View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Edinburgh Research Explorer

Using Failure to Guide Inductive Proof *

Andrew Ireland Alan Bundy
Email: air@aisb.ed.ac.uk Email: bundy@aisb.ed.ac.uk
Tel: +44-31-650-2721 Tel: +44-31-650-2716

Fax: 4+44-31-650-6516

Department of Artificial Intelligence,
University of Edinburgh,
80 South Bridge,
Edinburgh, EH1 1HN, Scotland.

Abstract

Lemma discovery and generalization are two of the major hurdles in
automating inductive proof. This paper addresses aspects of these related
problems. We build upon rippling, a heuristic which plays a pivotal role
in guiding inductive proof. Rippling provides a high-level explanation of
how to control the search for a proof. We demonstrate how this high-level
explanation can be exploited productively when a proof attempt fails. In
particular we show how failure can be used to focus the search for lemmas
and generalizations.

1 Introduction

Inductive proof is central to the formal verification and synthesis of computer
programs. Two of the major hurdles in automating inductive proof are the prob-
lems of lemma discovery and generalization. By way of motivation, consider the
following conjecture:

Vo:list(oby). Vw:obj. rev(rev(v) <> w nil)=w v (1)

*The research reported in this paper was supported by SERC grant GR/H/23610.

https://core.ac.uk/display/28977832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Failure to Guide Inductive Proof 2

where :: and <> are the infix list construction and concatenation operators re-
spectively. The function rev denotes list reversal. A proof of (1) may be con-
structed by simple induction over the list v generating a base and step case proof
obligation. The base case is established by exhaustive rewriting using the base
equations for rev and <>. In the step case, we have an induction hypothesis of
the form:

YVw:obj. rev(rev(v) <>w =nil)=w:wv
from which we have to establish the induction conclusion of the form:
rev(rev(u:v) <>wuni)=w:unv

Using the step equation for rev!:

rev(U V) = reo(V) <> (U = mil)
the LHS of the induction conclusion rewrites to give:
rev((rev(v) <>wuunil) <>wuni)=w:uo (2)

It we only have the definitions of <> and rev then the partial term structures
“ooo<>wunnel” and “u iz ...” embedded within the induction conclusion prevent
any further rewriting. These partial term structures also prevent us from making
use of the induction hypothesis. One strategy to overcome this problem is to
attempt to move these partial term structures towards a term which corresponds
to a universally quantified variable in the induction hypothesis. In this example
w is such a candidate term. This strategy requires, however, both the synthesis of
an additional lemma and a generalization of the goal: Firstly, in order to rewrite
the partial term structures we require the following lemma:

A<>(B:=C) = (A<>Bunil)y<>C

Secondly, the goal must be modified so that the universally quantified variable w
in the induction hypothesis is of type list(obj). One appropriate generalization is:

Vo, w:list(oby). rev(rev(v) <> w) = rev(w) <> v (3)

This paper addresses aspects of the related problems of lemma discovery and
generalization. We will return to the example above in §7. Our approach builds
upon rippling, a heuristic which plays a pivotal role in guiding inductive proof.
Rippling provides a high-level explanation of how to control the search for a proof.
We demonstrate how this high-level explanation can be exploited productively
when a proof attempt fails.

'We use upper case letters to denote variables while constants are denoted by lower case
letters.

Using Failure to Guide Inductive Proof 3

2 Proof plans

It has been shown how the high-level structure of proofs can be expressed in
terms of proof plans [Bun88]. Proof plans are used to guide the search for proofs
by exploiting this high-level structure. A proof plan has two complementary com-
ponents: a proof method and a proof tactic. By prescribing the structure of a proof
at the level of primitive inferences, a tactic [GMWT79] provides the guarantee part
of the proof. In contrast a method provides a more declarative explanation of
the proof by means of preconditions. Each method has associated effects. The
execution of the effects simulates the application of the corresponding tactic. The
effects are necessary to allow methods to be composed. In [Ire92] an extension to
the proof planning framework is proposed in which proof eritics are introduced
in order to complement proof methods. The role of the proof critic is to capture
patchable exceptions to the proof method. Since a proof method may fail in vari-
ous ways, each method may be associated with a number of critics. Like methods,
critics have preconditions and effects. The preconditions of a critic characterise
interesting failures while the effects prescribe how failure can be overcome.

