
Using Failure to Guide Inductive Proof �Andrew Ireland Alan BundyEmail: air@aisb.ed.ac.uk Email: bundy@aisb.ed.ac.ukTel: +44-31-650-2721 Tel: +44-31-650-2716Fax: +44-31-650-6516Department of Arti�cial Intelligence,University of Edinburgh,80 South Bridge,Edinburgh, EH1 1HN, Scotland.AbstractLemma discovery and generalization are two of the major hurdles inautomating inductive proof. This paper addresses aspects of these relatedproblems. We build upon rippling, a heuristic which plays a pivotal rolein guiding inductive proof. Rippling provides a high-level explanation ofhow to control the search for a proof. We demonstrate how this high-levelexplanation can be exploited productively when a proof attempt fails. Inparticular we show how failure can be used to focus the search for lemmasand generalizations.1 IntroductionInductive proof is central to the formal veri�cation and synthesis of computerprograms. Two of the major hurdles in automating inductive proof are the prob-lems of lemma discovery and generalization. By way of motivation, consider thefollowing conjecture:8v:list(obj): 8w:obj: rev(rev(v) <> w :: nil) = w :: v (1)�The research reported in this paper was supported by SERC grant GR/H/23610.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Failure to Guide Inductive Proof 2where :: and <> are the in�x list construction and concatenation operators re-spectively. The function rev denotes list reversal. A proof of (1) may be con-structed by simple induction over the list v generating a base and step case proofobligation. The base case is established by exhaustive rewriting using the baseequations for rev and <>. In the step case, we have an induction hypothesis ofthe form: 8w:obj: rev(rev(v) <> w :: nil) = w :: vfrom which we have to establish the induction conclusion of the form:rev(rev(u :: v) <> w :: nil) = w :: u :: vUsing the step equation for rev1:rev(U :: V) = rev(V) <> (U :: nil)the LHS of the induction conclusion rewrites to give:rev((rev(v) <> u :: nil) <> w :: nil) = w :: u :: v (2)If we only have the de�nitions of <> and rev then the partial term structures\: : : <> u :: nil" and \u :: : : :" embedded within the induction conclusion preventany further rewriting. These partial term structures also prevent us from makinguse of the induction hypothesis. One strategy to overcome this problem is toattempt to move these partial term structures towards a term which correspondsto a universally quanti�ed variable in the induction hypothesis. In this examplew is such a candidate term. This strategy requires, however, both the synthesis ofan additional lemma and a generalization of the goal: Firstly, in order to rewritethe partial term structures we require the following lemma:A <> (B :: C) = (A <> B :: nil) <> CSecondly, the goal must be modi�ed so that the universally quanti�ed variable win the induction hypothesis is of type list(obj). One appropriate generalization is:8v;w:list(obj): rev(rev(v) <> w) = rev(w) <> v (3)This paper addresses aspects of the related problems of lemma discovery andgeneralization. We will return to the example above in x7. Our approach buildsupon rippling, a heuristic which plays a pivotal role in guiding inductive proof.Rippling provides a high-level explanation of how to control the search for a proof.We demonstrate how this high-level explanation can be exploited productivelywhen a proof attempt fails.1We use upper case letters to denote variables while constants are denoted by lower caseletters.

