↑ � significantly increased values in comparison with that indicated by →; → � basal values or values nonsignificantly changed;

↓ � significantly decreased values in comparison with that indicated by →. Numbers close to the arrows indicate references.
Adapted from Di Stefano and coworkers (12).

in T lymphocytes (CD3� cells). There appears to be a shift in
the cellular type in severe disease toward cells with a phagocytic
and proteolytic role in the bronchial tissues (Tables 1–3).

A comparison of the central and peripheral airways shows
an increase in the total inflammatory cells in the peripheral
airways (� 3 mm in diameter) in patients with chronic bronchitis
with normal lung function, compared with control smokers
(Table 2). Some studies have shown an increase in total inflam-
mation and an increase in CD8� cells in the peripheral airways of
patients with mild/moderate COPD in comparison with control
smokers (36).

The inflammatory response in the peripheral airways may
play a role in the fibrosis that characterizes the small airways in
patients with moderate/severe COPD. Studies that have assessed
tissue obtained from lung volume reduction surgery in patients
with severe COPD have shown an increase in total leukocytes
and in CD4� and CD8� lymphocytes in both the peripheral
airways and the lung parenchyma (12). In contrast, smokers with
normal lung function show an increased number of macrophages
and T lymphocytes in lung parenchyma compared with control
nonsmokers, with no changes in CD4� and CD8� cells. In pa-
tients with mild to moderate COPD there is an increase in CD8�

cells in the alveolar septae compared with control nonsmokers
(37, 38), and there is no change in the numbers of neutrophils,
macrophages, or CD4� cells.

PROTEASES AND ANTIPROTEASES

A large body of literature has been amassed to test the hypothesis
that a protease–antiprotease imbalance, leading to the break-
down of connective tissue components, particularly elastin, is the
critical mechanism in the pathogenesis of emphysema in smokers.
This concept developed from studies of early-onset emphysema
in �1-AT�deficient patients. Elastin is an important target for
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proteolytic enzymes, and its destruction results in loss of elastic-
ity in the lung parenchyma.

Elastin is the principal component of elastic fibers and is
secreted from several cell types as a precursor, tropoelastin.
These tropoelastin molecules become aligned in the extracellular
space on microfibrils. Under the action of lysyl oxidase, the
lysine residues in tropoelastin are modified, which causes the
tropoelastin monomers to cross-link and form larger, insoluble
elastin polymers. Because the cross-links, known as desmosines,
are unique to elastin, they have been used as a marker of elastin
degradation (39). Desmosine and elastin peptides are elevated
in smokers and patients with COPD. However, there has been
controversy over the specificity of measurements of these pep-
tides in urine, particularly as a reflection of lung elastin degrada-
tion alone, because of the extreme durability of lung elastin.
There is minimal elastin turnover in normal subjects, so break-
down products should not be detectable. Nevertheless, studies
indicate that the annual rate of decline in FEV1 in a group of
smokers correlated positively with urine levels of desmosine
(40). The validity of the use of desmosine or elastin peptides as
a marker of elastolysis remains unresolved.

Together with destruction of elastin, inactivation of antiprote-
ases is central to the protease–antiprotease imbalance hypothe-
sis. Early studies showed that the function of �1-AT was reduced
by about 40% in smokers, compared with nonsmokers (41).
This “functional �1-AT deficiency” was believed to be due to
inactivation of �1-AT by oxidants in cigarette smoke. However,
most of the �1-AT in cigarette smokers remains active and is
therefore still capable of protecting against the increased prote-
ase burden. There is only a transient and nonsignificant fall in
�1-AT activity in BALF 1 h after smoking (42). Thus, studies
assessing the function of �1-AT in either chronic or acute ciga-
rette smoking have not been definitive. It is clear, however, that
the hypothesis that the major event is an imbalance between
an increased elastase burden in the lungs and a “functional
deficiency” of �1-AT, because of its inactivation, is an oversimpli-
fication.

As discussed above, there is substantial evidence that the
numbers of neutrophils and macrophages are increased in the
airspaces in chronic smokers. The elastase burden could be in-
creased in cigarette smokers by enhanced degranulation and
therefore release of elastase. There is some evidence to support
this, because neutrophils isolated from patients with emphysema
show greater elastase-induced fibronectin degradation in vitro
than do cells from control subjects matched for age and smoking
history (43).

