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Abstract 

Aims:  Low androgen levels have been linked with increased risk of cardiovascular disease in 

men. Previous studies have suggested that androgens directly inhibit atherosclerotic lesion 

formation although the underlying mechanisms for this remain unclear. This study addressed 

the hypothesis that endogenous androgens inhibit arterial remodelling by a direct action on 

the androgen receptor (AR) in the vascular wall. 

Methods and Results: We studied a series of novel mouse lines with cell-specific deletion of 

the androgen receptor (AR) in either the endothelium or in smooth muscle cells or both cell-

types. Findings were compared with a model of global androgen deficiency in wild type mice 

(castrated). We characterised the cardiovascular phenotype, vascular pharmacology and 

histology, and assessed neointimal lesion formation following vascular injury to the femoral 

artery. Cell-specific AR deletion did not alter body weight, circulating testosterone levels or 

seminal vesicle weight, but caused limited alterations in arterial contractility and blood 

pressure. Neointimal lesion formation was unaltered by selective deletion of AR from the 

vascular endothelium, smooth muscle or both cell-types. Castration in wild-type mice 

increased neointimal lesion volume (Sham vs Castration: 2.4x107±4.5x106 vs 

3.9x107±4.9x106 µm3, p=0.04, n=9-10).  

Conclusion: Vascular cell-specific AR deletion had no effect on neointimal lesion formation 

while low systemic androgen levels adversely affect neointimal lesion size. These findings 

suggest that the cardio-protective effects of androgens are mediated either by AR outside the 

vasculature or by AR-independent mechanisms.  

Key words: Androgen receptor, testosterone, arterial injury, neointima 
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Introduction  

Male sex hormones have traditionally been linked to the greater risk of cardiovascular disease 

(CVD) in men.1, 2 However, this view is increasingly being challenged, with considerable 

recent evidence that testosterone may, in fact, be cardioprotective. Cross-sectional studies 

have associated low testosterone levels with increased cardiovascular risk factors (diabetes 

mellitus, the metabolic syndrome, abnormal lipid profile) and increased cardiovascular risk in 

men.2-5 This is particularly important given the progressive population-level decline in serum 

testosterone concentrations in men from developed countries6-8 which has resulted in a 

dramatic increase in the use of androgen replacement therapy (ART).  Indeed, there has been 

a 10-fold increase in prescribed ART in the US9 and nearly a 3-fold increase in the UK10 in 

the past decade. ART improves muscle/fat mass ratio, bone mineral density and blood lipid 

profile6, 11, 12 in hypogonadal men. It has also been suggested that ART could provide a novel 

strategy to reduce cardiovascular risk. More recently, however, concerns have been raised 

about safety and the Food and Drug Administration in the United States has announced an 

investigation into the risk of stroke, heart attack and death in men taking testosterone 

products13. This follows recent reports demonstrating an excess of cardiovascular events in 

apparently hypogonadal men using ART14-16. Given the inconsistent findings from clinical 

studies there is a clear need for additional preclinical studies to improve our understanding of 

how endogenous androgens and pharmacological androgen supplements influence 

cardiovascular disease. Previous pre-clinical studies have focussed on pharmacological 

testosterone supplementation and/or deficiency (by castration) and have largely supported a 

cardio-protective role for androgens, with pharmacological testosterone replacement in 

castrated animals reducing atherosclerotic plaque formation.17-19 However, the mechanism of 

this effect is not clear. It may be indirect, following modification of conventional 

cardiovascular risk factors, and/or due to direct modulation of vascular remodelling. 
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Furthermore, it has not been established whether androgens alter vascular remodelling by 

direct stimulation of the androgen receptor (AR), by testosterone-mediated AR-independent 

actions, or, indirectly, via aromatase-mediated conversion of testosterone to oestrogens. In 

models of arterial injury that lack elevated systemic cardiovascular risk factors the findings 

are contradictory, with studies showing that androgens either reduce20 (possibly by inhibiting 

arterial smooth muscle proliferation21), or have no effect on22, neointimal lesion formation.  

