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Abstract: In recent years, musicians have been increasingly recruited to investigate grey 

and white matter neuroplasticity induced by skill acquisition. The development of 

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed 

investigation of white matter connections within the brain, addressing questions about the 

effect of musical training on connectivity between specific brain regions. Here, current  

DT-MRI analysis techniques are discussed and the available evidence from DT-MRI 

studies into differences in white matter architecture between musicians and non-musicians 

is reviewed. Collectively, the existing literature tends to support the hypothesis that 

musical training can induce changes in cross-hemispheric connections, with significant 

differences frequently reported in various regions of the corpus callosum of musicians 

compared with non-musicians. However, differences found in intra-hemispheric fibres 

have not always been replicated, while findings regarding the internal capsule and 

corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that 

variances in white matter structure in non-musicians may correlate with their ability to 

learn musical skills, offering an alternative explanation for the structural differences 

observed between musicians and non-musicians. Considering the inconsistencies in the 
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current literature, possible reasons for conflicting results are offered, along with suggestions 

for future research in this area. 

Keywords: musicians; white matter; diffusion tensor MRI; neuroplasticity 

 

1. Introduction 

Playing a musical instrument requires a host of specialised skills, including translating written notation 

into motor movements, precise timing, bimanual coordination and rapid auditory processing skills. 

These specialist skills are developed through a considerable volume of practice and training, which 

normally commences in early childhood. The large body of training musicians undergo has led to the 

suggestion that these individuals are an ideal group to investigate training-induced structural brain 

plasticity as a consequence of learning a new skill [1,2]. Over the last 20 years, both structural and 

functional differences between brains of musicians and non-musicians, as well as between different 

types of musicians, e.g., violinists and pianists [3], have been reported. Many of the early studies into 

musical training-induced neuroplasticity used segmentation to investigate grey matter (GM) differences on 

structural MRI, with increased GM volume reported in musicians compared with non-musicians e.g., 

in primary motor cortex, premotor cortex [4], Heschl’s gyrus [5] and cerebellum [6]. For reviews  

see Tervaniemi (2009) [7], Jäncke (2009) [8], Wan and Schlaug (2010) [9] and Herholz and Zatorre 

(2012) [10]. More recently, an increasing amount of research has focused on white matter (WM) 

differences between musicians and non-musicians; the underlying biological mechanisms involved in 

differences in WM structure may include increases in volume, organisation, degree of myelination and 

functional connectivity of tracts linking together different cortical regions. Much research to date in this 

area has focused particularly on cross-hemispheric connections, i.e., corpus callosum, but other tracts 

of interest have included intra-hemispheric (association) connections such as the arcuate fasciculus 

(AF; temporal/parietal to frontal cortex), superior longitudinal fasciculus (SLF; temporal/parietal to 

frontal cortex), inferior longitudinal fasciculus (ILF; temporal to occipital cortex) and uncinate fasciculus 

(UF; hippocampus and amygdala to frontal cortex), and fibres related to motor function such as the 

corticospinal tracts (CST) and cerebellar peduncles. The varying results found by the studies published 

to date currently make it difficult to draw clear conclusions about the effects of musical training, not 

least because the analysis methods employed and the type and number of musicians recruited varies 

considerably across studies, often limiting the extent to which results can be directly compared. The 

majority of research into WM architecture in musicians has been published within the last five years 

and has not yet been reviewed in detail. Here, the findings on structural brain plasticity and musical 

training presented to date will be discussed, focusing specifically on measures of WM connectivity 

obtained from Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), and with the aim of 

highlighting any common trends that can be identified. 
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Investigation of White Matter Using Structural MRI 

Structural MRI data were used for the initial investigations into WM differences between musicians 

and non-musicians. Schlaug and colleagues [11] first reported that when divided into seven segments, 

the anterior half (segments 1–4) of the corpus callosum (CC), a dense bundle of WM fibres responsible 

for inter-hemispheric communication and connecting brain areas including the premotor, supplementary 

motor and motor cortices, was significantly larger in professional musicians (n = 30) compared with 

non-musicians (n = 30). Moreover, the anterior half of the CC was significantly larger in a subgroup of 

musicians who commenced their training before the age of seven, compared with both the musicians 

who started training after the age of seven and non-musicians. This finding is often cited as evidence 

for a sensitive period of development for musical training during which the brain has the greatest 

potential to undergo neuroplastic change, and has been supported by additional cross-sectional studies 

comparing early trained (ET) with late trained (LT) musicians [12]. A subsequent longitudinal study 

from Schlaug and colleagues [13,14] found no pre-existing differences in CC size in 5–7 year old 

children about to begin musical training (n = 50) compared with a matched group of children not 

intending to take music lessons (n = 25), and no differences in the first group of children re-scanned 

after an average of 14 months [13]. However, after approximately 29 months of instrumental training, 

an ROI analysis of segments 3–6 of the CC found that segment 3 was significantly larger in the remaining 

high practising children (n = 6), compared with both the low practising children (n = 12), and the 

children who did not receive any instrumental training (n = 13) [14]. Meanwhile, an analysis conducted by 

Hyde and colleagues [15] used Deformation-Based Morphometry (DBM) across the whole brain to 

examine a matched sample of these participants at the earlier scanning time point and found that after 

an average of 15 months of musical training, children in the instrumental group (n = 15) showed a 

greater relative voxel size in the midbody (segments 4 and 5) of the CC, compared with children who 

did not receive instrumental training (n = 16). Although the precise region of the CC found to show 

significant differences was slightly different with each type of analysis and at different time points, the 

findings from this longitudinal study provide evidence of structural WM changes occurring in 

correlation with musical training in children. In addition, collectively these studies indicate that WM 

neuroplasticity in the CC may be related to both age of training onset and amount of practice. 