3 Heuristic guidance for inductive proof

In the context of inductive proof rippling [BvHSI90, BSvH*91] is concerned with
step case proof obligations. Rippling controls the rewriting of induction conclu-
sions so that induction hypotheses can be exploited. The process of using induction
hypotheses has become known as fertilization [BMT79]. To illustrate rippling and
fertilization consider the following conjecture:

Vo, w:list(oby). rev(v) <> w = grev(v,w) (4)

where grev is the tail recursive version of rev. A proof of (4) follows by u :: v
induction. We concentrate here on the step case proof obligation which gives us
an induction hypothesis of the form

Vw:list(oby). rev(v) <> w = grev(v,w)
from which we have to establish the induction conclusion
rev(u :v) <> w = qrev(u: v,w)

Rippling is based upon the observation that a copy of the induction hypothesis is
embedded within the induction conclusion. We call this the skeleton term struc-
ture. The role of the ripple method is to reduce the mismatch between the con-
clusion and hypothesis while preserving the skeleton term structure. Meta-level
annotations are used to control this process:

rev(uzin]) <> [w] = grev(uzu], [w]) (5)

Using Failure to Guide Inductive Proof 4

The annotated terms T and |w| are called wave and sink terms respectively.
A wave-term has a wave-front and one or more wave-holes. Wave-fronts highlight
the mismatch between the induction conclusion and the induction hypothesis.

The wave-front of T is the partial term “u ::...”. A wave-hole is subterm
of the a wave-term which matches against a subterm of the induction hypothesis.

T o o«

The wave-hole of [u : v]' is “©”. The arrow is used to indicate the direction of

movement of the wave-front in the expression tree. The need for directed wave-
fronts will be explained shortly. A sink is used to delimit term structure in the
induction conclusion which corresponds to a universally quantified variable in the

induction hypothesis.

The ripple method restricts the rewriting of an induction conclusion to wave-
rules, a syntactic class of rewrites which are guaranteed to make progress towards
fertilization and preserve the skeleton term structure of the induction conclusion.

Wave-rules also contain wave-fronts. Recursive definitions provide a rich source of
wave-rules?:

t
T <>W = |[U=z(V<>W) (6)
rev(T) = |rev(V) <> U : nilT (7)
qrev(T, W) = qgrev(V, l) (8)

There are two basic kinds of wave-rules, longitudinal (6 and 7) and transverse (8).
A longitudinal wave-rule moves a wave-front into a less nested position within the
term structure while a transverse wave-rule moves a wave-front sideways. These
two kinds of wave-rules reflect the two strategies for achieving fertilization. Given

a schematic induction conclusion of the form G(|c(u) |, |v]) fertilization can be

achieved by longitudinally rippling it into | ¢/(G(u, [v])) T. Such wave-fronts are

said to be beached. Alternatively, transverse wave-rules can be used to direct

. i .
wave-fronts towards sinks G/(u, {c”(g)). Such wave-fronts are said to be sunk.

In general, the sinking of a wave-front may require rippling-in. To achieve this,
longitudinal wave-rules can be used in reverse®:

1
rev(V) <> U = ml| = rev(l) 9)

A wave-rule can eliminate wave-fronts completely. Such wave-fronts are said to
have petered-out. If any of these termination states is reached then the goal is
fully-rippled. The directionality of wave-fronts is used to prevent looping between
these alternative strategies.

2We use = to denote rewrites and — to denote logical implication.
3Note the downward direction of the arrows.

Using Failure to Guide Inductive Proof 5

Wave-rules are not restricted to recursive definitions. Non-definitional properties
also provide wave-rules, e.g.