Endogenous androgens play a complex role in determining cardiovascular risk and thus 

investigation of their mechanism of action is challenging. The influence of AR stimulation on 

vascular lesion formation has been investigated previously using the testicular feminised 

(Tfm) mouse, which lacks a functional AR19. However, interpretation of results from this 

animal is confounded by the fact that it lacks AR in all tissues, has low (~10%) circulating 

testosterone and, consequently, has sub-physiological concentrations of estradiol. Generation 

of a similar total AR knockout mouse on an atherosclerosis-prone (apoE-/-) background 

suggested that androgens reduce total serum cholesterol via an AR-dependent mechanism but 

implicated both AR-dependent and AR-independent mechanisms in the observed anti-

atherosclerotic effects23. Recognising the limitations of these models and the complex role of 

androgens in influencing a number of aspects of cardiovascular risk, we generated mice with 

vascular cell-specific deletions of AR in order to address the hypothesis that endogenous 

testosterone inhibits neointimal proliferation by stimulation of AR in the vascular wall. 

 

Materials and Methods 

See Online Data Supplement for detailed materials and methods related to this study. 
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Mice 

Animal experiments were performed in accordance both with Directive 2010/63/EU of the 

European Parliament and with the UK Home Office Animal (Scientific Procedures) Act 

1986. 

C57Bl/6J mice were supplied by the University of Edinburgh Biomedical Research Facility. 

Mice with selective ablation of AR from vascular endothelial (VE-ARKO)24 or smooth 

muscle cells (SM-ARKO)25 were established in our laboratory as previously described. In 

this study, these two lines were mated to generate stud males hemizygous for both Tie2-Cre 

and SM22-Cre, which were then mated with female ARfl/fl mice. The mouse line was 

maintained by breeding male SM22-Cre+/-:Tie2-Cre+/-:ARfl/y mice with female ARfl/fl mice. 

Four genotypes were identified in the resultant offspring at expected Mendelian ratios 

(approximately 25% for each genotype in male pups):  

1) WT: SM22-Cre-/-:Tie2-Cre-/-:ARfl/y. Used as controls. 

2) SM-ARKO: SM22-Cre+/-:Tie2-Cre-/-:ARfl/y. Smooth muscle cell ARKO.   

3) VE-ARKO: SM22-Cre-/-:Tie2-Cre+/-:ARfl/y. Endothelial cell ARKO.  

4) SM/VE-ARKO: SM22-Cre+/-:Tie2-Cre+/-:ARfl/y. Smooth muscle and endothelial cell 

double ARKO. 

In this study, only male mice were used for onward analysis. 

Determination of genomic ablation of AR and genotyping of mice 

To verify AR ablation in target cells, genomic DNA was extracted immediately from freshly 

isolated aortic endothelial (EC) and smooth muscle (SMC) cells (without any culturing) and 

subjected to PCR amplification using primers GCTGATCATAGGCCTCTCTC and 

TGCCCTGAAAGCAGTCCTCT. An amplicon of 1142bp indicated presence of a floxed AR 
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whilst an amplicon of 612bp indicated recombination between loxP sites and deletion of AR 

exon 2.24 

Inheritance of Cre Recombinase was used to determine genotype. Genomic DNA from ear 

clips was amplified using primers CGCATAACCAGTGAAACAGCATTGC and 

CCCTGTGCTCAGACAGAAATGAGA for Tie2-cre26; and 

CGCATAACCAGTGAAACAGCATTGC and CAGACACCGAAGCTACTCTCCTTCC for 

SM22-cre27. An amplicon of 608bp indicated inheritance of the Cre Recombinase transgene 

in EC under control of the Tie2 promoter, whilst an amplicon of 575bp for the Cre 

Recombinase transgene in SMC under control of SM22 promoter. 

Vascular cell isolation and culture 

Mice were euthanized by CO2 and aortic EC and SMC isolated, by collagenase digestion, and 

cultured, as described28. Isolated cells were either used directly for DNA extraction, or 

cultured (EC, 7 days in endothelial culture medium; SMC, 14 days in DMEM/F12 

GlutaMAX™) for investigation of AR expression. Testosterone (1x10-7M), DHT (1x10-8M) 

or vehicle (100% ethanol, 0.1% in final culture medium) were added from the 3rd day of 

culture and media were replenished twice weekly. 

Phenotyping mice with cell-specific AR deletion 

Blood pressure measurement. Systolic blood pressure was assessed in conscious, restrained 

mice using tail cuff plethysmography (Harvard Apparatus, UK). 