2. Diffusion Tensor MRI 

Recently, the development of DT-MRI has allowed further exploration of whether musical training 

can induce WM changes in the brain, using measures of WM diffusivity rather than WM volume. Thus 

far, there are relatively few DT-MRI studies specifically investigating WM differences in musicians 

and whilst there is some evidence that musicians exhibit WM differences compared with non-musicians, 

there are also a number of contradictory findings. Firstly DT-MRI techniques, including those aspects 

that are relevant to a review of the literature will be briefly discussed. Next, the reported findings will 

be considered, followed by a more general discussion of the discrepancies, and implications for  

future work. 
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2.1. Overview 

DT-MRI measures the random motion of water molecules in vivo. In free water, diffusion is isotropic, 

that is the movement of water molecules is equal in all directions. Conversely, in the brain’s WM the 

motion of water molecules is restricted by axonal membranes and myelin, so diffusion is not equal in 

all directions, and is therefore anisotropic [16]. This random motion can be represented mathematically 

by the diffusion tensor D [17]. This 3-by-3 symmetric matrix, which is measured in each imaging voxel 

within the brain, can be decomposed into three eigenvalues and three eigenvectors which indicate  

the magnitude and directionality of diffusion in three orthogonal directions [18]. In WM, since water 

molecules diffuse preferentially along the principal fibre direction, the eigenvector corresponding  

to the largest eigenvalue is taken to represent the fibre direction. This information can be used in a 

technique called tractography (see below) to examine connectivity between different brain areas [19]. 

Furthermore, the three eigenvalues can be employed to generate biomarkers of WM structure, the 

commonest of which are the mean diffusivity (MD), which measures the magnitude of water molecule 

diffusion, and fractional anisotropy (FA), which measures its directionality coherence (Figure 1a–d); 

FA takes values from 0, which indicates completely isotropic diffusion, to 1, which indicates completely 

anisotropic diffusion [18]. 

In healthy WM, MD typically varies from approximately 600 to 1200 × 10−6 mm2/s, while FA takes 

values in the range 0.5 to 0.8. However, if WM is compromised, MD will be higher and FA lower 

indicating reduced restriction of water molecule diffusion by cellular structures. These biomarkers are 

quantitative and can be compared across groups and individuals to look at differences in WM structure. 

For more detailed overviews of DT-MRI concepts, see Le Bihan et al., (2001) [20] and Jones (2008) [21]. 

Currently, there are no standard conventions regarding the analysis of DT-MRI data, rather there are 

numerous techniques in existence that can be used either exclusively or in combination with each other 

to measure MD and FA, depending on the population under study and the hypothesis to be tested. The 

subsequent section will describe some of the different approaches to DT-MRI analysis including 

Region of Interest (ROI) analysis, voxel-based methods such as Tract-Based Spatial Statistics  

(TBSS) [22] and quantitative tractography techniques, in conjunction with a description of their 

relative advantages and disadvantages. 

2.2. Region of Interest Analysis 

ROI analysis usually involves an expert observer hand-drawing features, such as focal lesions, on 

structural MRI data and transferring them to co-registered DT-MRI data to measure diffusion 

biomarkers (Figure 1a–c). Although this is most often performed manually, automated methods of ROI 

placement have been suggested to improve objectivity; see Snook et al., (2007) [23] for more details. 

ROIs are used to restrict the areas of the brain in which measurements are made, thereby reducing the 

need for statistical corrections for multiple-comparisons across the whole brain. ROI analysis is also 

useful for measuring the relative size of anatomical features between subjects or groups. Once the 

ROIs are selected MD and FA can be compared in these regions between subjects or time-points.  

A considerable advantage of the ROI technique is that it allows the investigation of differences in 

native space within individual brains, so details are not lost in the registration process to a standard 
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space template, as occurs in voxel-based methods (see below). However, ROI analysis does require a 

strong hypothesis in order to select suitable regions for comparison, along with control regions. ROI 

analysis is also extremely labour intensive as manual placing, visual inspection and editing is required 

for each of the selected regions to ensure the same structure is measured in each person. 

Figure 1. An example of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) 

analysis. The figure displays maps of (a) T2-weighted signal intensity, (b) mean diffusivity 

(MD), (c) fractional anisotropy (FA) and (d) colour-coded principal diffusion direction 

overlaid on FA from a normal volunteer obtained using FMRIB’s Diffusion Toolbox 

(FDT) analysis pipeline [24]. Region of Interest (ROIs) placed in frontal white matter 

(WM) in (a) and transferred to (b) and (c) for measurement of MD and FA are indicated by 

red circles. In (d), the colours indicate water molecule diffusion occurring in the right/left 

(red), anterior/posterior (green) and superior/inferior (blue) directions. Also shown is an 

example of voxel-based analysis of FA data obtained using FSL’s Tract-Based Spatial 

Statistics (TBSS), specifically (e) a WM skeleton overlaid on an Montréal Neurological 

Institute (MNI) standard brain, and (f) voxels on this skeleton which are significantly 

different between two populations under study, represented in orange. 
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2.3. Voxel-Based Analysis 

Voxel-based analysis can be used to investigate WM differences on a voxel-by-voxel basis across the 

brain. TBSS [22], which was specifically designed to analyse DT-MRI data by reducing misregistration 

artefacts between subjects and partial volume averaging of GM and cerebrospinal fluid signal with 

WM [25], is currently the closest to a standard analysis method for DT-MRI. In TBSS, the FA map  

for each participant is registered to a standard space template, a skeleton created indicating the centre 

of each WM tract, and then statistical analysis performed on a voxel-by-voxel basis to test for group 

differences (see Figure 1e,f). Due to the requirement that corrections are performed for multiple 

comparisons across the many hundreds of voxels that constitute the WM skeleton in each subject, 

TBSS is a relatively conservative analysis technique, typically requiring upwards of 20 to 30 subjects 

to provide robust significant differences between groups. Furthermore, the requirement that each subject’s 

FA data is registered to a standard space template may cause loss of small individual differences that 

are present in the native space data. Nevertheless, it is entirely automated and can be used to look at 

whole brain WM differences in a hypothesis-free manner. 

2.4. Tractography Techniques 

Tractography aims to reconstruct major WM tracts in 3D by piecing together voxel-based estimates 

of the underlying continuous fibre orientation field starting from an initial seed point [19] (Figure 2). 