Using Failure to Guide Inductive Proof 32 Proof plansIt has been shown how the high-level structure of proofs can be expressed interms of proof plans [Bun88]. Proof plans are used to guide the search for proofsby exploiting this high-level structure. A proof plan has two complementary com-ponents: a proof method and a proof tactic. By prescribing the structure of a proofat the level of primitive inferences, a tactic [GMW79] provides the guarantee partof the proof. In contrast a method provides a more declarative explanation ofthe proof by means of preconditions. Each method has associated e�ects. Theexecution of the e�ects simulates the application of the corresponding tactic. Thee�ects are necessary to allow methods to be composed. In [Ire92] an extension tothe proof planning framework is proposed in which proof critics are introducedin order to complement proof methods. The role of the proof critic is to capturepatchable exceptions to the proof method. Since a proof method may fail in vari-ous ways, each method may be associated with a number of critics. Like methods,critics have preconditions and e�ects. The preconditions of a critic characteriseinteresting failures while the e�ects prescribe how failure can be overcome.3 Heuristic guidance for inductive proofIn the context of inductive proof rippling [BvHSI90, BSvH+91] is concerned withstep case proof obligations. Rippling controls the rewriting of induction conclu-sions so that induction hypotheses can be exploited. The process of using inductionhypotheses has become known as fertilization [BM79]. To illustrate rippling andfertilization consider the following conjecture:8v;w:list(obj): rev(v) <> w = qrev(v;w) (4)where qrev is the tail recursive version of rev. A proof of (4) follows by u :: vinduction. We concentrate here on the step case proof obligation which gives usan induction hypothesis of the form8w:list(obj): rev(v) <> w = qrev(v;w)from which we have to establish the induction conclusionrev(u :: v) <> w = qrev(u :: v;w)Rippling is based upon the observation that a copy of the induction hypothesis isembedded within the induction conclusion. We call this the skeleton term struc-ture. The role of the ripple method is to reduce the mismatch between the con-clusion and hypothesis while preserving the skeleton term structure. Meta-levelannotations are used to control this process:rev(u :: v ") <> bwc = qrev(u :: v "; bwc) (5)

Using Failure to Guide Inductive Proof 4The annotated terms u :: v " and bwc are called wave and sink terms respectively.A wave-term has a wave-front and one or more wave-holes. Wave-fronts highlightthe mismatch between the induction conclusion and the induction hypothesis.The wave-front of u :: v " is the partial term \u :: : : :". A wave-hole is subtermof the a wave-term which matches against a subterm of the induction hypothesis.The wave-hole of u :: v " is \v". The arrow is used to indicate the direction ofmovement of the wave-front in the expression tree. The need for directed wave-fronts will be explained shortly. A sink is used to delimit term structure in theinduction conclusion which corresponds to a universally quanti�ed variable in theinduction hypothesis.The ripple method restricts the rewriting of an induction conclusion to wave-rules, a syntactic class of rewrites which are guaranteed to make progress towardsfertilization and preserve the skeleton term structure of the induction conclusion.Wave-rules also contain wave-fronts. Recursive de�nitions provide a rich source ofwave-rules2: U :: V " <> W) U :: (V <> W) " (6)rev(U :: V ")) rev(V) <> U :: nil " (7)qrev(U :: V ";W)) qrev(V; U ::W #) (8)There are two basic kinds of wave-rules, longitudinal (6 and 7) and transverse (8).A longitudinal wave-rule moves a wave-front into a less nested position within theterm structure while a transverse wave-rule moves a wave-front sideways. Thesetwo kinds of wave-rules reect the two strategies for achieving fertilization. Givena schematic induction conclusion of the form G(c(u) "; bvc) fertilization can beachieved by longitudinally rippling it into c0(G(u; bvc)) ". Such wave-fronts aresaid to be beached. Alternatively, transverse wave-rules can be used to directwave-fronts towards sinks G(u; � c00(v) #�). Such wave-fronts are said to be sunk.In general, the sinking of a wave-front may require rippling-in. To achieve this,longitudinal wave-rules can be used in reverse3:rev(V) <> U :: nil #) rev(U :: V #) (9)A wave-rule can eliminate wave-fronts completely. Such wave-fronts are said tohave petered-out. If any of these termination states is reached then the goal isfully-rippled. The directionality of wave-fronts is used to prevent looping betweenthese alternative strategies.2We use) to denote rewrites and ! to denote logical implication.3Note the downward direction of the arrows.