E=V] < w=v oo (0

The applicability of a wave-rule is determined by matching its LHS with a sub-
expression of the goal. Note that this matching involves both the object-level term
structure as well as the meta-level annotations.

Wave-rules are used to motivate the choice of induction. In the case of (4), wave-
rules (7) and (8) provide the motivation for a v :: v induction.

Now consider the rewriting of (5). Using longitudinal wave-rule (7) we get:

rev(v) <> u :nel ! <> |w| = qrev(T, lw])

An additional precondition to applying transverse wave-rules is that there is a sink
at or below the position where the wave-front is being rewritten. This is true for
the current goal and transverse wave-rule (8):

rev(v) <> u :nil ' <> |w]| = grev(v, lJ) (11)

Finally, making use of the transverse wave-rule (10) we get:

rev(v) <> Uu el <> QH = grev(v, lJ)

Note the need to symbolically evaluate the wave-front on the LHS using the defin-
ition of <>. We call this evaluation process wave-front reduction:

rev(v) <> [] | = grev(, [wa])

Wave-front reductions are always guaranteed to preserve the skeleton term struc-
ture. The goal is now fully-rippled so fertilization with the induction hypothesis
is possible.

4 Lemma discovery through calculation

We are interested here in seeing how well rippling works when restricted to wave-
rules derived from definitions. By eliminating (10), the rewriting presented in §3

breaks down at (11). The wave-front on the LHS of (11) is said to be blocked. We

call the term

Jrev(v) <> wu el ! <> |w] ...

Using Failure to Guide Inductive Proof 6

the blockage term. Note however that the wave-front on the RHS of (11) has been
sunk. Using the sink term to instantiate the induction hypothesis we can rewrite
the RHS of the induction conclusion as follows:

(rev(v) <>wu:nil) <>w=rev(v)<>u:w
This goal generalizes to:
(z<>utml)<>w=z<>uzw

A simple inductive proof establishes this lemma. Note that this lemma gives rise to
a specialization of (10), the non-definitional wave-rule we eliminated. This strategy
of partially exploiting the induction hypothesis is embodied within NQTHM [BM79]
where it is called cross-fertilization. An extension to this technique, called weak
fertilization, is described in [BSvHT91].

A practical limitation of both these strategies is that they discover lemmas in-line.
As a consequence the same lemma may be re-discovered many times during the
course of a proof. The proof critic idea proposed in [Ire92] provides a framework for
overcoming this limitation. We introduce a critic which recognizes the opportunity
to exploit the induction hypothesis when rippling gets blocked. We call this process
lemma calculation:

Definition 1 (Preconditions for lemma calculation) The preconditions for
lemma discovery through the partial use of the induction hypothesis are as follows:

1. The principal connective in the goal is equality or implication;

2. One side of the induction conclusion is blocked while the other is fully-rippled
with respect to the principal connective.

The effects of this lemma calculation critic is to initiate a subplanning task for the
conjectured lemma.

Critics provide a framework for developing more powerful strategies for patching
failed proofs. In §5 we present critics for rippling which build upon lemma calcula-
tion and incorporate a form of generalization based upon the failure of rippling-in.

5 Lemma discovery through speculation

We now consider the situation where rippling becomes blocked and where there is
no immediate way of exploiting the induction hypothesis. For example, consider
the conjecture:

Vo, w:list(oby). rev(rev(v <> w)) = rev(rev(v)) <> rev(rev(w)) (12)

Using Failure to Guide Inductive Proof 7

In proving (12), wave-rules (6) and (7) motivate a u :: v induction giving rise to a
blocked induction conclusion of the form:

il
rev(|rev(v <>w) <>wu:nil|)=

rev(|rev(v) <> u :: nil T) <> rev(rev(w)) (13)

Lemma calculation is not applicable. We have a choice, either we can search for
an additional wave-rule or attempt a nested induction. For a nested induction to
unblock a wave-front then there must exist a wave-rule such that the blocked wave-
front matches with a prefix of the wave-front in the wave-rule. This observation
forms the basis for the preconditions of our second lemma discovery critic*:

Definition 2 (Preconditions for lemma speculation) The preconditions for
recognizing the need for a lemma instead of a nested induction are as follows:

1. There exists at least one most nested blockage term in the goal of the form®:

LFlc].v)...

where C' is not a meta-variable;

2. For all such blockage terms there exist no wave-rules of form:

r{cconl .l = ...

where C" and C" may be composite constructors, and either is possibly empty.