Since tractography output can be highly sensitive to the choice of initial seed point placement, a 

number of different approaches have been suggested to allow the same tract to be identified in 

different subjects across a population (e.g., Conturo et al., 1999 [26]; Clayden et al., 2007 [27]). As 

discussed below, there are two common types of fibre tracking algorithm that can be employed for 

tractography analysis, namely deterministic and probabilistic, which differ in the way they deal with 

multiple fibres within a single voxel. 

2.4.1. Deterministic Tractography 

Deterministic tractography assumes that the eigenvector associated with the largest eigenvalue of D 

is parallel to the fibre direction within each voxel, so that following this principal eigenvector direction 

will allow a single WM tract to be reconstructed in 3D space [19]. Tracts are terminated based on 

anisotropy and curvature thresholds, though at present there are no standard conventions to determine 

these thresholds. Furthermore, although deterministic methods can produce anatomically realistic 

tracts, they generally suffer from the problem that only a single fibre population within each voxel can 

be accurately modelled from D. Since at the resolution of DT-MRI (typically 1.5 to 3 mm in each 

voxel dimension), approximately one third of voxels contain more than one fibre population and these 

fibres often cross or “kiss”, this can be a significant drawback in the accurate representation of the 

underlying brain structure [28]. 

2.4.2. Probabilistic Tractography 

A different approach to generating WM tracts from diffusion MRI data is provided by probabilistic 

algorithms. These methods typically replace a single fibre direction with sampling from a distribution 
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of orientations generated from a less restrictive model of the diffusion signal, e.g., a combination of  

a single perfectly isotropic (ball) and multiple anisotropic (stick) Gaussian compartments [28]. This 

provides an estimate of the uncertainty of connection and the ability to track through regions of low 

diffusion anisotropy or voxels containing several fibre populations with differing orientations. In these 

probabilistic methods, a measure of connectivity from a specified voxel to the initiating seed-point is 

provided by the percentage of pathways launched from the latter that reach the former. For these 

reasons, probabilistic tractography is generally considered to provide a more accurate method for 

determining fibre direction and tract reconstruction than deterministic tractography [29,30]. 

Figure 2. Examples of the visualization of WM tractography data. The figure shows (a) whole 

brain WM overlaid on a high-resolution T1-weighted volume scan produced by  

TrackViz [31], (b) left corticospinal tracts of the same participant (CST) generated using 

FSL’s BedpostX/ProbTrackX algorithm and (c) maximum intensity projection of a 

standard space group map of left CST obtained from 90 participants aged over 65 years 

using TractoR [32,33]. 

2.5. Applications to Musicians 

The analysis techniques outlined above have been used to study a range of WM fibre tracts in 

musicians and non-musicians, such as the CC, sensory tracts such as the corona radiata, motor tracts 
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such as the CST, the internal capsule in the basal ganglia and the AF, connecting temporal and frontal 

areas. To the best of our knowledge, 12 studies to date have investigated WM differences in musicians 

using DT-MRI, with the majority of these published within the last 5 years. As discussed above, 

methodological differences, for example deterministic or probabilistic tractography, should be taken 

into account when comparing the outcomes of these studies. Whilst some trends appear to be emerging 

from the range of findings across studies, there are also a number of inconsistencies and apparently 

conflicting results, which will be discussed next (see Table 1). 

3. Using DT-MRI to Investigate the Effects of Musical Training on White Matter Architecture 

Two of the most common study designs used to assess the effects of musical training are  

cross-sectional and longitudinal. In the former, two matched cohorts (e.g., age, gender and handedness) 

except for the variable of interest, musical training, are compared, whereas the latter compares changes 

within the same group of participants before and after a period of musical training. To the best of our 

knowledge, to date, only cross-sectional designs have been used to investigate the potential effects of 

musical training on WM architecture using DT-MRI. 

3.1. Cross-Sectional Studies 

Schmithorst and Wilke pioneered the use of DT-MRI to investigate WM differences between 

musicians who had continuous musical training during childhood and adolescence (duration ≥ 10 years) 

(n = 5), and non-musicians (n = 6) [34]. The authors used voxel-based analysis and reported that 

musicians displayed significantly greater FA in the genu of the CC, which connects the prefrontal 

cortices, but significantly lower FA in the corona radiata and internal capsule, through which both 

efferent and afferent motor and sensory fibres pass. A more recent study by Steele and colleagues [35] 

used a combination of TBSS and ROI analysis to compare 18 early trained (ET) musicians who 

commenced their training before the age of seven, with 18 late trained (LT) musicians who 

commenced their training after the age of seven, and 17 non-musicians. Results revealed significantly 

greater FA in ET musicians compared with both other groups in the posterior midbody of the CC, 

which connects the sensorimotor regions between hemispheres, and in the anterior portion of the 

isthmus, which joins the body and splenium of the CC. The authors also found that probabilistic 

tractography confirmed the finding of increased FA in the isthmus of ET musicians compared with the 

other two groups. Thus, the findings of Steele and colleagues [35] complement and extend the earlier 

DT-MRI findings by Schmithorst and Wilke [34] and the structural MRI studies by Schlaug and 

colleagues and Hyde et al., [11,13–15], thereby providing support for the hypothesis that musical 

training can induce changes in the CC, possibly during a sensitive period of development. Such 

differences in the corpus callosum may reflect the highly skilled bimanual motor coordination and 

auditory skills that musicians require in order to play their instrument. It should be noted though, that 

the corpus callosum is subdivided differently in different studies (e.g., in half or into seven segments) 

and indeed that the specific regions of the CC reported to be different in musicians compared with  

non-musicians is not consistent between these studies, requiring further clarification in future research. 
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Table 1. Overview of studies and findings. 

Reference No. of Participants Analysis Method Key Findings 

Schmithorst & Wilke  

2002 [34] 

5 Musicians  

6 Non-Musicians  
Voxel-Based  

Significantly greater FA in the genu of the corpus callosum,  

but significantly lower FA in the corona radiata and internal  

capsule in musicians compared with non-musicians  

Bengtsson et al., 2005 [36]
8 Pianists  

8 Non-Pianists 
Voxel-Based  

Significantly greater FA in the right posterior limb of the internal  

capsule in musicians compared with non-musicians.  