Assay for plasma testosterone, total cholesterol and triglyceride. Plasma testosterone 

(DEMEDITEC Diagnostics GmbH, Kiel-Wellsee, Germany), total plasma cholesterol 

Olympus Diagnostics Ltd, Watford, UK) and plasma triglyceride (Alpha Laboratories Ltd., 

Eastleigh, UK) were measured using commercially-available kits, in accordance with 

manufacturer’s instructions.  
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Myographic assessment of arterial function. Mice (12-16 weeks) were euthanized by CO2. 

Femoral and mesenteric arteries were isolated for functional analysis, as described29. A linear 

relationship between the increment of cyclic force and the increment of diameter was used to 

describe arterial compliance30. Arteries were then exposed to high (125mM) potassium 

physiological saline solution (KPSS), phenylephrine (PhE, 10-9–10-5M), acetylcholine (ACh; 

10-9–10-5M) and sodium nitroprusside (SNP; 10-9–10-5M). A further set of arteries from the 

same animals were exposed to testosterone (10-9–10-4M) and endothelin-1 (ET-1, 10-11–10-

7M).  

Surgical Procedures 

Surgical procedures were performed in mice under isoflurane-induced anaesthesia with 

analgesic cover. 

Castration 

In C57Bl/6J mice a small incision was made in the mid-line of the scrotum and both testes 

externalised and removed (castration) or returned to the scrotum (Sham). The mice were 

allowed to recover for 1 week prior to induction of femoral artery injury. 

Femoral artery injury 

Wire-injury was performed by inserting a guidewire using the method of Sata et al.
31. 

Ligation injury was performed on the common femoral artery immediately proximal to the 

femoropopliteal bifurcation. Wounds were sutured and mice were allowed to recover (21 

days) to allow lesion development. 

Optical Projection Tomography (OPT) 

Mice were killed (sodium pentobarbital) and plasma harvested and stored (-20oC). Mice were 

then perfusion-fixed, femoral arteries excised from the femoropopliteal branch to the 

bifurcation with the iliac artery and then processed for optical projection tomography (OPT), 
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as described32. Longitudinal lesion distribution and total neointimal volume in the first 

1.2mm segment of the artery were used to describe the overall neointima formation (Suppl 

Figure 1). The maximum cross-sectional neointimal area was determined from serial 

histological sections indicated the level of stenosis (Suppl Figure 1). 

Histology and Immuno-fluorescent staining 

After OPT scanning, tissues were processed for histology, sectioned (5µm) and stained with 

Masson’s trichrome. Intimal and luminal area were measured using Image Pro Plus 7.0 rom 

images obtained using a CoolSNAP camera (photometrics, UK). Immuno-florescent staining 

was with Tyramide Signal Amplification (TSA™, PerkinElmer) was applied using primary 

antibodies against: AR (SantaCruz; 1:400), CD31 (Abcam; 1:300), von Willebrand factor 

(vWF, Dako; 1:2000), smooth muscle alpha-actin (SMA, Sigma; 1:1000). Fluorescent images 

were analysed using confocal microscopy. 

For cultured cells, samples were fixed, stained without antigen retrieval and images were 

captured using a Zeiss Axiovert 200M epi-fluorescent microscope (Carl Zeiss Ltd., Welwyn, 

UK). 

Statistics 

Data are mean ± standard error of the mean (SEM) for n mice, unless indicated otherwise. 

Analysis was performed (GraphPad Prism v5.0) using Student’s t-test, one-way or two-way 

ANOVA with a Bonferroni post-hoc test, as appropriate; p<0.05 indicated statistical 

significance.  
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Results 

AR localisation in vascular tissues 

Immunohistochemistry confirmed AR expression in intact mouse aorta (Figure 1A) and in 

cultured aortic EC (Figure 1B) and SMC (Figure 1C). AR expression in mouse aortic EC and 

SMC was increased following incubation with testosterone (1x10-7M) (Figure1 B&C). 

Establishment of vascular cell-specific AR knockout mice (ARKO) 

Three vascular cell-specific AR ablated mice were generated using the cre-loxP system; SM-

ARKO (smooth muscle ARKO, generated using SM22-Cre), VE-ARKO (endothelial cell 

ARKO, generated using Tie2-Cre), and SM/VE-ARKO (smooth muscle and endothelial cells, 

generated from inter-crossing both Cre lines), and floxed-AR mice (WT), which were used as 

controls.  