Further hypotheses have invoked a contributory role for
other antiproteases, such as antileukoprotease, or more subtle
changes, for example, a decrease in the association rate constant
of �1-AT for neutrophil elastase, which may contribute to elastin
degradation

Elastin Synthesis and Repair

There is some evidence supporting the concept that an abnormal-
ity in elastin synthesis and repair may be involved in the patho-
genesis of emphysema. In animal models of intratracheal instilla-
tion of elastases, lung elastin is depleted within hours to a few
days (44), followed by increased elastin synthesis over a period
of weeks. However, in areas of emphysema in these models,
alveolar elastic fibers have an abnormal appearance (45) and
resemble the aberrant elastic fibers in human emphysema. Thus,
although elastin synthesis after injury restores the elastin content
of the lungs, it does not restore normal lung architecture in these
experimental models.

In an animal model of elastase-induced emphysema, treat-
ment with retinoic acid restored normal alveolar architecture.

These studies in adult male rats (which have continued lung
growth throughout their adult life, in contrast with humans)
must be verified, but they provide some intriguing evidence
that the destructive process in emphysema, which was always
considered irreversible, may be capable of repair (46).

In addition to serum proteases, cysteine proteases (cathep-
sins) may have a role in COPD. Cathepsin C was induced in
mice by overexpression of IFN-	, which induces emphysema
(47). Cathepsin inhibitors have been shown to reduce emphy-
sema induced by overexpression of IL-13 in mouse lung (48).
Cathepsin L has been detected in BALF from patients with
emphysema (49), and alveolar macrophages in patients with
COPD secrete more cysteine proteases than do macrophages
from normal smokers or nonsmokers (50).

There is increasing interest in the role of MMPs in COPD
(51). Increased concentrations of MMP-1 (collagenase) and
MMP-9 (gelatinase B) are present in BALF from patients with
COPD (52, 53), and there is increased activity of MMP-9 in the
lung parenchyma of patients with emphysema (54, 55). MMP-1
expression is also increased in the lungs of patients with emphy-
sema, particularly in type II pneumocytes (56). Alveolar macro-
phages from smokers express more MMP-9 than do those from
normal subjects (30), and there is an even greater increase in
patients with COPD (29). Animal models have shown that ciga-
rette smoke�induced emphysema does not occur in mice lacking
MMP-12. In such mice, emphysema induced by IL-13 or IFN-	
expression is also reduced (48), associated with a marked reduc-
tion in monocyte recruitment to the lungs. MMPs are also known
to activate the latent form of TGF-� to its active form. In mice
lacking the integrin �v�6, there is a failure to activate TGF-�,
and the animals do not develop age-related emphysema, which
can be prevented by overexpression of TGF-�1 (57). These data
suggest that TGF-�1 may downregulate MMP-12 under normal
conditions and that the absence of TGF-� results in excessive
MMP-12 production and emphysema.

Mice lacking MMP-9 are not protected against emphysema
caused by cigarette smoke but are protected from small-airway
fibrosis (58). TGF-� is activated by MMP-9, and this mechanism
could provide a link between enhanced elastolytic activity by
MMP-9 and the simultaneous production of fibrosis by activation
of TGF-�. It appears that, although MMP-12 is an important
protease in the mouse, it is not as important in humans as MMP-9.
Macrophages from patients with COPD have a blunted response
to stimuli for the release of tissue inhibitor of metalloproteinase 1,
which would favor increased elastolysis (29).

ROLE OF OXIDANTS AND ANTIOXIDANTS IN
SMOKING-INDUCED COPD

Cigarette smoke is a complex mixture of more than 4,700 chemi-
cal compounds, including high concentrations of free radicals
and other oxidants. Other sources of reactive oxygen species
are those generated through normal cellular processes in the
lungs, such as those produced by normal cellular respiration or
by inhalation of air pollutants such as particulate pollution.

A delicate balance exists between the toxicity of oxidants
and the protective effects of intra- and extracellular antioxidant
defense systems, which are critically important for the mainte-
nance of normal pulmonary cellular functions. A shift of the
oxidant/antioxidant balance in favor of oxidants is known as
oxidative stress. There is now considerable evidence of increased
oxidative stress in smokers and in patients with COPD (59).

Cigarette smoke contains free radicals in both the gas and
tar phases (60). Short-lived radicals in the gas phase of cigarette
smoke may be quenched immediately in the lung epithelial lining
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Figure 1. Concentrations of 8-isoprostane, a lipid peroxidation product,
in exhaled breath condensate. Mean values are shown by horizontal
bars. COPD � chronic obstructive pulmonary disease. Modified by
permission from Reference 71.

fluid; however, redox reactions in cigarette smoke condensate
may produce reactive oxygen species for a considerable time.

