

Edinburgh Research Explorer

PALOMA: A process algebra for located Markovian agents
Citation for published version:
Feng, C & Hillston, J 2014, PALOMA: A process algebra for located Markovian agents. in Quantitative
Evaluation of Systems: 11th International Conference, QEST 2014, Florence, Italy, September 8-10, 2014.
Proceedings. Lecture Notes in Computer Science, Springer International Publishing, pp. 265-280, 11th
International Conference on Quantitative Evaluation of Systems (QEST 2014), Florence, Italy, 8/09/14. DOI:
10.1007/978-3-319-10696-0_22

Digital Object Identifier (DOI):
10.1007/978-3-319-10696-0_22

Link:
Link to publication record in Edinburgh Research Explorer

Published In:
Quantitative Evaluation of Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-10696-0_22
https://www.research.ed.ac.uk/portal/en/publications/paloma-a-process-algebra-for-located-markovian-agents(6fbb10ee-3097-45f2-adec-2b89a991548a).html

PALOMA: A Process Algebra for Located
Markovian Agents

Cheng Feng and Jane Hillston

LFCS, School of Informatics, University of Edinburgh
s1109873@sms.ed.ac.uk,jane.hillston@ed.ac.uk

http://www.quanticol.eu

Abstract. We present a novel stochastic process algebra that allows the
expression of models representing systems comprised of populations of
agents distributed over space, where the relative positions of agents in-
fluence their interaction. This language, PALOMA, is given both discrete
and continuous semantics and it captures multi-class, multi-message Marko-
vian agent models (M2MAM). Here we present the definition of the lan-
guage and both forms of semantics, and demonstrate the use of the lan-
guage to model a flu epidemic under various quarantine regimes.

1 Introduction

Collective systems, comprised of many communicating entities and without cen-
tralised control, are becoming pervasive. Without any global knowledge, entities
interact locally to create a system with discernible characteristics at the global
level; a phenomenon sometimes termed emergence.

The notion of locality has spatial relationship implicit within it, and thus
to faithfully capture these systems we have to be able to represent the spatial
arrangement of entities and the constraints that this places on their commu-
nication. For example, interactions may only be allowed for entities which are
co-located or within a certain physical distance of each other, or space may be
segmented in such a way that even physically close entities are unable to com-
municate. Furthermore movement can be a crucial aspect of the behaviour of
entities within the system. Therefore it becomes essential to develop modelling
formalisms in which space is captured explicitly, and in which the same entity in
different locations can be distinguished. Meanwhile, given the scale of collective
systems, which often rely on large populations of entities in order to meet their
objectives, we must also find efficient mechanisms both to express and to analyse
the developed models.

Multi-class Multi-message Markovian Agents Models (M2MAM) have re-
cently been proposed by Cerrotti et al. as a suitable framework for modelling col-
lective systems comprised of populations of agents which are spatially distributed
[1]. Several case studies [2–4] demonstrated that this is a powerful and useful
framework. However the model specification is in terms of matrices which capture
the possible interactions and influences between agents. This form of specifica-
tion is highly demanding on the modeller and prone to error. In this paper we

2 Cheng Feng and Jane Hillston

propose a process algebra to capture models within the M2MAM framework
and circumvent the rather cumbersome matrix specification. The process alge-
bra, PALOMA, is equipped with both discrete event and differential semantics.
This high-level specification is human-readable, less error-prone, amenable to
automated checking and supports automated derivation of the executable mod-
els defined by the semantics. More specifically, the discrete semantics provides
the theoretical foundation for discrete event simulation whilst the differential se-
mantics allows us to automatically derive the matrices, and thus the underlying
mean-field model of the M2MAM in the form of initial value problems.

The paper is structured as follows. We briefly introduce the concepts of
M2MAMs in the next section. Section 3 presents the syntax and discrete se-
mantics of PALOMA. This is followed by the differential semantics in Section 4.
In Section 5, a case study in which we apply PALOMA to the modelling of the
spread of flu in a multi-community society is presented. Finally, Sections 6 and
7 discuss related work, future research and draw final conclusions.

2 M2MAM

In this section, we briefly introduce the key concepts of M2MAMs, originally
presented by Cerrotti et al. in [1]. M2MAMs consist of a collection of Markov
agents (MAs) distributed over space, which is represented by a finite set of
locations. Each MA has a location attribute and can be denoted by a finite
state machine in which two types of transitions can happen: local transitions
and induced transitions. Local transitions occur whenever the MA changes its
state spontaneously with a delay governed by an exponential distribution. Local
transitions can also possibly emit messages that can cause the occurrence of
induced transitions in MAs at the same or other locations. This enables location-
based asynchronous interaction between MAs. The reception of a message is
governed by the perception function, which depends on both the location and
state of the sender and receiver MAs. When a MA receives a message, it can
either ignore or accept it. In the latter case, the agent will change its state
immediately by performing an induced transition.