The targeting of most nested blockage terms seems well motivated since the un-
blocking of such terms may in turn unblock a less nested one. In (13) there is no
most nested blockage term so either will do. We choose the RHS blockage term:

—.rev(lrev(v) <> u :nil T) .

In order for precondition (2.2) to succeed we must ensure there are no wave-rules
available of the form:

rev(|C'(V) <> W T) = ...

Restricting ourself to the definitions of rev and <> then (2.2) succeeds, con-
sequently a nested induction is ruled out. To illustrate a situation where (2.2)
fails consider the conjecture:

Vi, nat. V1 list(obj). nth(v + j,1) = nth(j, nth(z,1))

4These preconditions generalize to include rippling-in.
>This form generalizes allowing V to denote multiple arguments as well as being empty.

Using Failure to Guide Inductive Proof 8

where nth(n,l) returns a list constructed by removing the first n elements of /.
The definitions of 4+ and nth provide the following wave-rules:

X +v = [sxan)| (14)

nth(5(X)].[V = Z]) = nth(X,2) (15)

Wave-rule (14) motivates a s(¢) induction and gives rise to a blocked induction
conclusion of the form:

nth((sG + 1) |.1) = nth(j,nth(5@)], 1) (16)

For precondition (2.2) to succeed there must be no available wave-rules of the
form:

nth(s(C W)][= ...

This wave-rule schema, however, unifies with the LHS of (15) instantiating C” to
be Ax.x and C” to be Az.Y :: z. Consequently the lemma speculation critic is
not applicable in this case. Indeed, a nested induction on [is precisely what is
required to unblock (16).

5.1 Construction of speculative wave-rules

Where a nested induction is ruled out, we require an additional lemma. The
approach we take is to speculate the form of the wave-rule which the missing lemma
will provide. Such a speculation can be achieved by the use of a higher-order meta-
variable. This technique was pioneered by Hesketh[Hes91] where speculative terms
are used in controlling the generalization of variables apart and the introduction
of sinks. In terms of lemma discovery the meta-level annotations of rippling help
constrain the construction of the wave-rule speculation as follows:

e the minimum blockage term defines the LHS of the wave-rule speculation;

e the directionality of the blocked wave-front and the existence of a sink are
used to suggest the position of the wave-fronts on the RHS;

o the skeleton term structure of the minimum blockage term constrains the
structure of the RHS of the wave-rule speculation;

o generalization of the object-level skeleton term structure is used to simplify
the resulting wave-rule speculation.

Using Failure to Guide Inductive Proof 9

To illustrate, consider again the blocked goal (13). The most nested blockage term
provides the following LHS of the wave-rule speculation:

rev({rev(V) <> U :: nil T) = ...

The directionality of the blocked wave-front and the absence of a sink suggests
the following positioning of the speculative wave-front on the RHS:

=L)]

where F' denotes a higher-order meta-variable; a place-holder for the transformed
wave-front. Using the skeleton term structure of the minimum blockage term we
get:

rev((rev(V) <> U :: nil T) = | F(rev(rev(V)),U, V) i

Finally, generalization completes the construction of the wave-rule speculation:

rev(‘m <>U: nil‘T) = | F(reo(W),U,W) ' (17)

5.2 Guiding the instantiation of speculations

The instantiation of a wave-rule speculation is constrained by rippling and the
validity of the instantiation. We use the available wave-rules to constrain the
instantiation of the application of the speculation. Candidate instantiations are
tested by attempting to verify the lemma which justifies the instantiation of the
wave-rule speculation. This verification process involves eliminating non-theorems.
We are not concerned here with the details of the process of disproving a conjec-
ture. One possible candidate is Protzen’s conjecture disprover [Pro92].