FA in several brain regions was positively correlated with mean total 

number of hours practice time in childhood, adolescence and adulthood. 

Han et al., 2009 [37] 
18 Pianists  

18 Non-Musicians 
Voxel-Based 

Significantly greater FA in the right posterior limb of the internal  

capsule in musicians compared with non-musicians.  

No significant correlation between either the age of training onset  

or total number of years training and FA. 

Halwani et al., 2009 [38] 

11 Instrumentalists  

11 Singers  

11 non-musicians  

ROI & Probabilistic Tractography 

Tract volume of the arcuate fasciculus was greatest in singers, then 

instrumentalists and then non-musicians.  

FA in singers was significantly lower at the midpoint of the longitudinal 

portion of the left dorsal arcuate fasciculus compared with instrumentalists 

and non-musicians. 

Imfeld et al., 2009 [39] 

13 Early Trained (ET) musicians 

13 Late Trained (LT) Musicians 

13 Non-Musicians  

Deterministic Tractography,  

ROI & Voxel-Based  

Significantly lower FA values in the CST of musicians compared with 

non-musicians. Significantly higher MD in both the left and right CST  

in ET musicians compared with LT musicians.  

No significant differences between absolute pitch (AP) musicians  

and non-AP musicians.  

No correlation between FA in the bilateral CST and age of training onset.  

MD in the CST was negatively correlated with age of training onset. 

Oechslin et al., 2010 [40] 

13 AP Musicians  

13 Non-AP Musicians  

13 Non-Musicians  

Deterministic Tractography & ROI 

Correlation between AP ability and FA in the superior  

longitudinal fasciculus.  

AP demonstrated a greater-left-than-right asymmetry of FA  

in the superior longitudinal fasciculus. 
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Table 1. Cont. 

Loui et al., 2011 [41] 
12 AP Musicians  

12 non-AP Musicians 
Deterministic Tractography & ROI 

Higher volume and fibre number in tracts connecting the posterior superior temporal 

gyrus to the middle temporal gyrus in AP compared with non-AP musicians.  

Correlations between performance accuracy on a pitch-naming test, designed to test 

perfect pitch skills, and fibre volume connecting the left superior temporal gyrus and 

left middle temporal gyrus. 

Abdul-Kareem et al.,  

2011 [42] 

10 Musicians  

10 Non-Musicians  
ROI & Deterministic Tractography 

Significantly greater right middle cerebellar peduncle volume, right superior 

cerebellar peduncle volume and number of streamlines in right superior  

cerebellar peduncles in musicians compared with non-musicians.  

No correlation between age of training onset and WM volume differences  

or number of streamlines. 

Dohn et al., 2013 [43] 
17 AP Musicians  

18 Non-AP Musicians 
TBSS 

Significantly greater FA in a single WM cluster within the path of the inferior  

fronto-occipital fasciculus, uncinate fasciculus and the inferior longitudinal 

fasciculus in AP compared with non-AP musicians.  

AP ability associated with a rightward FA asymmetry. 

Steele et al., 2013 [35] 

18 ET Musicians  

18 LT Musicians  

17 Non-Musicians 

TBSS, ROI & Probabilistic 

Tractography 

Significantly greater FA in the posterior midbody of the corpus callosum,  

and in the anterior portion of the isthmus in ET musicians compared with  

both LT musicians and non-musicians.  

Age of training onset correlated with FA in the posterior midbody  

of the corpus callosum. 

Rüber et al., 2013 [44] 

10 Keyboard Players  

10 String Players 

(Violin and Cello)  

10 Non-musicians 

Probabilistic Tractography  

Voxel-wise analysis within  

the tracts 

Significantly greater FA in PT in right hemisphere of string players and keyboard 

players compared with non-musicians. Significantly greater FA in the PT in the  

left hemisphere of pianists. FA values in left and right PT and aMF significantly 

correlated with maximal tapping speed of the contralateral index finger. 

Engel et al., 2014 [45] 18 Non-Musicians TBSS 
FA values in the bilateral CST and right superior longitudinal fasciculus were 

correlated with learning speeds of piano melodies with the right hand.  

MD = Mean Diffusivity; FA = Fractional Anisotropy; ROI = Region of Interest; TBSS = Tract-based spatial statistics; ET = Early Trained; LT = Late Trained; CST = Corticospinal Tract; 

PT= Pyramidal Tracts; aMF=Alternate Motor Fibres; AP = Absolute Pitch. 
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The finding of lower FA in internal capsule as reported in the initial study by Schmithorst and 

Wilke is challenged by two later studies, the first by Bengtsson and colleagues [36] and the second by 

Han and colleagues [37], both of which also used voxel-based analysis techniques. Bengtsson and 

colleagues reported significantly greater FA in the right posterior limb of the internal capsule in 

pianists (n = 8) compared with non-musicians (n = 8) [36], a finding that was later replicated by Han 

and colleagues using a larger sample size of pianists (n = 18) and non-musicians (n = 21) [37]. 

However, a study by Imfeld and colleagues [39] comparing musicians (n = 26) with non-musicians  

(n = 13), which used deterministic tractography, ROI analysis and voxel-based analysis, reported 

significantly lower FA values in the CST, which pass through the posterior limb of the internal capsule, 

carrying impulses mainly from the motor cortex to the contralateral side of the body. Furthermore, 

Imfeld and colleagues [39] reported that the ET musicians (n = 13) had a significantly higher MD in 

both the left and right CST compared with the LT musicians (n = 13). Low FA and high MD values 

are both generally associated with ageing or diseased WM, so interpretation of this finding in 

musicians is difficult, although the possibility of motor skills becoming highly automated has been 

offered as one possible explanation [34]. These conflicting reports of increased or decreased FA within 

the internal capsule of musicians, may be driven by differing analysis techniques and/or different types 

and numbers of musicians recruited, but at the moment there is a not a clear pattern emerging from 

which to draw strong conclusions. 