Following [1], we use MAc(`) to denote a MA of class c in location `. A MAc(`)
can be defined as a tuple {Qc(`), Λc(`), Gc(`,m), Ac(`,m), πc0(`)}, in which:

– Qc(`) = [qcij(`)] is a nc×nc matrix, in which each element qcij(`) represents the

rate of the local transition from state i to state j, with qcii(`) = −
∑nc
j 6=i q

c
ij(`)

where nc is the number of states of a MA of class c.
– Λc(`) = [λci (`)] is a vector, in which each element λci (`) denotes the rate of a

self-jump transition which reenters the same state i, for a MA of class c.
– Gc(`,m) = [gcij(`,m)] is a nc × nc matrix in which each element gcij(`,m)

describes the probability of MAc(`) generating a message of type m during
a local transition from state i to state j.

– Ac(`,m) = [acij(`,m)] is a nc×nc matrix, in which each element acij(`,m) (i 6=
j) describes the acceptance probability of message type m for the MAc(`),

A Process Algebra for Located Markovian Agents 3

with induced transition from state i to state j whereas acii(`,m) denotes the
probability of dropping this message, and acii(`,m) = 1−

∑
j 6=i a

c
ij(`,m).

– πc0(`) is the initial state probability distribution of an agent of class c in
location `.

2.1 Model Analysis

The density of agents of class c in state i, in location ` at time t is denoted
pci (`, t). In M2MAMs, the density of agents of each class in a location is assumed
to remain constant, i.e. the value of

∑nc
i=1 p

c
i (`, t) = P c(`) is invariant. We use

a vector pc(`, t) = [pci (`, t)] to denote the state density distribution of agents
of class c in location ` and at time t. The analysis of interest is the transient
evolution of pc(`, t). It can be computed by solving a set of coupled ODEs.

First of all, the total rate at which messages of type m are generated by a
MA of class c in state j and location ` can be computed by:

βcj (`,m) = λcj(`)g
c
jj(`,m) +

∑
k 6=j

qcjk(`)gcjk(`,m) (1)

where the first term on the right hand side of the above equation gives the rate
at which messages of type m are generated by the MA in state j by a self-jump
transition, whereas the second term denotes the rate of message generation by
the MA during a local transition from state j to another state.

With βcj (`,m), we can compute γcii(`,m, t), the total reception rate of mes-
sages of type m by a MA of class c in state i and location `, at time t. The rate
γcii(`,m, t) is contributed to by all the messages of type m generated by MAs of
all classes in all states and all locations, as long as they can be perceived by the
receiver MA. Thus, γcii(`,m, t) is obtained by the following equation:

γcii(`,m, t) =
∑
`′∈V

C∑
c′=1

nc′∑
j=1

um(`, c, i, `′, c′, j)βc
′

j (`′,m)pc
′

j (`′, t) (2)

where C = {1, . . . , C} is the set of agent classes in the model, V is the location set
um(`, c, i, `′, c′, j) is the perception function of message m, whose value represents
the probability that an agent of class c, in state i, and in location ` perceives a
message m sent by an agent of class c′ in state j and in position `′.

Finally, we use a diagonal matrix, Γ c(`,m, t) = diag(γcii(`,m, t)) to collect
the rates in Equation (2), and the infinitesimal generator matrix Kc(`, t) for the
population CTMC of agents of class c in location ` at time t can be obtained by:

Kc(`, t) = Qc(`) +
∑
m

Γ c(`,m, t)[Ac(`,m)− I] (3)

where I is the identity matrix, the first term on the right hand side of (3) is the
infinitesimal generator matrix of the CTMC for local transitions, and the second
term gives the infinitesimal generator matrix for induced transitions which uses

4 Cheng Feng and Jane Hillston

the averaged effect to approximate the effect of all other agents’ interactions
with an agent of class c in location ` at time t.

Shifting to a mean field view, the transient evolution of pc(`, t) is captured
by standard Kolmogorov equations with initial conditions pc(`, t0) = P c(`)πc0(`)
for all ` and c:

dpc(`, t)

dt
= pc(`, t)Kc(`, t) ∀(`, c) (4)

3 PALOMA

PALOMA, the Process Algebra of Located Markovian Agents, is intended to
provide a simple process algebra-based formalism which can be used to generate
models in the M2MAM framework. M2MAM is used to generate a mean field
model, but being based on Markovian agents it is also amenable to a discrete
interpretation. As mentioned previously, PALOMA is equipped with both dis-
crete and differential semantics. In this section, we first introduce the discrete
interpretation, considering individual agents. We will then make the shift to
population CTMC and ultimately a mean field model in the next section.

3.1 Syntax

In keeping with the M2MAM framework, in PALOMA each agent is a finite
state machine and the language is conservative in the sense that no agents are
spawned or destroyed during the evolution of a model (although they can cease
to change state). Thus the language has a two level grammar:

X(`) ::=!(α, r).X(`) | ?(α, p).X(`) | X(`) +X(`) P ::= X(`) | P ‖ P

Agents are parameterised by a location, here denoted by `. Agents can un-
dertake two types of actions, spontaneous actions, denoted !(α, r), and induced
actions, denoted ?(α, p). When an agent performs a spontaneous action, it does
so with a given rate r, which is taken to be the parameter of an exponential
distribution, where 1/r is the expected duration of the action. Spontaneous ac-
tions are broadcast to the entire system, and can induce change in any other
agent which enables an induced action with the matching type α. An induced
action has an associated probability p, which records the probability that the
agent responds to a spontaneous action of the same type. In the style of the
Calculus of Broadcasting Systems [5], this can be thought of as the probability
that the agent listens as opposed to simply hearing. Alternative behaviours are
represented by the standard choice operator, +. A choice between spontaneous
actions is resolved via the race policy, based on their corresponding rates. We
assume that there is never a choice between induced actions of the same type.