The process of rippling the application of a speculation must take into account
the different ways in which rippling can terminate. Firstly, the possibility of a
speculative wave-front petering-out must be considered. In terms of higher-order
unification [Hue75] the petering-out of a wave-front corresponds to a projection.
Wave-front annotations constrain us to consider projections which preserve the
skeleton term structure. Note that as a consequence this rules out a projection
where the wave-term has multiple wave-holes. Secondly, if a speculative wave-
front is fully-rippled with respect to an equality or an implication then the lemma
calculation critic can be invoked within an application of the speculation critic.
An additional precondition is required, however, which will be discussed in §6.
Thirdly, it a speculative wave-front is fully-rippled then rippling has failed to
instantiate the wave-rule speculation. A proof of the wave-rule must then be
attempted.

Using Failure to Guide Inductive Proof 10

Returning to our example, the application of (17) to RHS of (13) gives us:

.= | F(rev(rev(v)),u, rev(v)) ' <> rev(rev(w))

The application is obviously not fully-rippled. Petering-out gives rise to an non-
theorem so we proceed by attempting to rewrite the goal using one of the available
wave-rules. The only applicable wave-rule is (6) and the associated unification
instantiates F' to be Ax.Ay.Az.y :: . Propagating this instantiation through (17)
gives rise to the following wave-rule:

rev(‘w <>U:: nil‘T) = |U ::rev(W) (18)

This non-definitional wave-rule taken together with (6) enables (13) to be rewritten
to give:

u s rev(rev(v <> w))| =|u: rev(rev(v)) <> rev(rev(w))

Finally, substitution provides a wave-rule of the form

V] =[U=W] >v=w

which completes the rippling of the induction conclusion.

The process of speculative rippling takes into account the need for wave-front
reductions as mentioned in §3.

6 Combining speculation and calculation

As mentioned in §5.2 the lemma calculation critic requires an additional precon-
dition when invoked within an application of the speculation critic. The revised
preconditions are as follows:

Definition 3 (Preconditions for lemma calculation within a speculation)
The preconditions for lemma discovery through the partial use of the induction hy-
pothesis in the context of a speculation are as follows:

1. The principal connective in the goal is equality or implication;

2. One side of the induction conclusion is blocked while the other is fully-rippled
with respect to the principal connective.

3. A fully-rippled speculative wave-front exists of the form:

.{C(Q,V) lJ

Using Failure to Guide Inductive Proof 11

and at least one of the available function definitions s of type Utype —
Vitype — Utype, where U is of type Utype and V is of Vtype, and V is
optional.

The additional precondition® constrains the instantiation of a speculation to the
available function definitions.

The refined preconditions for lemma calculation provide the opportunity for a
generalization critic. The basic idea is that if precondition (3.3) is false then
either a new definition must be discovered or alternatively the conjecture must be
modified in such a way that the available function definitions can be used:

Definition 4 (Precondition for speculative sink generalization) The pre-
condition for speculation sink generalization is as follows:

1. For all speculative wave-fronts which have been sunk:

.{C(Q,V) lJ

there are no available function definitions of type Utype — Viype — Utype,
where U is of type Utype and V is of Vtype, and V is optional.

The effect of this critic is to generalize the sink occurrences based upon the range
types of the available definitions. This will be illustrated in §7.

7 Example revisited

Consider again theorem (1). Using the meta-level annotations of rippling, the
associated blocked induction conclusion (2) takes the form:

rev(|(rev(v) <> u :: nil) ! <> |w] nel) = |w] = T (19)

Both sides of the induction conclusion are blocked so preconditions (2.1) and (2.2)
succeed. Two distinct blockage terms are identified so two wave-rule speculations
are required. The occurrence of sinks motivates the speculation of transverse
wave-rules:

—

(V. <> U ::ml) i <>Wuml = V<>|FW_ 2l UYV) (20)

w0V = [GULov)| v (21)

5This precondition generalizes to deal with beached wave-front speculations as well.