The important question of whether specialist abilities are likely to be linked with increased or 

decreased FA is specifically addressed by four studies that have investigated WM architecture in a  

sub-group of musicians who possess perfect or absolute pitch (AP), that is, the ability to identify 

accurately the correct name of any pitch without a given reference point. In one study, deterministic 

tractography and ROI analysis have revealed correlations between error rates on an absolute pitch 

performance test and FA in three clusters in the left superior longitudinal fasciculus (i.e., high 

performance on the AP-test was associated with low mean FA values), which connects the frontal, 

parietal, temporal and occipital lobes [40]. Meanwhile, Loui et al., [41] used deterministic 

tractography and ROI analysis and demonstrated positive correlations between performance accuracy 

on a pitch-naming test, designed to test perfect pitch skills, and fibre volume connecting the left 

superior and left middle temporal gyrus [41]. Additionally, it has been suggested that AP may be 

associated with a higher FA in the left compared with the right SLF, i.e., a greater-left-than-right 

asymmetry [40], yet this finding is disputed by a later study which used TBSS and reported a 

rightward asymmetry [43]. As the authors of the latter study state, TBSS is a relatively conservative 

technique, which may account for the differences reported in earlier studies not being replicated  

here [43]. However, TBSS analysis did indicate that AP musicians had significantly higher FA in a 

single WM cluster within the path of the inferior fronto-occipital fasciculus, UF and the ILF compared 

with non-AP musicians [43]. Contrastingly, Imfeld and colleagues [39] reported no significant 

differences between AP musicians (n = 13) and non-AP musicians (n = 13), so subsequently collapsed 

the two groups into a single group of musicians for additional analysis. Collectively, these studies of 

AP musicians provide some evidence that specialised skills may be associated with increased FA in 

association fibres, although, like the reports of increased and decreased FA in musicians in the internal 

capsule, the findings are mixed. It may of course be possible that different brain regions respond 

differently to musical training, or indeed that different kinds of musical training may have different 
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plasticity effects. In addition the aetiology of perfect pitch, i.e., whether it is genetically determined or 

due to early exposure to music, is highly debated [41], so it is not easy to infer whether any WM 

differences observed between AP and non-AP musicians are necessarily due to musical training or due 

to prior, innate differences in brain structure. 

WM plasticity has been further examined by investigating structural differences between different 

types of musicians, which is interpreted as lending stronger support to the idea of training-related 

rather than innate differences. For example, Halwani et al., [38] compared singers (n = 11), 

instrumentalists (n = 11) and non-musicians (n = 11) using hand-drawn ROI and probabilistic 

tractography and found that the tract volume of the left AF was significantly greatest in singers, 

compared with both instrumentalists and non-musicians. Interestingly though, ROI analysis along the 

AF revealed that FA in singers was significantly lower at the midpoint of the longitudinal portion of 

the left dorsal AF compared with instrumentalists and non-musicians, interpreted as possibly reflecting 

an increase in microstructural complexity. More recent evidence of inter-musician differences is 

provided by a study by Rüber and colleagues [44], which used probabilistic tractography and  

voxel-wise analysis within the tracts, to investigate between-group WM motor tract differences in 

keyboard players (n = 10), string players (n = 10), and non-musicians (n = 10). The right hemisphere 

of both string players and keyboard players was reported to show significantly greater FA in the 

pyramidal tracts (PT) and alternate motor fibres (aMF), compared with non-musicians, whereas in the 

left hemisphere only pianists displayed significantly greater FA values in these regions, interpreted as 

reflecting the different fine motor skill demands for pianists (bilateral) and string players (left hand). In 

addition, FA values in both the left and right PT and aMF were significantly correlated with maximal 

tapping speed of the contralateral index finger, indicating that FA differences in these tracts might 

occur in correlation with musical skill acquisition. The studies described above provide some evidence 

that different types of musical training, e.g., string, keyboard or vocal, may induce different WM 

plasticity, due to the specific skills developed. In addition, it appears that musical training may 

influence WM tracts related to motor functions. However, pre-existing differences resulting in a 

predisposition for fast tapping speeds and/or a preferred kind of musical instrument cannot be excluded. 

Another key question with regard to whether differences observed between musicians and  

non-musicians are genetically determined or training-induced, is whether or not neuroplastic changes 

occur in correlation with the amount of musical practice and/or the age of onset of musical training. 

Gaser and Schlaug [4] found correlations between practice intensity associated with musicianship 

status (professional, amateur or non-musician) and GM volume in primary motor cortex, premotor 

cortex and cerebellum. However, evidence of a correlation between WM architecture and practice 

intensity appears to be mixed. In their study involving 18 pianists, Han and colleagues [37] found no 

significant within-group correlations between either the total number of years training or the age of 

training onset and FA in any brain regions. Similarly, Imfeld et al., [39] found no correlation between 

FA in bilateral CST and age of training onset in their study of 26 professional musicians comprised of 

13 AP musicians and 13 non-AP musicians. However, the authors did report that MD in the CST was 

negatively correlated with age of training onset, and that this effect was due to a subgroup of ET 

musicians [39]. A study conducted by Abdul-Kareem and colleagues found increased right middle and 

superior cerebellar peduncle WM volume and increased number of fibres in the right superior cerebellar 

peduncle in professional musicians (n = 10) compared with non-musicians (n = 10), but no significant 
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correlation between age of training onset or duration of musical training and either WM volume or 

number of fibres in the middle and superior cerebellar peduncles [42]. In contrast to the above, Steele 

and colleagues [35] reported a significant correlation between FA in the posterior midbody of the CC 

and age of training onset. Furthermore Bengtsson et al., [36] reported positive correlations between 

hours of practice time and FA in different brain regions for different age periods, suggesting that FA 

changes due to musical training may be related to WM tract maturation trajectories. This somewhat 

conflicting evidence as to whether or not FA is correlated with practice duration or age of training 

onset means it is not possible at this time to draw firm conclusions regarding specific brain regions. It 

may be possible that FA is only correlated with age of training onset if training commences during a 

sensitive learning period, possibly before the age of seven, reflecting a non-linear correlation between 

FA and age of training onset. Alternatively, differences in WM tracts have been observed between 

different types of musicians [32,44], so it is possible the mixed evidence may be due to inter-musician 

differences. Differences in the total number of years of training and performance level attained may 

also affect results, as well as differences in analysis techniques, ROIs and statistical power. Thus, 

further longitudinal studies similar to the structural MRI study by Schlaug and colleagues [13–15] are 

still needed in order to determine whether WM changes occur in correlation with musical skill 

acquisition and whether pre-existing WM differences can predict musical skills. 