The oxidant burden in lungs may be further enhanced in
smokers by the increased numbers of neutrophils and macro-
phages in the alveolar space. In vitro studies have shown that
alveolar leukocytes from cigarette smokers spontaneously re-
lease increased amounts of oxidants, such as O2

·� and H2O2,
compared with those from nonsmokers (61).

Components of the lung matrix (e.g., elastin and collagen)
can be directly damaged by oxidants in cigarette smoke (62).
Furthermore, cigarette smoke can interfere with elastin synthesis
and repair (63), potentially leading to the development of em-
physema.

All tissues are vulnerable to oxidant damage, but by virtue
of its direct contact with the environment, the airspace epithelial
surface of the lung is particularly vulnerable. Injury to the epithe-
lium, manifested as an increase in airspace epithelial permeabil-
ity, may be an important early event after exposure to cigarette
smoke (64). Extra- and intracellular glutathione, an antioxidant,
appears to be critical to the maintenance of epithelial integrity
after exposure to cigarette smoke. This was shown in studies in
which the increased permeability of epithelial cell monolayers
in vitro, and in rat lungs in vivo, after exposure to cigarette
smoke condensate, was associated with profound changes in the
homeostasis of glutathione (65, 66).

These in vitro and animal studies are paralleled by human
studies demonstrating increased epithelial permeability in chronic
smokers compared with nonsmokers, with a further increase in
epithelial permeability after acute smoking (67). Thus, cigarette
smoke has a detrimental effect on alveolar epithelial cell function
that is, in part, oxidant mediated.

A major site of free radical attack is on polyunsaturated fatty
acids in cell membranes producing lipid peroxidation, a process
that may continue as a chain reaction to generate hydroperoxides
and long-lived aldehydes. Levels of products of lipid peroxida-
tion in plasma and BALF are significantly increased in healthy
smokers and patients with acute exacerbations of COPD, com-
pared with healthy nonsmokers (64, 67, 68).

Several studies demonstrate increased levels of oxidants in
exhaled air or breath condensates (69), although measurements
of exhaled breath condensate have inherent problems and stan-
dardization of this technique has still to be accomplished. There
is an increased concentration of H2O2 in exhaled breath conden-
sate in patients with COPD (70). Concentrations of a lipid perox-
idation product in exhaled breath condensate are increased even
in patients who are ex-smokers (Figure 1) (71). Furthermore,

Figure 2. Correlation between lung function and levels of 4-hydroxy-
2-nonenal (4-HNE), a lipid peroxidation product, in the lungs. Modified
by permission from Reference 72.

there is evidence that oxidative stress can cause increased lipid
peroxidation in lung tissue in patients with COPD compared
with smokers who have a similar smoking history but have not
developed the disease (72). In that study, the level of lipid peroxi-
dation correlated with the degree of airflow limitation (Figure 2).

Free iron is a critical element in many oxidative processes.
Macrophages from smokers have been shown to contain more
iron than those from nonsmokers, and they release more iron,
thus potentially increasing the oxidant burden in smokers (73).

The major antioxidants in respiratory tract lining fluid include
mucin, reduced glutathione, uric acid, protein (largely albumin),
and ascorbic acid (74). There is limited information about respi-
ratory epithelial antioxidant defenses in smokers, and even less
about those in patients with COPD. Studies have shown that
glutathione is elevated in BALF from chronic smokers (64, 75).
Even so, glutathione may not be present in sufficient quantities
to deal with the excessive oxidant burden during acute smoking,
as cigarette smoke exposure depletes glutathione in a dose- and
time-dependent manner (76).

Reduced levels of vitamin E are present in the BALF of smokers
compared with nonsmokers (77). By contrast, other studies
found a marginal increase in vitamin C in the BALF of smokers,
compared with nonsmokers (78). The apparent discrepancy may
be due to different smoking histories in chronic smokers, in partic-
ular the time of smoking the last cigarette in relation to the
sampling of BALF.

Expression of glutathione peroxidase and superoxide dismu-
tase, another antioxidant enzyme, is elevated in the lungs of rats
exposed to cigarette smoke (79, 80).