Using Failure to Guide Inductive Proof 12

The application of these speculations is carried out independently. This gives us
tighter constraints and the possibility of using the lemma calculation strategy to
instantiate F and . Using (20) to rewrite the LHS of (19) gives us

rev(rev(v) <> | F(|w] = nil,u,v) l) = ... (22)

while the application of (21) to the RHS of (19) gives us

= { G(w, u,v) lJ v (23)

In the case of (22), instantiating F' to be a projection of its first argument is ruled
out because w :: nil is of type list(obj) while the corresponding variable in the
induction hypothesis is of type 0bj. None of the available wave-rules suggest an
instantiation for F. Turning to (23), rippling is complete, so preconditions (3.1)
and (3.2) of the revised lemma calculation critic succeed. In order for precondition
(3.3) to succeed we require a function ¢ of type obj — obj — list(obj) — obj,
where the second and third arguments of ¢ are optional since they are not part
of the skeleton. Precondition (3.3) fails since the only available functions are <>
and rev:

<> ¢ list(L) — list(-) — list(2)
rev : list(o) — list(.)

The sink generalization critic, however, is applicable and using the range types of
<> and rev to coerce the sink types, the initial goal is generalized to:

Yo, w:list(oby). rev(rev(v) <> M(w)) = N(w) <> v

Note the introduction of additional speculative term structure to reduce the pos-
sibility of over generalization. Propagating this generalization through constraint
(23) gives us:

=GN (L])y us0)] <> 0

Here we can exploit wave-rule (9) to complete the ripple:

...:revqlJ) <>v

This rewrite instantiates GG to be Az Ay Az.x <>y :: nel and N to be Aa.rev(z).
The resulting instantiation of wave-rule speculation (21) takes the form:

e
W<>T = (W <> (U:anil)| <>V
Note that the lemma which underpins this wave-rule also provides the wave-rule

required for the unblocking of the LHS of (19):

X
W <> (U:nil)| <>V = W<>l

Using Failure to Guide Inductive Proof 13

If wave-rule (18) was available then there would have been a choice as to which
side of the blockage to speculatively ripple. Using (18) the following alternative
generalization is suggested:

Vo, w:list(oby). rev(rev(v) <> rev(w)) =w <> v

This example illustrates the close relationship which exists between lemma dis-
covery and generalization.

8 Implementation

The ideas of proof plans are implemented within the cLAM [vISN92] planning
system. An implementation of proof critics, as presented here, is currently under-
way. A-prolog [MN88] is being used to prototype the ideas. The initial work has
focused upon controlling the selection of appropriate higher-order unifiers. Our
strategy is to select the most general unifiers which preserve skeleton term struc-
ture. This strategy is successful for the example theorems and associated lemmas
documented in tables 1 and 2 respectively.

1 Vainat. even(x + x)
2 Vae,ynat. ((x+y) —2) = ((y +) —)
3 | Va,y:list(oby). rev(rev(z <> y)) = rev(rev(a)) <> rev(rev(y))
4 Va,y:list(oby). rotate(length(x),x <>y) =y <>«
5 Va:list(obj). Yy:obj. rev(rev(z) <>y nil) =y x
Table 1: Example theorems
Theorem Lemmas Caloulation Speculation Generalization
1 X +s(X)=s(X+X) X
2 s(X)=Y =sX-Y) X
X+s(Y)=sX+Y) X
3 rev(V <> U nil) =U ::rev(V) X
4 U<>V)<>W=U<>(V<>W) X
W<>UzV=W<>U:zml) <>V X
5 W<>UzV=W<>U:zml) <>V X X

Table 2: Lemma discovery examples

Using Failure to Guide Inductive Proof 14

9 Related work

The rippling proof method is a rational reconstruction and extension of the heur-
istics implemented within NQTHM [BM79]. The proof critics presented here will
enable CLAM to find proofs where the cross-fertilization and generalization heur-
istics of NQTHM breakdown.