In order to confirm deletion of AR in targeted cell types, genomic DNA from freshly isolated 

aortic EC and SMC were subjected to PCR analysis. A 1142bp band representing the wild-

type AR allele was only observed in WT EC and SMC, SM-ARKO EC and VE-ARKO SMC 

(Figure 2A). A recombined 612bp band representing the recombined non-functional AR 

allele was only observed in SM-ARKO SMC, VE-ARKO EC and SM/VE-ARKO EC/SMC. 

Genomic DNA samples isolated from ear biopsies were used for genotyping. The SM22-cre 

amplicon consistently correlated with AR ablation in SMC and the Tie2-cre amplicon with 

AR ablation in EC (Figure 2B). 

Characterisation of SM-ARKO/VE-ARKO and SM/VE-ARKO mice 

Mice of all four genotypes were healthy. In contrast to Tfm or global ARKO mice19, 23, SM-

ARKO, VE-ARKO and SM/VE-ARKO mice had normal circulating testosterone 

concentrations (Figure 2C) and seminal vesicle weights (Figure 2D). Total plasma cholesterol 

and triglyceride were not affected by vascular ARKO (Suppl. Figure 2). Tail-cuff 
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plethysmography revealed a small but significant increase in blood pressure in VE-ARKO 

mice (Figure 2E). 

Ex vivo myography was used to determine whether vascular AR deletion was associated with 

functional changes in smooth muscle contraction or endothelium-dependent relaxation. 

Vascular AR deletion did not alter femoral or mesenteric arterial compliance (Suppl. Figure 

3). PhE-induced contraction, however, was reduced in femoral arteries that lack smooth 

muscle cell AR from both SM-ARKO and SM/VE-ARKO mice (Figure 3A), whilst there was 

a small reduction in ET-1 mediated contraction in all vascular ARKOs (Figure 3B). Vascular 

AR ablation did not alter PhE- (Figure 3C) or ET-induced (Figure 3D) constriction in 

mesenteric arteries. KPSS-induced receptor-independent constriction (Suppl. Figure 4A(i) & 

B(i)), ACh-induced endothelium-mediated dilation (Figure 3E &F), and SNP-induced 

endothelium-independent dilation (Suppl. Figure 4A(ii) and B(ii)) were not affected by 

vascular ARKO. Testosterone-induced dilation, which occurred at supra-physiological 

concentrations (1x10-4M), showed no dramatic alterations following deletion of AR from 

vascular EC and/ or SMC, despite some small differences in response at specific 

concentrations. (Figure 4). 

Influence of castration on neointimal lesion formation 

Castration reduced circulating testosterone concentrations (Figure 5A) and seminal vesicle 

weight (Figure 5B) and decreased AR expression in femoral arteries (Figure 5C). Body 

weights following surgery were lower in castrated mice than in controls (Suppl. Figure 5). 

Castration also increased neointimal lesion formation following wire injury (Figure 6A), 

resulting in increased lesion volume but without increasing the maximal cross-sectional area. 

In contrast, castration had no effect on the neointimal lesion formation following arterial 

ligation (Figure 6B). 

 at E
dinburgh U

niversity on June 19, 2014
http://cardiovascres.oxfordjournals.org/

D
ow

nloaded from
 

http://cardiovascres.oxfordjournals.org/


A
cc

ep
te

d 
M

an
us

cr
ip

t
11 

Effect of vascular ARKO on neointimal lesion formation 

Body-weight changes after arterial injury were similar among the four genotypes of mice 

(Suppl. Figure 6). Vascular ARKO did not alter the profile (Figure 7A(i)), volume (Figure 

7A(ii)) or cross sectional area (Figure 7A(iii)) of lesions induced following wire-injury. 

Similarly SM-ARKO and SM/VE-ARKO had no effect on lesion size following arterial 

ligation (Figure 7B). In contrast, deletion of AR from vascular endothelial cells alone (VE-

ARKO) resulted in an altered lesion profile (Figure 7B(i)) and a small increase in lesion 

volume (Figure 7B(ii)), but not cross-sectional area (Figure 7B(iii)), following ligation. 

 

Discussion 

Declining testosterone levels in men, combined with increased androgen replacement 

therapy, may both have an impact on the development of cardiovascular disease possibly by 

affecting the development of atherosclerotic lesions. Precisely how endogenous androgens 

influence the formation of vascular lesions remains unknown. This investigation addressed 

the hypothesis that androgen-induced stimulation of AR in the vascular wall inhibits 

neontimal lesion development. This was addressed using a series of novel vascular-cell-

specific mouse lines with AR deleted from endothelial and/or smooth muscle cells. Cell-

specific deletion of vascular AR did not alter neointimal lesion formation while castration in 

wild-type mice did result in adverse neointimal lesion formation. These contrasting findings 

suggest that the effects of androgens on vascular lesion formation are mediated by one or 

more of the following mechanisms: 1) activation of AR-independent pathways, 2) secondary 

to aromatization of androgen to oestrogen, 3) stimulation of AR in other cell types. 