Using Failure to Guide Inductive Proof 5Wave-rules are not restricted to recursive de�nitions. Non-de�nitional propertiesalso provide wave-rules, e.g.U <> V " <> W) U <> V <> W # (10)The applicability of a wave-rule is determined by matching its LHS with a sub-expression of the goal. Note that this matching involves both the object-level termstructure as well as the meta-level annotations.Wave-rules are used to motivate the choice of induction. In the case of (4), wave-rules (7) and (8) provide the motivation for a u :: v induction.Now consider the rewriting of (5). Using longitudinal wave-rule (7) we get:rev(v) <> u :: nil " <> bwc = qrev(u :: v "; bwc)An additional precondition to applying transverse wave-rules is that there is a sinkat or below the position where the wave-front is being rewritten. This is true forthe current goal and transverse wave-rule (8):rev(v) <> u :: nil " <> bwc = qrev(v; j u :: w #k) (11)Finally, making use of the transverse wave-rule (10) we get:rev(v) <> � u :: nil <> w #� = qrev(v; j u :: w #k)Note the need to symbolically evaluate the wave-front on the LHS using the de�n-ition of <>. We call this evaluation process wave-front reduction:rev(v) <> j u :: w #k = qrev(v; j u :: w #k)Wave-front reductions are always guaranteed to preserve the skeleton term struc-ture. The goal is now fully-rippled so fertilization with the induction hypothesisis possible.4 Lemma discovery through calculationWe are interested here in seeing how well rippling works when restricted to wave-rules derived from de�nitions. By eliminating (10), the rewriting presented in x3breaks down at (11). The wave-front on the LHS of (11) is said to be blocked. Wecall the term : : : rev(v) <> u :: nil " <> bwc : : :

Using Failure to Guide Inductive Proof 6the blockage term. Note however that the wave-front on the RHS of (11) has beensunk. Using the sink term to instantiate the induction hypothesis we can rewritethe RHS of the induction conclusion as follows:(rev(v) <> u :: nil) <> w = rev(v) <> u :: wThis goal generalizes to:(z <> u :: nil) <> w = z <> u :: wA simple inductive proof establishes this lemma. Note that this lemma gives rise toa specialization of (10), the non-de�nitional wave-rule we eliminated. This strategyof partially exploiting the induction hypothesis is embodied within nqthm [BM79]where it is called cross-fertilization. An extension to this technique, called weakfertilization, is described in [BSvH+91].A practical limitation of both these strategies is that they discover lemmas in-line.As a consequence the same lemma may be re-discovered many times during thecourse of a proof. The proof critic idea proposed in [Ire92] provides a framework forovercoming this limitation. We introduce a critic which recognizes the opportunityto exploit the induction hypothesis when rippling gets blocked. We call this processlemma calculation:De�nition 1 (Preconditions for lemma calculation) The preconditions forlemma discovery through the partial use of the induction hypothesis are as follows:1. The principal connective in the goal is equality or implication;2. One side of the induction conclusion is blocked while the other is fully-rippledwith respect to the principal connective.The e�ects of this lemma calculation critic is to initiate a subplanning task for theconjectured lemma.Critics provide a framework for developing more powerful strategies for patchingfailed proofs. In x5 we present critics for rippling which build upon lemma calcula-tion and incorporate a form of generalization based upon the failure of rippling-in.5 Lemma discovery through speculationWe now consider the situation where rippling becomes blocked and where there isno immediate way of exploiting the induction hypothesis. For example, considerthe conjecture:8v;w:list(obj): rev(rev(v <> w)) = rev(rev(v)) <> rev(rev(w)) (12)