3.2. Experimental Musical Training Paradigms 

The authors of the majority of the cross-sectional studies outlined above conclude that WM 

differences observed between musicians and non-musicians are induced by musical training, yet  

pre-existing differences in WM cannot be excluded while evidence as to whether these differences are 

correlated with training duration or age of training onset is mixed. Although no longitudinal studies 

have to date been performed with DT-MRI to investigate differences in WM architecture pre and  

post-musical training, Engel and colleagues investigated the speed at which non-musicians (n = 18) 

learnt to play short piano melodies in two different training conditions: either a visuo-motor condition 

in which the participants received no auditory information or an auditory-motor condition where the 

participants’ view of their hands was obstructed [45]. DT-MRI scans were acquired after 3 days of 

training, totalling approximately 2–5 h, in one of the two training conditions. Data were analysed using 

TBSS and FA values in bilateral CST and right SLF were reported to be correlated with the learning 

speeds of piano melodies with the right hand in the audio-motor condition, i.e., higher FA values were 

correlated with faster learning speeds. No significant differences in FA value were reported between 

participants who completed the two different training conditions, although if the effect size were small 

it potentially would not have been registered by TBSS. The most straightforward interpretation of this 

result is that pre-existing WM differences reflect a predisposition for learning musical skills, thus 

somewhat undermining the hypothesis that structural differences found between musicians and  

non-musicians occur predominantly as a result of musical training. 

3.3. DT-MRI and Motor Skills 

When considering the variety of DT-MRI findings regarding the effects of musical training, and 

resulting issues, it is perhaps useful to view these in the context of other DT-MRI studies on the effects 
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of motor skill acquisition. In recent years, a growing number of studies have used DT-MRI to assess 

training-related brain change after cognitive interventions [46,47] or motor skill learning (for reviews 

and critical commentary see Thomas and Baker [48] or Chang [49]). Here, somewhat inconsistent 

findings in cross-sectional studies of long-term motor training are also reported, for example the lower 

FA values found bilaterally under the premotor cortex of female ballet dancers [50], but increased FA 

in the CST of gymnasts [51]. Longitudinal designs examining more short-term training have shown 

increased FA in the WM tracts underlying the intraparietal sulcus after practising juggling five days  

a week for six weeks [52], and increased FA in the internal capsule, corona radiata and CC after  

9 sessions of complex bilateral visuomotor training [53], but performance-related decrease in 

prefrontal FA after six weeks of weekly balance board training [54]. The latter finding was interpreted 

by the authors to be due to learning-related increase in cell density or axonal/dendritic arborisation 

hindering water diffusion, which could perhaps be related to an early stage of learning. Stage of 

learning does seem likely to have an impact in such research, for example, reduced MD in 

hippocampus and parahippocampus have been reported after training periods as short as two hours on 

a car-racing computer game [55]. Of course, ballet, gymnastics, juggling and balance board training 

are all highly bilateral motor activities engaging a broad range of musculature as well as visual 

processing, and thus it is difficult in such studies to specify a highly precise skill-related movement 

and related neural ROI for investigation and hypothesis. A more precise motor task that has been used 

to investigate multimodal processing is visuomotor tracking with a joystick [56], which after seven 

consecutive days training was shown to increase FA in the area underneath the primary motor cortex 

of the hand used to practise, thus lending support to the finding previously reported in gymnasts [51]. 

Similarly, a relatively simple 4-week training paradigm aimed at increasing unilateral leg strength was 

found to lead to a decrease in MD in the contralateral CST (although this was the only tract under 

investigation) [57]. Collectively then, the motor training studies in this field further underscore the 

complexity of DT-MRI research findings and their interpretation, underlying the need for future 

studies in this area. Furthermore, as most studies of motor training have not included questions about a 

critical developmental window, this currently remains an open question in the field, and perhaps one 

where musical training studies might make a particular contribution. 

4. Discussion 

Whilst the majority of published studies suggest that there is evidence that WM plasticity can be 

induced by musical training, the nature and extent of such plasticity remains under discussion, and 

there is also some evidence that pre-existing WM differences may be predictors of musical learning 

ability. It thus appears likely that the frequently reported structural brain differences observed between 

adult musicians and non-musicians are a consequence of both genetic and environmental factors, still 

to be precisely determined. 

In addition, it should be acknowledged that many of the papers reviewed here lacked the descriptive 

methodological clarity required for replication, for example with regard to the precise data analysis 

technique employed, or with regard to participant information such as instrument played and age of 

commencing training. Furthermore, a number of non-significant findings, or findings that did not 

survive correction for multiple comparisons, are presented alongside statistically significant findings. 
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As noted in Baker and Thomas [48], unclear reporting and statistical issues also appear in the majority 

of papers on longitudinal studies of brain change related to motor learning, and as such this problem is 

not specific to music studies, but a broader issue in research focusing on brain plasticity and  

skill acquisition. 

Nevertheless, to date, differences in the CC have been regularly reported in musicians compared 

with non-musicians in studies using DT-MRI [34,35] and studies employing image segmentation of 

structural T1-weighted scans [11,13–15]. Several studies investigating CC structures report differences 

in regions where the fibres primarily connect motor related brain regions [11,13,14], which likely 

reflects the bimanual coordination and related inter-hemispheric connections required for playing most 

musical instruments. In addition, differences in WM architecture are regularly reported between ET 

musicians, who commenced their training before the age of seven and LT musicians, who commenced 

their training after the age of seven [11,35–37,39]. Han and colleagues [37] noted that the statistical 

power of their findings was lower than that of Bengtsson et al., [36] despite having a much larger 

group of participants, which they suggested may be due to their participants commencing their training 

at a mean age of 12.2 years, compared with the participants in the earlier study who began their 

training at a mean age of 5.8 years. Also, as mentioned above, Steele et al., [35] reported significantly 

higher FA values in the posterior midbody of the corpus callosum in ET musicians compared with LT 

musicians, despite the participants having completed on average the same number of years training. 