The generation of vascular-specific ARKO mice was central to this investigation. The 

functional role of AR has been investigated previously using Tfm
19 mice. Interpretation of 
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data from these animals is complicated, however, by low endogenous levels of testosterone 

and estradiol (requiring pharmacological replacement). In contrast, consistent with previous 

demonstrations,22, 23 vascular cell-specific deletion of AR did not reduce circulating 

testosterone levels and, therefore, no exogenous androgen administration was required. This 

is important since pharmacological administration of androgens does not satisfactorily 

“replace” endogenous hormone. The pharmacokinetics and tissue accumulation of 

pharmacologically-administered androgen are not fully understood (thus overdosing may 

occur if the serum/plasma testosterone level is the only clinical parameter for androgen 

prescription). This may explain (i) the unexpected increase in adverse cardiovascular events 

associated with androgen-treated in a clinical trial involving elderly (>65years) hypogonadal 

men,16 and (ii) the increased death and incidence of stroke and myocardial infarction 

(regardless of the pre-existing cardiovascular disease) associated with clinical androgen 

replacement in hypogonadal men , as demonstrated in a large scale observational study.14 

Androgens contribute to elevation of blood pressure by acting on catecholamines in the brain, 

independent of classical AR; blood pressure in wild type and tfm rats is reduced by castration 

and restored by administration of testosterone.33 This contrasts with vascular selective ARKO 

which showed either no change or, in the case of VE-ARKO, a small elevation in blood 

pressure. The implication, therefore, is that testosterone-mediated elevation of blood pressure 

is not mediated by vascular AR. The increased blood pressure in VE-ARKO mice suggests 

slight EC dysfunction but this was not supported by our findings in isolated arteries. 

Disruption of systemic Androgen/AR signalling impairs normal vascular function34. In tfm 

mice, contraction in response to high potassium (but not to noradrenaline) was reduced in 

femoral arteries, suggesting altered smooth muscle cell function34. Relaxation in response to 

ACh was also impaired, suggesting endothelial cell dysfunction.34. Vascular AR ablation had 

no effect on passive arterial compliance and did not alter endothelium-dependent or 
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independent relaxation, confirming normal activity of the endothelium-derived nitric oxide 

system.  It was notable that EC function was maintained in VE-ARKO mice, despite the 

(small) increase in blood pressure in these animals. Unlike the tfm, smooth muscle AR 

deletion impaired agonist-mediated contraction without altering the response to potassium, 

suggesting a change in receptor-dependent signal transduction pathways. Reduced 

contraction was agonist dependent (being more evident in response to noradrenaline than to 

ET-1) and tissue-specific (more obvious in the femoral, than in the mesenteric, artery). An 

androgen-mediated alteration of adrenoceptor activation would be consistent with androgen-

induced production and release of noradrenaline in rodents35. The differences between the 

current results and those reported for tfm suggest that AR expressed outside the vasculature 

contributes to regulation of vascular function. The low testosterone in tfm could also lead to a 

loss of rapid, non-genomic androgen signalling. Alternatively, since endogenous oestrogen 

regulates EC function in males36, 37, the impaired endothelium-mediated dilation in the tfm 

mice could be a result of its low oestrogen levels. 

As shown previously38, testosterone caused relaxation of arteries, although only at supra-

physiological concentrations. The maintenance of this response in the vascular-specific 

ARKO mice is consistent with data from tfm mice. 34 This indicates, therefore, that vascular 

AR does not mediate this response. Similar arterial relaxation has been observed with high 

concentrations (>1x10-4M) of corticosteroids, oestrogen and cholesterol39, 40 and may be due 

to direct alteration of the cell membrane. Given the very high concentrations required to 

produce this response, testosterone-induced vasodilation is very unlikely to have any 

physiological relevance. 