Using Failure to Guide Inductive Proof 7In proving (12), wave-rules (6) and (7) motivate a u :: v induction giving rise to ablocked induction conclusion of the form:rev(rev(v <> w) <> u :: nil ") =rev(rev(v) <> u :: nil ") <> rev(rev(w)) (13)Lemma calculation is not applicable. We have a choice, either we can search foran additional wave-rule or attempt a nested induction. For a nested induction tounblock a wave-front then there must exist a wave-rule such that the blocked wave-front matches with a pre�x of the wave-front in the wave-rule. This observationforms the basis for the preconditions of our second lemma discovery critic4:De�nition 2 (Preconditions for lemma speculation) The preconditions forrecognizing the need for a lemma instead of a nested induction are as follows:1. There exists at least one most nested blockage term in the goal of the form5:: : : F (C(U) "; V) : : :where C is not a meta-variable;2. For all such blockage terms there exist no wave-rules of form:F (C(C 0(U)) "; C 00(V) ")) : : :where C 0 and C 00 may be composite constructors, and either is possibly empty.The targeting of most nested blockage terms seems well motivated since the un-blocking of such terms may in turn unblock a less nested one. In (13) there is nomost nested blockage term so either will do. We choose the RHS blockage term:: : : rev(rev(v) <> u :: nil ") : : :In order for precondition (2.2) to succeed we must ensure there are no wave-rulesavailable of the form: rev(C 0(V) <> W ")) : : :Restricting ourself to the de�nitions of rev and <> then (2.2) succeeds, con-sequently a nested induction is ruled out. To illustrate a situation where (2.2)fails consider the conjecture:8i; j : nat: 8l : list(obj): nth(i+ j; l) = nth(j; nth(i; l))4These preconditions generalize to include rippling-in.5This form generalizes allowing V to denote multiple arguments as well as being empty.

Using Failure to Guide Inductive Proof 8where nth(n; l) returns a list constructed by removing the �rst n elements of l.The de�nitions of + and nth provide the following wave-rules:s(X) " + Y) s(X + Y) " (14)nth(s(X) "; Y :: Z ")) nth(X;Z) (15)Wave-rule (14) motivates a s(i) induction and gives rise to a blocked inductionconclusion of the form:nth(s(i+ j) "; l) = nth(j; nth(s(i) "; l)) (16)For precondition (2.2) to succeed there must be no available wave-rules of theform: nth(s(C 0(U)) "; C 00(V) ")) : : :This wave-rule schema, however, uni�es with the LHS of (15) instantiating C 0 tobe �x:x and C 00 to be �x:Y :: x. Consequently the lemma speculation critic isnot applicable in this case. Indeed, a nested induction on l is precisely what isrequired to unblock (16).5.1 Construction of speculative wave-rulesWhere a nested induction is ruled out, we require an additional lemma. Theapproach we take is to speculate the form of the wave-rule which the missing lemmawill provide. Such a speculation can be achieved by the use of a higher-order meta-variable. This technique was pioneered by Hesketh[Hes91] where speculative termsare used in controlling the generalization of variables apart and the introductionof sinks. In terms of lemma discovery the meta-level annotations of rippling helpconstrain the construction of the wave-rule speculation as follows:� the minimum blockage term de�nes the LHS of the wave-rule speculation;� the directionality of the blocked wave-front and the existence of a sink areused to suggest the position of the wave-fronts on the RHS ;� the skeleton term structure of the minimum blockage term constrains thestructure of the RHS of the wave-rule speculation;� generalization of the object-level skeleton term structure is used to simplifythe resulting wave-rule speculation.