A model, P , consists of a number of agents composed in parallel. There is no
direct communication between agents, for example in the style of shared actions
in PEPA [6]. Instead, all interaction is via spontaneous/induced actions. When

A Process Algebra for Located Markovian Agents 5

an action is induced in an agent the extent of its impact is specified by a percep-
tion function, u(α, `,X, `′, X ′)1. This is a further probability which, given the
locations of the two agents, their current states and action type involved, deter-
mines the likelihood that the induced action occurs. For example, the perception
function might have value 1 when the two agents are within a communication
radius r of each other, but a value of 0 whenever the distance between them is
greater than r. Obviously this gives a rich set of possible styles of interaction,
but note that each agent with an induced action chooses independently whether
to respond or not.

3.2 Semantics

The semantics proceeds in sequences of alternating steps. This can be regarded
as a semi-Markov process: the first step, corresponding to the spontaneous ac-
tion, determines a delay, whilst the second step is probabilistic and determines
what the next state will be, as each possible induced action makes the choice
of whether to respond, based both on its inherent probability of “listening” and
the perception function. Since each agent makes such a decision independently,
the probabilities can be multiplied to obtain the overall probability of a given
next state. Correspondingly we define two transition relations −→ and −→P .
These are shown in Figures 1 and 2 respectively.

In order to keep track of which agents have ”heard” the messages which are
broadcast by spontaneous actions we associate an ether element with the system,
which provides the environment for all agents. This has a distinguished empty
state E0. As shown in rule SpA, a spontaneous action can only be initiated if
the ether is currently empty, and no probabilistic transitions are enabled (→P/).
The resulting local state records that the ether contains the message α which
originated with rate r at location ` from the state !(α, r).X(`), and that the con-
tinuation is subject to a probabilistic resolution. Any state awaiting probabilistic
resolution is denoted SP . Note that SP states will not be in the CTMC.

If the ether contains a message α then an agent enabling an induced α action
may progress to a probabilistic state in which, with probability p, the continu-
ation X(`) is chosen, and with probability 1 − p, the continuation ?(α, p).X(`)
is chosen (rule InA). For other agents, their spontaneous actions are blocked un-
til the current one has been fully broadcast and probabilistically resolved (rule
NoSp). If the ether contains a message of type α then an agent enabling a spon-
taneous action of any type (including α) witnesses the ongoing action, enters a
probabilistic state and awaits resolution. This ensures that only one spontaneous
action can be in progress at a time. Note that there is no possibility of an agent
“sharing” the α action as would be possible in a language such as CSP or PEPA.
Similarly, if the ether contains a message of type α then an agent that enables an
induced message of any other type simply witnesses the ongoing action, enters a
probabilistic state and awaits resolution (rule NoIn). In some cases a spontaneous

1 Here we do not need to explicitly specify the class of sender and receiver agents as
it can be deduced by the state and the location attributes.

6 Cheng Feng and Jane Hillston

SpA E0, !(α, r).X(`)
(α,r)−−−→ [α, r, `,X], X(`)P (→P/)

InA [α, r, `′, X ′], ?(α, p).X(`)
(α,r)−−−→ [α, r, `′, X ′], (?(α, p).X(`) +p X(`))P

NoSp [α, r, `′, X ′], !(β, s).X(`)
(α,r)−−−→ [α, r, `′, X ′], !(β, s).X(`)P

NoIn [α, r, `′, X ′], ?(β, p).X(`)
(α,r)−−−→ [α, r, `′, X ′], ?(β, p).X(`)P (β 6= α)

E,X1(`)
(α,r)−−−→ E′, X ′1(`′)P

Ch1
E,X1(`)+X2(`)

(α,r)−−−→E′, X ′1(`′)P

E,X2(`)
(α,r)−−−→ E′, X ′2(`′)P

Ch2
E,X1(`)+X2(`)

(α,r)−−−→E′, X ′2(`′)P

E1, X1(`1)
(α,r)−−−→ E′, X ′1(`′1)P E2, X2(`2)

(α,r)−−−→ E′, X ′2(`′2)P

Par
(E1, X1(`1)) ‖ (E2, X2(`2))

(a,r)−−−→ E′, (X ′1(`′1) ‖ X ′2(`′2))P

Fig. 1. The delay transition relation for PALOMA

action may not induce any actions in other agents. If this is the case the message
will propagate, without impacting any other agents, except to put them into the
trivial probabilistic state. Choice behaves as we would anticipate. We assume
that within a choice both elements are in the same location as they correspond
to a single agent. Parallel agents must agree on the single spontaneous action to
take place, and consequently update the ether in the same way. A spontaneous
action is deemed to be complete when all agents have moved to a probabilistic
state. In this case a probabilistic resolution must be made to determine the next
state. This is defined by the probabilistic transition relation, which will clear the
ether and create the opportunity for the next spontaneous message.