Evidence for androgen-mediated inhibition of vascular neointimal lesion formation under 

normolipidemic conditions is less conclusive than for inhibition of atherosclerosis20, 22. This 

investigation addressed the influence of androgens/AR on neointimal lesion formation using 
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models of denuding (wire) and non-denuding (ligation41) injury . Wire injury denudes the 

endothelium and produces lesions formed predominantly from circulating bone marrow-

derived progenitor cells. On the other hand, femoral artery ligation does not introduce direct 

endothelial damage. The disturbed blood flow and altered shear stress may induce endothelial 

dysfunction and stimulate neointima formation by migration and proliferation of media-

derived mural smooth muscle cells.42 Increased lesion volume in castrated mice following 

wire-injury, but not following ligation, is consistent with evidence that the influence of 

androgens is dependent on the type of lesion20. Endothelial denudation is one of the major 

differences between the wire injury and ligation injury models. Androgens promote 

endothelial proliferation and migration in vitro
43 and improve angiogenesis in vivo following 

ischaemic injury.44, 45 It is possible, therefore, that endothelial regeneration following wire 

injury was impaired by systemic androgen deprivation, thus favouring formation of lesions. 

In addition, blocking AR signalling improves self-renewal and migration of bone marrow-

derived stem cells46 which may promote lesion formation following wire injury. The well-

recognised androgen/AR mediated immune-suppression47 may also modulate adventitial 

inflammation and subsequent neointima formation and could explain the increased lesion 

volume following castration. 

Following arterial injury, vascular AR ablation had very little impact in neointima formation. 

Deletion of AR from the endothelium increased lesion volume following arterial ligation, but 

it was notable that no similar increase was detected in mice with double knockout of AR in 

endothelial and smooth muscle cells. This may suggest that deletion of AR in the smooth 

muscle opposes the effect of deletion from the endothelium. However, given the variability of 

the data in the VE-ARKO following ligation, it seems more likely that this result is an 

anomaly, and that, as proposed, AR in the vascular endothelial and smooth muscle cells does 

not contribute to regulation of neointimal lesion formation. Excluding a role for the EC and 
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SMC AR suggests that any influence of androgens on neointimal lesion formation may be 

mediated by AR-independent mechanisms, or by conversion to oestrogen by aromatization 

either systemically or locally in the vascular wall, or by AR expressed in other cell types in 

the vascular wall. It should be noted, however, that AR expression in the vasculature is not 

restricted to EC and SMC. In healthy arteries, cells bearing strong AR expression were shown 

to be present in the adventitia whilst the population of AR-positive adventitial cells was 

increased in injured arteries. It was notable that expression of AR in the adventitia of injured 

arteries was dramatically reduced following castration. However, the identity of these AR 

positive cells and their pathophysiological function require further investigation. 

Interestingly, androgens were recently reported to increase ischemia-induced angiogenesis, 

indicating a direct association between androgen and endothelial cells.43, 44 Our VE-ARKO 

mice will be a useful tool to address the question whether endothelial AR truly regulates 

endothelial function or behaviour using endothelial-specific models.  

The use of vascular selective ARKO mice has shown that AR in the arterial wall have little 

role in regulating androgen-dependent neointimal lesion formation. These results suggest that 

any protective effects of androgens in atherosclerosis are likely to be mediated by conversion 

of testosterone to oestrogens, by effects on classical cardiovascular risk factors such as 

cholesterol, or by AR outside the vascular wall. Future investigations should try to determine 

whether androgens inhibit atherosclerosis through direct modulation of non-vascular AR or 

following conversion to oestrogens. 
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Figure legends 

Figure 1. Identification of androgen receptor (AR) in murine vascular cells. AR is 

expressed in endothelial (EC; red arrows) and smooth muscle (SMC; green arrows) cells in 

healthy mouse aorta (A). The dashed yellow line indicates the external elastic lamina. AR 

expression was up-regulated by testosterone (1x10-7M) in cultured mouse aortic EC (B) and 

SMC (C). EC were identified using antibodies against von Willebrand factor (vWF) and 

CD31; SMC were identified using an antibody against smooth muscle alpha-actin (SMA). 

Nuclei were counter-stained with DAPI. 