Using Failure to Guide Inductive Proof 9To illustrate, consider again the blocked goal (13). The most nested blockage termprovides the following LHS of the wave-rule speculation:rev(rev(V) <> U :: nil ")) : : :The directionality of the blocked wave-front and the absence of a sink suggeststhe following positioning of the speculative wave-front on the RHS :: : :) F (: : :; : : :) "where F denotes a higher-order meta-variable; a place-holder for the transformedwave-front. Using the skeleton term structure of the minimum blockage term weget: rev(rev(V) <> U :: nil ")) F (rev(rev(V)); U; V) "Finally, generalization completes the construction of the wave-rule speculation:rev(W <> U :: nil ")) F (rev(W); U;W) " (17)5.2 Guiding the instantiation of speculationsThe instantiation of a wave-rule speculation is constrained by rippling and thevalidity of the instantiation. We use the available wave-rules to constrain theinstantiation of the application of the speculation. Candidate instantiations aretested by attempting to verify the lemma which justi�es the instantiation of thewave-rule speculation. This veri�cation process involves eliminating non-theorems.We are not concerned here with the details of the process of disproving a conjec-ture. One possible candidate is Protzen's conjecture disprover [Pro92].The process of rippling the application of a speculation must take into accountthe di�erent ways in which rippling can terminate. Firstly, the possibility of aspeculative wave-front petering-out must be considered. In terms of higher-orderuni�cation [Hue75] the petering-out of a wave-front corresponds to a projection.Wave-front annotations constrain us to consider projections which preserve theskeleton term structure. Note that as a consequence this rules out a projectionwhere the wave-term has multiple wave-holes. Secondly, if a speculative wave-front is fully-rippled with respect to an equality or an implication then the lemmacalculation critic can be invoked within an application of the speculation critic.An additional precondition is required, however, which will be discussed in x6.Thirdly, if a speculative wave-front is fully-rippled then rippling has failed toinstantiate the wave-rule speculation. A proof of the wave-rule must then beattempted.

Using Failure to Guide Inductive Proof 10Returning to our example, the application of (17) to RHS of (13) gives us:: : : = F (rev(rev(v)); u; rev(v)) " <> rev(rev(w))The application is obviously not fully-rippled. Petering-out gives rise to an non-theorem so we proceed by attempting to rewrite the goal using one of the availablewave-rules. The only applicable wave-rule is (6) and the associated uni�cationinstantiates F to be �x:�y:�z:y :: x. Propagating this instantiation through (17)gives rise to the following wave-rule:rev(W <> U :: nil ")) U :: rev(W) " (18)This non-de�nitional wave-rule taken together with (6) enables (13) to be rewrittento give: u :: rev(rev(v <> w)) " = u :: rev(rev(v)) <> rev(rev(w)) "Finally, substitution provides a wave-rule of the formU :: V " = U ::W ") V = Wwhich completes the rippling of the induction conclusion.The process of speculative rippling takes into account the need for wave-frontreductions as mentioned in x3.6 Combining speculation and calculationAs mentioned in x5.2 the lemma calculation critic requires an additional precon-dition when invoked within an application of the speculation critic. The revisedpreconditions are as follows:De�nition 3 (Preconditions for lemma calculation within a speculation)The preconditions for lemma discovery through the partial use of the induction hy-pothesis in the context of a speculation are as follows:1. The principal connective in the goal is equality or implication;2. One side of the induction conclusion is blocked while the other is fully-rippledwith respect to the principal connective.3. A fully-rippled speculative wave-front exists of the form:: : : � C(U; V) #� : : :

Using Failure to Guide Inductive Proof 11and at least one of the available function de�nitions is of type Utype !V type ! Utype, where U is of type Utype and V is of V type, and V isoptional.The additional precondition6 constrains the instantiation of a speculation to theavailable function de�nitions.The re�ned preconditions for lemma calculation provide the opportunity for ageneralization critic. The basic idea is that if precondition (3.3) is false theneither a new de�nition must be discovered or alternatively the conjecture must bemodi�ed in such a way that the available function de�nitions can be used:De�nition 4 (Precondition for speculative sink generalization) The pre-condition for speculation sink generalization is as follows:1. For all speculative wave-fronts which have been sunk:: : : � C(U; V) #� : : :there are no available function de�nitions of type Utype! V type! Utype,where U is of type Utype and V is of V type, and V is optional.The e�ect of this critic is to generalize the sink occurrences based upon the rangetypes of the available de�nitions. This will be illustrated in x7.7 Example revisitedConsider again theorem (1). Using the meta-level annotations of rippling, theassociated blocked induction conclusion (2) takes the form:rev((rev(v) <> u :: nil) " <> bwc :: nil) = bwc :: u :: v " (19)Both sides of the induction conclusion are blocked so preconditions (2.1) and (2.2)succeed. Two distinct blockage terms are identi�ed so two wave-rule speculationsare required. The occurrence of sinks motivates the speculation of transversewave-rules:(V <> U :: nil) " <> W :: nil) V <> F (W :: nil; U; V) # (20)W :: U :: V ") G(W;U; V) # :: V (21)6This precondition generalizes to deal with beached wave-front speculations as well.