Critical learning periods for musical training have been further investigated in terms of behavioural 

performance, including rhythm synchronisation [58,59] and cognitive abilities [60]. It appears that 

even when matched for total number of years’ experience, years of formal training and current number 

of hours practice, ET musicians still perform better than LT musicians on rhythmic synchronisation 

tasks. Watanabe et al. suggest this reflects a sensitive period during which intense motor training can 

result in sustained performance advantages later in life [59]. Furthermore, it has been suggested that 

the relationship between age of training onset and performance on a rhythm synchronisation task is  

non-linear and that a critical motor learning period could extend up until around the age of nine 

reflecting underlying GM and WM maturation trajectories [58]. In addition, a recent paper by Bailey 

and colleagues [61] reported increased GM in the right ventral premotor cortex of ET musicians 

compared with LT musicians and non-musicians. Moreover GM in this region was correlated with 

performance on a rhythmic synchronisation task [61]. These studies appear highly consistent with the 

findings of Schlaug and colleagues [11,13,14] and the above-mentioned DT-MRI studies [31–33] 

providing support for idea of a critical period, during which the brain has the most potential to undergo 

neuroplastic changes. However, this critical learning period seems to be somewhat flexible in terms of 

specific age cut-off, and WM structural plasticity is of course not restricted to this period. No studies to 

date have specifically investigated musical training-induced structural plasticity in the healthy adult 

brain, but evidence from longitudinal studies of motor learning e.g., juggling, suggests that WM 

plasticity is possible in adulthood [52]. Furthermore, it was reported that FA values in the WM tracts 

underlying right posterior interparietal sulcus remained elevated 4-weeks after the juggling training 

ceased, perhaps suggesting that the FA change was sustained after training had ceased [52], while this 

was not found to be the case for GM changes [48,62]. 

Reports of FA differences in the internal capsule between musicians and non-musicians are 

conflicting, with reports of both increased [36,37] and decreased FA in musicians compared with  
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non-musicians [34]. Support for the latter finding is provided by the report of lower FA values in the 

CSTs as they pass through the posterior limb of the internal capsule in musicians compared with  

non-musicians [39], although it should be noted that the CSTs are not the only WM tracts to pass 

through the posterior limb of the internal capsule. FA increases reported in the internal capsule may be 

due to FA increases in the corticobulbar tracts for example, since Rüber and colleagues reported 

increased FA in PT, which is comprised of both the CST and corticobulbar tracts [44]. Evidence from 

AP musicians lends some support to the idea that that specialised skills are associated with increased 

FA values. Since instrumentalists are required to have highly developed fine motor skills, it might be 

expected that connectivity should be increased and FA in motor tracts such as the CST would be 

greater in musicians compared with non-musicians. Indeed, increased FA in the CST of gymnasts [51], 

another population group required to have fine motor control, provides supporting evidence that highly 

developed motor skills may be associated with increased FA values in motor tracts, although this 

finding was contradicted in ballet dancers [50]. A recent study by James and colleagues [63] of GM 

density across 59 expert, amateur and non-musicians adds to this discussion, as it provides evidence 

that performance related increases can be observed in brain regions involved in higher order cognitive 

processing, whilst decreases are observed in sensorimotor areas. It seems possible that something 

similar may be observed in terms of FA in WM tracts, such that FA in the CC increases with expertise 

whilst FA in the CST decreases with expertise. However, this explanation does not account for reports 

of both increased and decreased FA within the same brain region, for example the internal capsule. 

Reports of FA differences between musicians and non-musicians in other brain regions including the 

AF and cerebellar peduncles are from single studies, with relatively small numbers of participants 

where the findings have not been replicated to date, so further evidence is required before these 

findings can be accurately interpreted. 

Evidence as to whether age of training onset or practice duration are correlated with FA  

values in different brain structures, including the CC, cerebellar peduncles and CST is also  

inconsistent [35–37,39,44]. Possible reasons for the contrary results can be grouped into two broad 

categories: recruitment of participants and differences arising from the various DT-MRI acquisition 

and analysis techniques, which will now be discussed in turn. 

4.1. Effects of Participant Recruitment 

In general the number of participants included in DT-MRI studies is small, which presents problems 

with statistical power. Some of the DT-MRI analysis techniques, particularly TBSS, are only effective 

with a relatively large sample size (typically 20 or more), so increasing the sample size would provide 

a solution to issues arising from statistical power. Whilst some of the currently available studies have 

used a homogenous sample of musicians, e.g., pianists, other studies have used different types of 

instrumentalists or not specified the types of musician at all, although WM differences between 

instrumentalists and singers have already been reported [38], as have differences between AP and  

non-AP musicians [40,41,43]. The only study to date to have specifically investigated WM differences 

between different types of instrumentalists reported differences in WM architecture between string 

players and keyboard players [44]. In addition, a study of GM reported structural brain differences in 

the hand-motor area occur between string players and keyboard players [3]. Collectively these studies 
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suggest that the choice of musicians recruited (e.g., instrument played and AP ability) should be 

carefully considered in future research. Since there is reasonably consistent evidence of WM 

differences between ET and LT musicians, these groups should also perhaps be treated as distinct 

samples. In addition, the type of musical training (e.g., Suzuki) musicians have undertaken should be 

perhaps taken into consideration as teaching methods vary and often prioritise different skills, such as 

auditory learning versus notation-based learning. 

Evidently, longitudinal studies are going to be essential in order to fully investigate questions about 

pre-existing neural differences, structural changes occurring in correlation with skill acquisition and 

the effects of age of training onset, practice intensity and training duration. Randomised longitudinal 

studies will be especially important, since there are other pre-existing factors (such as socio-economic 

status and academic achievement) that predict whether children will choose to start and continue with 

music training [64]. 