Figure 2. Characterisation of mice with vascular cell specific androgen receptor (AR) 

deletion. Cell specific AR deletion was confirmed (A; n=4 for each genotype) using PCR on 

genomic DNA from freshly isolated aortic endothelial cells (EC) and smooth muscle cells 

(SMC). Mouse genotypes were confirmed (B) with PCR using genomic DNA from ear clip 

samples. Deletion of vascular AR did not alter circulating testosterone levels (C; n=14-23) or 

seminal vesicle weight (D; n=8-15) but deletion of AR from EC (VE-ARKO) produced a 

small increase in systolic blood pressure (E). * p<0.05 (n=7-12) by one-way ANOVA plus 

Bonferroni post-hoc test. (WT=wild type litter mates carrying floxed-AR; SM-ARKO=AR 

ablated in SMC, VE-ARKO=AR ablated in EC, SM/VE-ARKO=AR ablated in both EC and 

SMC. 

Figure 3. Agonist-dependent vascular dysfunction in mice with selective deletion of 

vascular androgen receptor (AR). In isolated femoral (A, B, E) and mesenteric (C, D, F) 

arteries cumulative concentration-response curves were produced using phenylephrine (PhE; 

A, C) or endothelin-1 (ET-1; B, D). Acetylcholine (ACh; E, F)) induced-relaxation was 

obtained after contraction with a sub-maximal concentration of PhE (3x10-6M). $$ p<0.01 vs 
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WT; * p<0.05, ** p<0.01 vs corresponding WT concentration; # p<0.05, ## p<0.01 vs 

corresponding VE-ARKO concentration; two-way ANOVA with Bonferroni post-hoc test. 

(WT=wild type litter mates carrying floxed-AR; SM-ARKO=AR ablated in SMC, VE-

ARKO=AR ablated in EC, SM/VE-ARKO=AR ablated in both EC and SMC. n=5-9). 

Figure 4. Testosterone induces relaxation in vascular ARKO arteries. Supra-

physiological concentration of testosterone induced vascular relaxation both in femoral (A) 

and mesenteric (B) arteries from all genotypes, which was independent of the type of pre-

constriction. Vascular ARKO produced no dramatic changes in testosterone-mediated 

relaxation despite some small differences in relaxation at specific concentrations. * p<0.05, 

** p<0.01 vs corresponding WT concentration; # p<0.05 vs corresponding VE-ARKO 

concentration; two-way ANOVA plus Bonferroni post-hoc test. (WT=wild type litter mates 

carrying floxed-AR; SM-ARKO=AR ablated in SMC, VE-ARKO=AR ablated in EC, 

SM/VE-ARKO=AR ablated in both EC and SMC. n=7-9). 

Figure 5. Castration reduces vascular androgen receptor (AR) expression. Plasma 

testosterone concentrations (A), seminal vesicle weight (B) and AR expression in lesion-

bearing femoral arteries (C) were reduced following castration. ** p<0.01. Data were 

analysed by Student’s t-test. (A: n=9-11; B: n=8-15; C: n=9). 

Figure 6. Castration increases neointimal lesion formation following wire injury but not 

following arterial ligation. In arteries subjected to either (A) wire-induced injury or (B) 

ligation, neointimal lesion distribution (i) and neointimal volume (ii) were determined by 

optical projection tomography (OPT). Maximal cross-sectional narrowing (iii) was measured 

in serial sections stained with Masson’s trichrome. Panels A(i) and B(i) show mean 

neointimal lesion volumes for each group; error bars have been omitted for clarity. Panels 

A(ii & iii) an B(ii & iii) show individual data points from each animal in the group with lines 

and error bars indicating mean ± SEM. * p<0.05, by Student’s t-test (A: n=8-10; B: n=6-8). 
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Figure 7. Effect of vascular-specific AR ablation on neointimal lesion formation. Lesion 

formation following (A) wire-induced injury (n=7-14) or (B) ligation-induced injury (n=6-

14) was determined by optical projection tomography (OPT) and histology. Panels A(i) and 

B(i) show mean neointimal lesion volumes for each genotype; error bars have been omitted 

for clarity. Panels A(ii & iii) an B(ii & iii) show individual data points from each animal with 

lines and error bars indicating mean ± SEM. Vascular AR deletion had no effect on lesion 

formation in response to wire-induced injury. Selective deletion of AR from endothelial cells 

produced a small increase in neointimal lesion volume following ligation injury (* p<0.05 by 

one-way ANOVA plus Bonferroni post-hoc test) but did not alter maximal cross-sectional 

narrowing. (WT=wild type litter mates carrying floxed-AR; SM-ARKO=AR ablated in SMC, 

VE-ARKO=AR ablated in EC, SM/VE-ARKO=AR ablated in both EC and SMC.).
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