Using Failure to Guide Inductive Proof 12The application of these speculations is carried out independently. This gives ustighter constraints and the possibility of using the lemma calculation strategy toinstantiate F and G. Using (20) to rewrite the LHS of (19) gives usrev(rev(v)<> F(bwc :: nil; u; v) #) = : : : (22)while the application of (21) to the RHS of (19) gives us: : : = � G(w; u; v) #� :: v (23)In the case of (22), instantiating F to be a projection of its �rst argument is ruledout because w :: nil is of type list(obj) while the corresponding variable in theinduction hypothesis is of type obj. None of the available wave-rules suggest aninstantiation for F . Turning to (23), rippling is complete, so preconditions (3.1)and (3.2) of the revised lemma calculation critic succeed. In order for precondition(3.3) to succeed we require a function g of type obj ! obj ! list(obj) ! obj,where the second and third arguments of g are optional since they are not partof the skeleton. Precondition (3.3) fails since the only available functions are <>and rev: <> : list()! list()! list()rev : list()! list()The sink generalization critic, however, is applicable and using the range types of<> and rev to coerce the sink types, the initial goal is generalized to:8v;w:list(obj): rev(rev(v) <> M(w)) = N(w) <> vNote the introduction of additional speculative term structure to reduce the pos-sibility of over generalization. Propagating this generalization through constraint(23) gives us: : : : = G(N(bwc); u; v) # <> vHere we can exploit wave-rule (9) to complete the ripple:: : : = rev(j u :: w #k) <> vThis rewrite instantiates G to be �x:�y:�z:x <> y :: nil and N to be �x:rev(x).The resulting instantiation of wave-rule speculation (21) takes the form:W <> U :: V ") W <> (U :: nil) # <> VNote that the lemma which underpins this wave-rule also provides the wave-rulerequired for the unblocking of the LHS of (19):W <> (U :: nil) " <> V) W <> U :: V #

Using Failure to Guide Inductive Proof 13If wave-rule (18) was available then there would have been a choice as to whichside of the blockage to speculatively ripple. Using (18) the following alternativegeneralization is suggested:8v;w:list(obj): rev(rev(v) <> rev(w)) = w <> vThis example illustrates the close relationship which exists between lemma dis-covery and generalization.8 ImplementationThe ideas of proof plans are implemented within the clam [vISN92] planningsystem. An implementation of proof critics, as presented here, is currently under-way. �-prolog [MN88] is being used to prototype the ideas. The initial work hasfocused upon controlling the selection of appropriate higher-order uni�ers. Ourstrategy is to select the most general uni�ers which preserve skeleton term struc-ture. This strategy is successful for the example theorems and associated lemmasdocumented in tables 1 and 2 respectively.1 8x:nat: even(x+ x)2 8x; y:nat: ((x+ y)� x) = ((y + x)� x)3 8x; y:list(obj): rev(rev(x <> y)) = rev(rev(x)) <> rev(rev(y))4 8x; y:list(obj): rotate(length(x); x <> y) = y <> x5 8x:list(obj): 8y:obj: rev(rev(x) <> y :: nil) = y :: xTable 1: Example theoremsTheorem Lemmas Calculation Speculation Generalization1 X + s(X) = s(X +X) x2 s(X) � Y = s(X � Y) xX + s(Y) = s(X + Y) x3 rev(V <> U :: nil) = U :: rev(V) x4 (U <> V) <> W = U <> (V <> W) xW <> U :: V = (W <> U :: nil) <> V x5 W <> U :: V = (W <> U :: nil) <> V x xTable 2: Lemma discovery examples