4.2. Effects of Analysis Methods 

Developing our knowledge of WM plasticity relies on effective measurement and analysis techniques. 

DT-MRI offers unique insights into the brain’s connectivity, but variability in acquisition and analysis 

techniques, and lack of standard methodologies, complicates both interpretation and replication of 

results. DT-MRI requires high quality MRI data as free as possible from random subject motion, eddy 

current induced distortions and susceptibility artefacts [65], and is ideally acquired with whole brain 

coverage, isotropic voxels and 30 or more diffusion encoding directions [66]. Such data, which typically 

takes between 10 and 20 min to acquire, permits probabilistic tractography and gives the greatest 

chance of identifying WM differences between populations. More advanced acquisition schemes, such 

as diffusion spectrum MRI [67], which make no assumption about the form of the diffusion signal,  

can also be used in combination with tractography to resolve multiple crossing fibres in the brain [68]. 

However, such methods require substantial amounts of diffusion MRI data to be collected, resulting in 

a much longer scan time, which renders it unfeasible in many situations, although the availability of 

ultra-high field (7+ Tesla) scanners may change this situation in the future [69]. Moreover, as it was 

recently demonstrated that MD as measured by DT-MRI requires a smaller sample size than some of 

the more elaborate diffusion metrics to detect group effects, it may be preferable over other metrics 

that account for more inter-subject variability, but need much larger sample sizes [70]. 

A further degree of detail can be provided by combining structural and diffusion MRI to investigate 

whole-brain structural connectivity [71]. In “connectomics”, the aim is to generate a complete map of 

neural connections by describing the brain as a large structural network made up of neural connections 

(WM tracts) and neural units (GM regions). Cortico-cortical connections can be identified by measuring 

the number of WM tracts generated by tractography between all pairs of cortical regions produced by 

parcellating the cortex from high-resolution structural MRI scans. Computational network analysis can 

then generate metrics such as node degree, node strength, sparsity, network efficiency and centrality 

which may potentially serve as useful biomarkers for studying structural connectivity in normal 

development and neurological disorders [29]. As yet, however, no study has applied this technique to 

examine the effects of music training on brain connectivity, although Jancke et al., [72] have used the 

associated technique of “local connectedness” derived completely from structural MRI to show that 
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AP musicians (n = 13) have increased local connectivity in brain regions known to be involved in 

higher-order auditory processing compared with non-AP musicians (n = 16) and non-musicians (n = 12). 

DT-MRI analysis techniques are still under development and there are currently no standard 

conventions as to how this data is best analysed in all situations, although TBSS is probably closest to 

a standard. However, all methods have strengths and drawbacks. ROI analysis is powerful in situations 

where placement is obvious, such as in focal lesions. Where WM structure appears normal, ROI 

placement can be subjective and prone to error. Voxel-based methods, such as TBSS, are automated 

and therefore more objective. However, as they perform statistical comparisons over many hundreds of 

voxels, they can be overly conservative and require more subjects than ROI methods to find significant 

differences. They also typically warp each subject’s data into a common space, which may reduce  

or remove the very individual differences the study was designed to measure. Tractography has  

the potential to map the 3D structure of WM pathways in vivo, a capability not shared by any other 

technique. Validation studies with animal models show good correspondence between tractography 

results [73], although care should still be taken to interpret the results in light of known anatomy [21]. 

Tractography can also be used to automatically measure MD and FA biomarkers in tracts of interest,  

a potentially more objective approach than provided by ROI analysis. However, seed points should  

be placed with care to ensure the same structure is identified in each subject to allow meaningful 

comparisons [26]. Choice of tracking algorithm is also important with probabilistic approaches generally 

preferred to deterministic, due to their ability to resolve regions of crossing fibres. With this in mind, 

studies of musicians that have used probabilistic tractography [35,38,44] could, arguably, be given 

more weight than those that have used deterministic tractography [39–42] (although of course other 

design factors should also be considered important). These different analysis techniques, which potentially 

lead to inconsistent findings between studies, are important considerations when designing future 

experiments. Additionally, given the impact of these methodological choices, it is crucial to attain  

a reporting standard that always includes these analysis details. 

5. Conclusions 

The growing empirical evidence suggests that there are differences in WM architecture between 

musicians and non-musicians, and that pre-existing conditions as well as training-related effects can 

lead to WM differences, but the paucity in longitudinal studies and variation in methods currently 

preclude strong conclusions. The only DT-MRI study to date that investigated WM differences 

induced by musical training suggested that learning speeds showed the strongest correlation with 

differences in WM architecture [45]. However, the training duration in this study was only three days, 

so a longer intervention period, such as the 29 months received by the children who participated in the 

study by Schlaug and colleagues [13,14], may be required for any changes to occur. Nevertheless, 

shorter training periods have been reported to lead to plastic changes in non-musical motor learning 

and the length of training needed to have an effect on the brain change may also be dependent on age. 

Large-scale longitudinal studies are the only way to investigate whether pre-existing differences in 

WM are reflected in musical abilities, whether WM differences occur in correlation with musical skill 

acquisition and to investigate the duration and intensity of training required for any WM 

neuroplasticity to occur. 
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Diffusion methods have a unique ability to provide potential insights into WM connectivity in vivo 

that can be used to investigate structural changes in response to musical training in both cross-sectional 

and longitudinal studies. However, this potential is tempered by the lack of standard approaches to 

image acquisition and processing, which makes comparison of results from different studies 

challenging. At present, voxel-based analysis, such as TBSS, of high resolution, low artefact DT-MRI 

data from studies with large sample sizes is closest to this ideal, although quantitative tractography 

based on probabilistic tracking is also a candidate. To make further progress towards understanding 

how musical training affects WM structure, future studies should be well powered, employ longitudinal 

designs controlling for demographical variables that may also impact on WM development and use 

standard quantitative analysis procedures to ensure greater reliability and reproducibility of results. 
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