Probabilistic resolutions are determined by a second transition relation −→P ,
shown in Figure 2. The only probabilistic states which genuinely have different
possible outcomes are those which resulted from an induced action. In this case
there are two different resolutions according to whether the induced action is
“listened to” or simply “heard”. In either case the ether is emptied when the
probabilistic resolution is made (rule PR1). First, a choice is made whether
to hear the message or not, but secondly, if the message is heard, its impact
is adjusted according to the perception function. This is consistent with the
M2MAM formalism. For other states the probabilistic resolution will simply
clear the ether and return the agent to an active state again (rule PR2). Parallel
agents undergo probabilistic resolution independently and their probabilities are
multiplied (rule ParP).

4 Differential Semantics of PALOMA models

Obtaining performance metrics via discrete event simulation can become very
expensive or even infeasible for PALOMA models when there is a large number of

A Process Algebra for Located Markovian Agents 7

PR1 [α, r, `′, X ′], (?(α, p).X(`) +p X(`))P

(α,p×u(α,`,X,`′,X′))−−−−−−−−−−−−−−→P E0, X(`)

(α,1−p×u(α,`,X,`′,X′))−−−−−−−−−−−−−−−→P E0, ?(α, p).X(`)

PR2 [α, r, `′, X ′], X(`)P
(α,1)−−−→P E0, X(`)

E,X1(`1)P
(α,p)−−−→P E0, X

′
1(`′1) E,X2(`2)P

(α,q)−−−→P E0, X
′
2(`′2)

ParP
E, (X1(`1) ‖ X2(`2))P

(α,p×q)−−−−−→P (E0, X
′
1(`′1)) ‖ (E0, X

′
2(`′2))

Fig. 2. The probabilistic transition relation for PALOMA

agents in the model. Thus, it is advantageous to define the differential semantics
for PALOMA which can automatically derive the mean-field model in the form
of initial value problems (a set of coupled ODEs with initial values) as done
for M2MAM. As solving the mean-field model is independent of the number
of agents in the system, this enables scalable analysis of PALOMA models. In
this section, we introduce the differential semantics of PALOMA models, first
developing a population-based structured operational semantics which lifts the
individual-based PALOMA model to a population-level view. This serves as an
intermediate tool for the generation of the mean-field model.

4.1 Population-based Structured Operational Semantics

In PALOMA, as agents in the same state and location are identical, it is advanta-
geous to use a population-based state vector to represent the state of the model
in which symmetric states are aggregated to mitigate the well-known state space
explosion problem. For example, consider the following simple two-location SIS
model in PALOMA, which we refer to as Example 1:

S(`) = ?(contact, p).I(`)+!(move, q).S(`′)

I(`) = !(contact, β).I(`)+!(recover, γ).S(`)+!(move, q).I(`′)

S(`′) = ?(contact, p).I(`′)+!(move′, q′).S(`)

I(`′) = !(contact, β).I(`′)+!(recover, γ).S(`′)+!(move′, q′).I(`)

u(contact, `,X, `′, X ′) ==

1

S` + I`
if (` = `′ ∧X = S)

0 otherwise

S(`)[NS(`)] ‖ I(`)[NI(`)] ‖ S(`′)[NS(`′)] ‖ I(`′)[NI(`′)]

The model captures a disease spread scenario, in which an infective agent (I)
makes a contact action spontaneously at the rate β. A susceptible agent (S) gets
infected by accepting a contact message with the probability p. The perception
function of the contact message can be explained as follows. If the message is
received by a susceptible agent in the same location as the message sender, it
can be perceived with probability 1

S`+I`
, where X` denotes the number of agents

in state X in location `. Otherwise, the message cannot be perceived. Intuitively,

8 Cheng Feng and Jane Hillston

the perception function of message contact means that an infective agent contact
one arbitrary agent in its current location. Thus, a susceptible agent in the same
location as the infective agent can perceive the contact message with probability
1/N`, where N` = S` + I` is the total number of agents in the location.

Agents in location ` move to location `′ by performing a spontaneous action
move at the rate q, and move back by a spontaneous action move′ at the rate q′.
The spontaneous actionsmove andmove′ do not have any corresponding induced
actions and so can be thought of as not emitting a message. An infective agent
can also do a recover action spontaneously without message emission at rate γ.

Lastly, the final equation gives the initial populations of agents, where for
example, S(`)[NS(`)] denotes NS(`) agents in the state S(`) in parallel. This is
syntactic sugar to ease the definition of large population models.

Now suppose we use a counting abstraction, constructing a state vector X =
(x1, x2, x3, x4) to represent the current state of the model, in which x1 denotes
the number of agents in state S(`), x2, the number of agents in state I(`), x3, the
number of agents in state S(`′) and x4, the number of agents in state I(`′). Then
the size of the state space is reduced from O(4N) to O(N4), where N =

∑
xi.

Using this notation, the x2 enabled transitions caused by the spontaneous
actions contact made by the x2 agents in state I(`) can be aggregated to a
population-level transition as follows:

E0,X
(contact,β×x2)−−−−−−−−−−→ [contact, β × x2, `, I],XP →P/ (5)

The probabilistic resolutions following from this transition can be aggregated:

[contact, βx2, `, I],XP

. . .