Hutter [Hut90] uses first-order schemas to “guess” missing lemmas when the re-
writing of an induction conclusion becomes blocked. Our use of higher-order
meta-variables, although harder to control, is obviously more powerful.

Finally, superposition is often cited as a technique for lemma discovery within
the induction completion community. Indeed the Huet-Hullot [HH82] completion
procedure is able to prove (1). However, the application of superposition to gen-
erating auxiliary lemmas is rare, in general, and heuristics for its application are
not as principled as those of rippling.

10 Conclusion

The potential for making productive use of failed proof attempts is greatly en-
hanced if proof strategies are expressed at a high-level. Proof plans provide such a
framework for expressing proof strategies and we have presented a general method
for exploiting this potential. In particular, we have illustrated how failure can be
used to suggest lemmas and generalizations in the context of inductive proof.

Acknowledgements

We thank David Basin for his encouragement and constructive feedback. Toby
Walsh provided useful comments on a early draft of this paper. Thanks also go to
Jane Hesketh for useful discussions during the early stages of this work.

References

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press,
1979. ACM monograph series.

[BSvH191] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.
Rippling: A heuristic for guiding inductive proofs. Research Paper
567, Dept. of Artificial Intelligence, Edinburgh, 1991. To appear in
Artificial Intelligence.

Using Failure to Guide Inductive Proof 15

[Bun88]

[BvHSI90]

[GMW79]

[Hes91]

[H1182]

[HueT5]

[Hut90]

[[re92]

[MNSS]

[Pro92]

A. Bundy. The use of explicit plans to guide inductive proofs. Re-
search Paper 349, Dept. of Artificial Intelligence, Edinburgh, 1988.
Short version published in the proceedings of CADE-9.

A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to
the rippling-out tactic for guiding inductive proofs. In M.E. Stickel,
editor, 10th International Conference on Automated Deduction, pages
132-146. Springer-Verlag, 1990. Lecture Notes in Artificial Intelli-
gence No. 449. Also available from Edinburgh as DAI Research Paper
459.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. FEdinburgh LCF -
A mechanised logic of computation, volume 78 of Lecture Notes in
Computer Science. Springer Verlag, 1979.

J.T. Hesketh. Using Middle-Out Reasoning to Guide Inductive The-
orem Proving. PhD thesis, University of Edinburgh, 1991.

G. Huet and J. Hullot. Proofs by induction in equational theories with
constructors. Journal of the Assoctation for Computing Machinery,

25(2), 1982.

G. Huet. A unification algorithm for lambda calculus. Theoretical

Computer Science, 1:27-57, 1975.

D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10th
International Conference on Automated Deduction, pages 147-161.
Springer-Verlag, 1990. Lecture Notes in Artificial Intelligence No. 449.

A. TIreland. The Use of Planning Critics in Mechanizing Inductive
Proofs. In A. Voronkov, editor, International Conference on Lo-
gic Programming and Automated Reasoning — LPAR 92, St. Peters-
burg, Lecture Notes in Artificial Intelligence No. 624, pages 178-189.
Springer-Verlag, 1992. Also available from Edinburgh as DAI Research
Paper 592.

D. Miller and G. Nadathur. An overview of AProlog. In R. Bowen,
K. & Kowalski, editor, Proceedings of the Fifth International Logic
Programming Conference/ Fifth Symposium on Logic Programming.
MIT Press, 1988.

M. Protzen. Disproving conjectures. In D. Kapur, editor, 11th Confer-
ence on Automated Deduction, pages 340-354, Saratoga Springs, NY,
USA, June 1992. Published as Springer Lecture Notes in Artificial
Intelligence, No 607.

Using Failure to Guide Inductive Proof 16

[VISN92] F. van Harmelen, A. ITreland, A. Stevens, and S. Negrete. The CLAM
proof planner, user manual and programmer manual (version 1.5).
Technical paper in preparation, DAI, 1992.