OTHER MECHANISMS RELATED TO THE
PATHOGENESIS OF COPD

Mechanisms Related to Inflammation

Studies have suggested that susceptibility to COPD may be re-
lated to latent adenoviral infection. These studies have demon-
strated the ability of adenoviral E1A proteins, which associate
with DNA, to enhance the binding of a number of transcription
factors to their nuclear consensus sites and so activate a wide
variety of genes (81). The E1A protein occurs more commonly
in the lungs of smokers with COPD than in smokers who have
not developed the disease (82). Furthermore, it has been shown
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Figure 3. Rat lungs treated with SU5416 (SU), a vascular endothelial
growth factor receptor blocker, show increased alveolar cell apoptosis,
as quantified by an active caspase-3 assay. M40419 (M), a superoxide
dismutase mimetic, has a protective effect on SU5416-induced apopto-
sis. CTL � control. Modified by permission from Reference 97.

in an animal model that latent adenoviral infection increases
the inflammation that follows exposure to cigarette smoke (83).
Transfection of an E1A-type human epithelial cell line results
in increased activation of NF-�B, and consequently increased
release of IL-8 in response to cell activation and increased pro-
duction of TGF-�, suggesting a molecular mechanism for the
amplification of inflammatory response (84, 85).

A further mechanism that may amplify inflammation in
COPD may be imbalance between histone acetylation and deacety-
lation, resulting in chromatin remodeling to a configuration that
enhances inflammatory gene expression. Macrophages of ciga-
rette smokers show a decrease in histone deacetylase activity
(86), as has also been shown in the lungs of smoke-exposed
animals (87). Decreased histone deacetylation enhances DNA
unwinding and hence increases transcription of inflammatory
genes. Preliminary evidence also suggests that histone deacety-
lase protein and activity are reduced in lung tissue in COPD,
which may be the mechanism that enhances lung inflammation
(88, 89).

There is evidence that smoking cessation does not resolve the
inflammatory response in the airways, particularly in advanced
COPD. Molecular mechanisms such as transcription factor acti-
vation and chromatin remodeling, perhaps as a result of in-
creased oxidative stress, might be responsible for perpetuating
the inflammatory process.

Gene expression profiling (90, 91) of human lung tissue from
smokers and smokers with severe emphysema suggests an in-
crease in transcripts encoding proteins involving inflammation
immune responses and proteolysis, and differences in gene pro-
filing have been found between patients with emphysema that
is induced by cigarette smoking and patients with emphysema
that is related to �1-antitrypsin. Such studies of gene profiling
in human lung tissue should provide insight into the pathogenesis
and may allow distinction between different phenotypes of dis-
ease and identify targets for therapeutic intervention.

Apoptosis and Emphysema

As explained previously, the traditional paradigm for alveolar
wall destruction in emphysema has been that increased inflam-
matory response results in a protease–antiprotease imbalance.
Now, studies have demonstrated apoptosis in human emphyse-

matous lungs (92, 93). A hypothesis has been advanced that the
alveolar cell loss in emphysema is due to apoptosis in response
to cigarette smoke, mediated by blockade of the vascular endo-
thelial growth factor (VEGF) receptor that occurs in emphyse-
matous lungs. Indeed, rats in which VEGF receptors have been
blocked develop emphysema (94). Decreased levels of VEGF
in induced sputum have been shown to correlate with the degree
of airflow limitation and alveolar destruction in patients with
emphysema (95). Furthermore, mice develop emphysema after
a single intratracheal injection of active caspase-3, an inducer
of apoptosis, plus a protein transfection agent (96). Another
study has shown that oxidative stress and apoptosis interact in
rats and cause emphysema due to VEGF receptor blockade
(Figure 3) (97).

One study (98) has also shown that apoptosis in lung tissue
was correlated inversely with surface area and that emphysema-
tous lungs demonstrated decreased surface area and increased
cell proliferation. However, there was no correlation between
apoptosis and proliferation, which suggests that although both
proliferation and apoptosis increase in emphysema they are not
in equilibrium, which potentially would contribute to a reduction
in lung surface area.

CONCLUSION

No single mechanism can account for the complex pathology in
COPD. It is likely that interactions occur between different
mechanisms. For example, there are probably interrelationships
between the protease–antiprotease balance, oxidative stress, and
apoptosis as destructive processes in emphysema. Better under-
standing of the relative importance of these different pathogenic
mechanisms will come from proof-of-concept therapeutic inter-
vention studies.
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