(contact,(x1i)×(pu)i×(1−pu)x1−i)
−−−−−−−−−−−−−−−−−−−−−−−→P E0,X + (−i, i, 0, 0)

. . .

(6)

where i = (0, 1, ..., x1), u is the value of the perception function. Note that(
x1

i

)
× (pu)i × (1− pu)x1−i is the probability that there are i out of x1 induced

transitions of the form S(`) =?(contact, p).I(`) actually fired, where (−i, i, 0, 0)
is the associated net change on the state vector caused by these transitions.

Furthermore, as the probabilistic resolutions occur immediately and finish
instantaneously after a spontaneous transition fired, we can use a new transition
relation −→∗, which we call the population-based transition relation to form the
following transitions to represent the transitions in equations (5) and (6):

X
(τ,β×x2)−−−−−−→∗ X + (0, 0, 0, 0) (7)

X

. . .

(τi,β×x2×(x1i)×(pu)i×(1−pu)x1−i)
−−−−−−−−−−−−−−−−−−−−−−−−→∗ X + (−i, i, 0, 0)

. . .

(8)

where τ , τi are the transition names, β×x2, β×x2×
(
x1

i

)
×(pu)i×(1−pu)x1−i are

the rates of the transitions, (0, 0, 0, 0) and (−i, i, 0, 0) are the net change of the
elements in the state vector caused by the transitions. Note that in population-
based transitions, induced transitions have rates derived from the spontaneous

A Process Algebra for Located Markovian Agents 9

E0, !(α, r).X(`)
(α,r)−−−→ [α, r, `,X], X(`)P →P/

PbSp
X

(τ,X[i1]×r)−−−−−−−→∗ X′{X′[i1] = X[i1]− 1,X′[i2] = X[i2] + 1}
X[i1] > 0

[α, r, `,X], (?(α, p).X ′(`′) +p X ′(`′))
P

{
(α,p×u)−−−−−→P E0, X

′(`′)
(α,1−p×u)−−−−−−−→P E0, ?(α, p).X ′(`′)

PbIn

X

. . .

(τk,rτk)−−−−−→∗ X′{X′[i2] = X[i2]− k,X′[i3] = X[i3] + k}
. . .

with X[i1] > 0, k = (0, ...,X[i2]), rτk = X[i1]× r ×
(
X[i2]
k

)
× (pu)k × (1− pu)X[i2]−k

Fig. 3. The Population-based Structured Operational Semantics

transitions. By doing this, we can analyse the influence of the spontaneous tran-
sitions and induced transitions on the population level dynamics of the model
separately. This simplifies the analysis of PALOMA models at the population
level because there are now no probabilistic transitions at this level.

We formally define the population-based structured operational semantics
with rules for population-based transitions for PALOMA in Figure 3. The premises
of these two rules describe the behaviour of single agents whereas the conclusions
gives the collective dynamics of the populations of agents. More specifically, the
rule PbSp infers a population-based transition from a spontaneous transition of
a single agent, in which X and X′ are the state vectors representing the states of
the model before and after the transition. i1, i2 are the indexes of count variables
in the state vector for agents in states !(α, r).X(`) and X(`) respectively. We do
not need to explicitly specify the count of agents in other states because they
remain invariant after the transition in the premise of rule PbSp. The rule PbIn
infers a set of population-based transitions from a transition of a single agent
induced by a sptontaneous action α fired at the rate r which is performed by an
agent in state X and in location `. i1, i2, i3 are the indexes of count variables in
the state vector for agents in states X(`), ?(α, p).X ′(`′) and X ′(`′) respectively.

4.2 Population-based CTMC Model for PALOMA

With the above state aggregation and population-based structured operational
semantics, we can define the population-based CTMC model for PALOMA. For-
mally, the population-based CTMC model for PALOMA is defined as a tuple
P = (X,D, T ,x0), where:

– X = (x1, ..., xn) is a state vector format, where each vector element is the
count variable of agents in a specific state and location.

– Each xi takes a value in a finite domain Di ⊂ Z+. Thus, D = D1 × ...×Dn
is the state space of the model.

10 Cheng Feng and Jane Hillston

– T (X) = {τ1, ..., τm} is the set of population-based transitions enabled in
state X, of the form τi = (r(X),d), where:

1. r : D → R≥0 is the rate function which depends on the current state of
the system.

2. d ∈ Zn, is the update vector which gives the net change on each element
of X caused by the transition.

– x0 is the initial state of the model.