Using Failure to Guide Inductive Proof 149 Related workThe rippling proof method is a rational reconstruction and extension of the heur-istics implemented within nqthm [BM79]. The proof critics presented here willenable clam to �nd proofs where the cross-fertilization and generalization heur-istics of nqthm breakdown.Hutter [Hut90] uses �rst-order schemas to \guess" missing lemmas when the re-writing of an induction conclusion becomes blocked. Our use of higher-ordermeta-variables, although harder to control, is obviously more powerful.Finally, superposition is often cited as a technique for lemma discovery withinthe induction completion community. Indeed the Huet-Hullot [HH82] completionprocedure is able to prove (1). However, the application of superposition to gen-erating auxiliary lemmas is rare, in general, and heuristics for its application arenot as principled as those of rippling.10 ConclusionThe potential for making productive use of failed proof attempts is greatly en-hanced if proof strategies are expressed at a high-level. Proof plans provide such aframework for expressing proof strategies and we have presented a general methodfor exploiting this potential. In particular, we have illustrated how failure can beused to suggest lemmas and generalizations in the context of inductive proof.AcknowledgementsWe thank David Basin for his encouragement and constructive feedback. TobyWalsh provided useful comments on a early draft of this paper. Thanks also go toJane Hesketh for useful discussions during the early stages of this work.References[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press,1979. ACM monograph series.[BSvH+91] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill.Rippling: A heuristic for guiding inductive proofs. Research Paper567, Dept. of Arti�cial Intelligence, Edinburgh, 1991. To appear inArti�cial Intelligence.

Using Failure to Guide Inductive Proof 15[Bun88] A. Bundy. The use of explicit plans to guide inductive proofs. Re-search Paper 349, Dept. of Arti�cial Intelligence, Edinburgh, 1988.Short version published in the proceedings of CADE-9.[BvHSI90] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions tothe rippling-out tactic for guiding inductive proofs. In M.E. Stickel,editor, 10th International Conference on Automated Deduction, pages132{146. Springer-Verlag, 1990. Lecture Notes in Arti�cial Intelli-gence No. 449. Also available from Edinburgh as DAI Research Paper459.[GMW79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF -A mechanised logic of computation, volume 78 of Lecture Notes inComputer Science. Springer Verlag, 1979.[Hes91] J.T. Hesketh. Using Middle-Out Reasoning to Guide Inductive The-orem Proving. PhD thesis, University of Edinburgh, 1991.[HH82] G. Huet and J. Hullot. Proofs by induction in equational theories withconstructors. Journal of the Association for Computing Machinery,25(2), 1982.[Hue75] G. Huet. A uni�cation algorithm for lambda calculus. TheoreticalComputer Science, 1:27{57, 1975.[Hut90] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10thInternational Conference on Automated Deduction, pages 147{161.Springer-Verlag, 1990. Lecture Notes in Arti�cial Intelligence No. 449.[Ire92] A. Ireland. The Use of Planning Critics in Mechanizing InductiveProofs. In A. Voronkov, editor, International Conference on Lo-gic Programming and Automated Reasoning { LPAR 92, St. Peters-burg, Lecture Notes in Arti�cial Intelligence No. 624, pages 178{189.Springer-Verlag, 1992. Also available from Edinburgh as DAI ResearchPaper 592.[MN88] D. Miller and G. Nadathur. An overview of �Prolog. In R. Bowen,K. & Kowalski, editor, Proceedings of the Fifth International LogicProgramming Conference/ Fifth Symposium on Logic Programming.MIT Press, 1988.[Pro92] M. Protzen. Disproving conjectures. In D. Kapur, editor, 11th Confer-ence on Automated Deduction, pages 340{354, Saratoga Springs, NY,USA, June 1992. Published as Springer Lecture Notes in Arti�cialIntelligence, No 607.

Using Failure to Guide Inductive Proof 16[vISN92] F. van Harmelen, A. Ireland, A. Stevens, and S. Negrete. The CLAMproof planner, user manual and programmer manual (version 1.5).Technical paper in preparation, DAI, 1992.