4.3 The Mean-field Model

The population-based CTMC model for PALOMA is used to extract ODEs for
the mean-field model similarly to [7]. We will explain how this can be done in
this subsection. Firstly, if we are interested in the mean behaviour of the system
dynamics, the set of population-based transitions in the conclusion of the rule
PbIn can be aggregated by a single transition as:

X
(τ,X[i1]×r)−−−−−−−→∗ X + dτ (9)

where dτ [i2] = −pu×X[i2], dτ [i3] = pu×X[i2] and for j /∈ {i2, i3}, dτ [j] = 0.
Specifically, X[i1] × r is the rate at which the spontaneous transition α in the
premise of PbIn occurs, and it is also treated as the rate of the above aggregated

transition.
(
X[i2]
k

)
×(pu)k×(1−pu)X[i2]−k is the probability that there are k out of

X[i2] enabled induced transitions actually fired in the probabilistic resolutions of
the spontaneous transition, and in this case the net change in the count variables
for agents in state ?(α, p).X ′(`′) and X ′(`′) is (−k, k). Thus, by summing up the
product of all the possible net changes and their associated probabilities, we can
get the expected net change in the population level of agents in these two states
caused by the transitions induced by the α action performed by the agents in
state X(`) as follows:

Ed[i2,i3] =

X[i2]∑
k=0

(
X[i2]

k

)
(pu)k × (1− pu)X[i2]−k × (−k, k) = (−pu×X[i2], pu×X[i2])

Now, consider a population-based CTMC model for PALOMA (in which all the
population-based transitions in the conclusion of the rule PbIn are aggregated
in the style of Equation (9)) which is currently in state X with an enabled
transition τ . This means that in every 1/rτ time units on average, a change
in the population level of some agents denoted by X′ = X + dτ occurs. If we
approximate such a discrete change in a continuous fashion, then the change in
the population level of the agents over a finite time interval ∆t is:

X(t+∆t) = X(t) + rτ × dτ ×∆t

Rearranging the above equation and taking the limit ∆t → 0, we obtain the
ODE which describes the (approximated) transient evolution of the population

level of the agents in the system caused by transition τ as: dX(t)
dt = rτ × dτ

A Process Algebra for Located Markovian Agents 11

Taking all enabled transitions T (X) = {τ1, ..., τm} into account, the ODE
which describes the (approximated) transient evolution of the complete population-
level system dynamics, has initial condition X(0) = x0 and is defined as:

dX(t)

dt
=

m∑
i=1

rτi × dτi .

The Motivating Example We use Example 1 to illustrate our approach. From
the induced transitions in each location ˆ̀∈ {`, `′}:

S(ˆ̀) =?(contact, p).I(ˆ̀) induced by I(ˆ̀) =!(contact, β).I(ˆ̀)

we obtain τ1 = (βx2, (−pux1, pux1, 0, 0)) and τ2 = (βx4, (0, 0,−pu′x3, pu′x3))

respectively, where u =
1

x1 + x2
and u′ =

1

x3 + x4
.

From the following spontaneous transitions:

S(`) =!(move, q).S(`′) S(`′) =!(move′, q′).S(`) I(`) =!(move, q).I(`′)

I(`′) =!(move′, q′).I(`) I(`) =!(recover, γ).S(`) I(`′) =!(recover, γ).S(`′)

I(`) =!(contact, β).I(`) I(`′) =!(contact, β).I(`′)

We get the following corresponding population-based transitions:

τ3 = (qx1, (−1, 0, 1, 0)) τ4 = (q′x3, (1, 0,−1, 0)) τ5 = (qx2, (0,−1, 0, 1))

τ6 = (q′x4, (0, 1, 0,−1)) τ7 = (γx2, (1,−1, 0, 0)) τ8 = (γx4, (0, 0, 1,−1))

τ9 = (βx2, (0, 0, 0, 0)) τ10 = (βx4, (0, 0, 0, 0))

Therefore, the mean-field model for Example 1 is dX(t)
dt =

∑i=10
i=1 rτi × dτi .

The associated ODE model for each state count variable is:

dx1(t)

dt
= −β × x2 × p× u× x1 − q × x1 + q′ × x3 + γ × x2

dx2(t)

dt
= β × x2 × p× u× x1 − q × x2 + q′ × x4 − γ × x2

dx3(t)

dt
= −β × x4 × p× u′ × x3 + q × x1 − q′ × x3 + γ × x4

dx4(t)

dt
= β × x4 × p× u′ × x3 + q × x2 − q′ × x4 − γ × x4

The mean-field model matches our intuition from the M2MAM definition.

5 Case Study: Modelling the Spread of Flu

In this section, we extend the PALOMA model in Example 1 to model the spread
of flu in a multi-community society. The model captures a simplified scenario

12 Cheng Feng and Jane Hillston

of the 1918-1919 flu epidemic in central Canada, which was originally described
in [8]. Consider an isolated society which consists of m communities. Q is the
rate matrix in which each element qij is the rate at which a resident travels
from community i to community j. We use βi to denote the number of contacts
per person per day in community i. For various reasons, the number of contacts
per person per day is not the same in all communities. For example, suppose
community i is the business centre of the society, then the number of contacts
per person per day in community i should be higher than other communities.

In the epidemic model, a resident has three states: State S for susceptible,
I for infected and R for recovered. When a susceptible resident makes contact
with an infected resident, he will be infected by the flu with the probability p.
On average, it takes about 1/γ days for an infected resident to recover from the
flu. Once a resident recovers, he will not be infected again. We are interested in
how many residents are infected by the flu from the beginning to the end of the
outbreak. This can be captured by the following PALOMA model:

S(`i) = ?(contact, p).I(`i) +

m∑
j 6=i

!(moveij , qij).S(`j)

I(`i) = !(contact, βi).I(`i)+!(recover, γ).R(`i) +

m∑
j 6=i

!(moveij , qij).I(`j)

R(`i) =

m∑
j 6=i

!(moveij , qij).R(`j)

u(contact, `,X, `′, X ′) ==

1

S` + I` +R`
if (` = `′ ∧X = S)

0 otherwise

S(`1)[NS(`1)] ‖ I(`1)[II(`1)] ‖ . . . ‖ S(`m)[NS(`m)] ‖ I(`m)[II(`m)]

where the perception function of message contact also means that an infected
resident can make contact with an arbitrary resident in their current community.
Thus, a susceptible resident in the same location as the infective agent can
perceive the contact message with probability 1/N`, where N` = S` + I` +R` is
the total number of residents in the community `.

5.1 Investigate the Effect of Quarantine on the Spread of the Flu

In this subsection we present the results of some experiments run on the model
to investigate the effect of different quarantine policies on the spread of the
flu. For example, quarantine may be applied to a whole community which is
believed to be the source of the outbreak, reducing the likelihood of travel to
other communities. Alternatively, individuals who develop flu in any community
may be individually isolated and prevented from travelling.

Community-level Quarantine: Here we assume that the flu originates
from community i. We model the effect of community-level quarantine by adding
a quarantine factor 0 < σ < 1 to the rate at which residents travel into and out
of community i. More specifically, the value of Q(i, j) and Q(j, i) becomes qij×σ
and qji × σ repectively.

A Process Algebra for Located Markovian Agents 13

Individual-level Quarantine: Alternatively the focus may be on the indi-
viduals with the disease. Suppose that on average, an infected person exhibits
symptoms 1/η days after infection. Once an infected person is discovered, they
will be isolated immediately until recovery. To model this, we introduce a new
state ISO(`i), which represents an isolated infected resident currently in com-
munity i. Note that not all infected individuals will exhibit symptoms. The
modifications to the PALOMA model with individual-level quarantine are given
as follows:

I(`i) = !(contact, βi).I(`i)+!(recover, γ).R(`i)+!(discovered, η).ISO(`i)

+

m∑
j 6=i

!(moveij , qij).I(`j)

ISO(`i) = !(recover, γ).R(`i)

u(contact, `,X, `′, X ′) ==

1

S` + I` +R`
if (` = `′ ∧X = S)

0 otherwise

Note that an isolated resident cannot travel out of their current community or
contact other residents. As a result, an agent in state ISO(`i) can only do a
spontaneous action recover and go to the state R(`i). Moreover, ISO` is not
included in the perception function of contact which also reflects that isolated
residents do not have chances to contact other residents.

Model Analysis We consider five communities located in a star topology as
illustrated in Figure 4(d): we assume community 1 is the business centre of the
society and the flu also originates in Community 1. Thus, the community-level
quarantine is imposed on Community 1. We assume that there are 300 residents
of Community 1, 10 of whom are infected at the start of the study; 150 residents
of Community 2, 140 residents of Community 3, 100 residents of Community 4
and 100 residents of Community 5, all of whom are susceptible at the start of
the study. The values of parameters used in our simulation are given in Table 1.

Our simulation tool can parse PALOMA models and run discrete event sim-
ulations. The corresponding mean-field model is automatically generated in the
form of Matlab scripts when the model is parsed, and can be run directly in
Matlab. Figure 4(a), 4(b), 4(c) show our simulation results with 95% confidence
interval in three different senarios. The results generated by the discrete event
simulation (taking the average of 100 simulation runs) match well with the re-
sults of the mean-field model. The run time of a discrete event simulation for this
model is about 70 seconds on a dual CORE i5 machine whereas the mean-field
model can generate results instantly.

The results also give us some interesting information. It can be seen that
community-level quarantine only reduces the number of infected residents to a

p = 0.5 β1 = 1 βi = 0.5 (i 6= 1) γ = 0.2 η = 0.25 σ = 0.1 q12 = 0.1

q13 = 0.12 q14 = 0.13 q15 = 0.11 q21 = 0.4 q31 = 0.4 q41 = 0.3 q51 = 0.35
Table 1. Parameters used in the simulation

14 Cheng Feng and Jane Hillston

(a) No quarantine. (b) Community-level quarantine.

(c) Individual-level quarantine.

1

3

2 4

5

q12

q13

q14

q15

q21

q31
q41

q51

(d) The topology of the 5 commu-
nities in the simulation.

Fig. 4. The simulation result and the community topology of the flu spread model

limited extent whereas individual-level quarantine has a more profound effect on
controlling the spread of the flu.

6 Related Work

There have been many previous process algebras which encompass some spatial
modelling, ranging from very abstract space and mobility in the π-calculus [9] to
Cardelli and Gardner’s elegant process algebra based around affine geometry [10].
Some also incorporate stochastic behaviour, such as stochastic π-calculus [11],
Bio-PEPA [12], stochastic Bio-Ambients [13] and stochastic bigraphs [14]. But

A Process Algebra for Located Markovian Agents 15

in each of these space is abstractly represented and most focus on a containment
relationship between locations.

Closer to our work are the process algebras PALPS [15] and MASSPA [16].
PALPS, the Process Algebra with Location for Population Systems, is designed
for building ecological models, and offers language primitives targeted at this
application domain. Moreover, only an individual-based semantics is developed,
severely restricting the scalability of the models which can be developed. Like
PALOMA, MASSPA, the Markovian Agent Spatial Stochastic Process Algebra,
takes the M2MAM framework as its starting point. MASSPA emulates message
broadcast by allowing each spontaneous action to emit a number of messages,
loosely based on the likelihood that the single spontaneous action will trigger that
number of induced actions. This multiplication of actions affects the dynamics of
the system and no individual-based semantics is established. Instead MASSPA
models are translated into systems of chemical reactions and population-level
discrete event simulation based on mass action dynamics is developed. In con-
trast, PALOMA is equipped with both individual- and population-based seman-
tics, supports dynamic perception functions (i.e. based on the current system
state), which enables PALOMA to model adaptive behaviour. Furthermore, we
slightly extend M2MAM to allow agents to move between locations. The original
M2MAM framework requires the number of agents in each location to remain
constant because the derived ODEs describe the evolution of the state density
distribution of agents in each location over time, and then use that to derive
the number of agents in different states. However, in the differential semantics
of PALOMA, we use the ODEs to directly describe the evolution of number of
agents in different states in different locations. Thus we are able to allow agents
to move in PALOMA models, as demonstrated in the case study.

In [17] the authors apply mean-field models with locations (or classes more
generally), which are close to the mean-field models developed in this paper, to
the performance evaluation of network systems. PALOMA high-level language
to define models of this kind.

7 Conclusion

PALOMA is a novel stochastic process algebra which treats location as a pri-
mary feature of each agent, and allows the interaction of agents to be adapted
according to their locations. Location is just one possible interpretation of this
parameter, and more generally, PALOMA can be seen as supporting attribute-
based communication. This style of communication has previously been investi-
gated in languages such as SCEL [18], but in that context has not been amenable
to scalable analysis. Here we demonstrate how PALOMA may be equipped with
scalable analysis through both discrete event and mean field interpretations. Fu-
ture work will consider suitable notions of equivalence and logic, e.g. it could be
useful to consider agents which exert influence of the same type over an analo-
gous region of space, to be equivalent even though their exact locations differ.
We will also investigate abstractions of space within PALOMA models.

16 Cheng Feng and Jane Hillston

Acknowledgement

This work is partially supported by the EU project QUANTICOL, 600708.

References

1. Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C.T., Manzoni, P.: A Markovian
agent model for fire propagation in outdoor environments. In: Computer Perfor-
mance Engineering. Springer (2010) 131–146

2. Gribaudo, M., Cerotti, D., Bobbie, A.: Analysis of on-off policies in sensor networks
using interacting Markovian agents. In: 6th Annual IEEE International Conference
on Pervasive Computing and Communications, IEEE (2008) 300–305

3. Bruneo, D., Scarpa, M., Bobbio, A., Cerotti, D., Gribaudo, M.: Markovian agent
modeling swarm intelligence algorithms in wireless sensor networks. Performance
Evaluation 69(3) (2012) 135–149

4. Cerotti, D., Gribaudo, M., Bobbio, A.: Disaster propagation in inhomogeneous
media via Markovian agents. Critical Information Infrastructure Security (2008)
328–335

5. Prasad, K.: A calculus of broadcasting systems. Science of Computer Programming
25(2) (1995) 285–327

6. Hillston, J.: A Compositional Approach to Performance Modelling. CUP (2005)
7. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process

algebra models. IEEE Transactions on Software Engineering 38(1) (2012) 205–219
8. Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the spread

of the 1918–19 flu in central Canada. Bull of Mathematical Biology 65(1) (2003)
1–26

9. Sangiorgi, D., Walker, D.: The pi-calculus: a Theory of Mobile Processes. CUP
(2003)

10. Cardelli, L., Gardner, P.: Processes in space. In: Programs, Proofs, Processes.
Springer (2010) 78–87

11. Priami, C.: Stochastic π-calculus. The Computer Journal 38(7) (1995) 578–589
12. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis

of biological systems. Theoretical Computer Science 410(33) (2009) 3065–3084
13. Brodo, L., Degano, P., Priami, C.: A stochastic semantics for bioambients. In:

Parallel Computing Technologies (PaCT 2007),. LNCS (2007) 22–34
14. Krivine, J., Milner, R., Troina, A.: Stochastic bigraphs. Electronic Notes in The-

oretical Computer Science 218 (2008) 73–96
15. Efthymiou, X., Philippou, A.: A process calculus for spatially-explicit ecologi-

cal models. Application of Membrane Computing, Concurrency and Agent-based
Modelling in Population Biology (AMCA-POP 2010) (2010) 84–78

16. Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic
process algebra. In: Computer Performance Engineering. Springer (2011) 87–101

17. Bakhshi, R., Endrullis, J., Endrullis, S., Fokkink, W., Haverkort, B.: Automating
the mean-field method for large dynamic gossip networks. In: 7th International
Conference on the Quantitative Evaluation of Systems, IEEE (2010) 241–250

18. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach to
autonomic computing. In: Formal Methods for Components and Objects, Springer
(2013) 25–48

