
A Coalgebraic Approach to Bidirectional
Transformations

Faris Abou-Saleh1 and James McKinna2

1 University of Oxford; firstname.lastname@@cs.ox.ac.uk
2 University of Edinburgh; firstname.lastname@@ed.ac.uk

1 Introduction

Bidirectional transformations (bx) are a diverse collection of formalisms for
maintaining consistency between two or more related data models, such as
(a)symmetric lenses [2] and algebraic bx [3]. In a previous paper [1] we pro-
posed structures called set-bx as a unified framework for studying these for-
malisms. The main insight was that a bx between data sources A,B could be
represented by get and set operations on both A and B – such as getA : MA and
setA : A → M(), for some monad M – satisfying four ‘get-set’ laws. Crucially,
updates to A may affect B, and vice versa; the operations on A and B will not
commute in general, so that the states are entangled.

There are two important, related issues such a framework needs to address.
The first is how to compose two bx’s x : A ⇔ B and y : B ⇔ C, giving a bx
(x ·y) : A⇔ C. The second is that this composition is often only associative, and
has identities, up to some notion of equivalence of bx which must be identified.
We hope to describe partial answers to these questions in the context of set-
bx in a companion paper. However, the state monads we often use to describe
set-bx, and the corresponding composition and equivalence, also have an inter-
esting interpretation in terms of coalgebras, which we illustrate in this extended
abstract.

2 Coalgebraic set-bx

Definition 1. A set-bx h : A ⇔ B between A and B with respect to a monad
M consists of the following operations, satisfying the ‘get-set’ laws given in [1].

h.getA : MA h.setA : A→M() h.getB : MB h.setB : B →M()

In the case that MX is the side-effect monad for some state S, functions
f : X → MY = (Y × S)S are equivalent to functions f ′ : S → (Y × S)X by
(un)currying. This turns set-bx operations into functions resembling coalgebra
structure:

h.get′A : S → (A×S) h.set′A : S → (()×S)A (and similarly for h.get′B , h.set
′
B)

Simplifying the types of h.get′A, h.get
′
B into S → A and S → B and removing

units (), the product of these functions f := 〈h.get′A, h.set′A, h.get′B , h.set′B〉 is
the structure of a coalgebra for a suitable functor:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Definition 2. A coalgebraic set-bx α : A⇔ B is an FAB coalgebra α = (S, f :
S → FABS) where FABS = A × SA × B × SB, such that the components of f
(suitably expressed as α.getA, . . . , α.setB) satisfy the ‘get-set’ laws.

We now show how to compose two coalgebraic set-bx, writing e.g. x.get′A for
α.get′A x, and y.set′B b for β.set′B y b (and similarly for γ below).

Definition 3. Given coalgebraic set-bx α : A⇔ B and β : B ⇔ C with carriers
X,Y respectively, the composition γ = (α · β) : A ⇔ C has carrier Z given
by the pullback of f := α.get′B : X → B and g := β.get′B : Y → B – i.e. (in
Set), Z = {(x, y) ∈ (X × Y ) : f(x) = g(y)} – and structure corresponding to the
following operations (get′C , set′C are similar).

(x, y).get′A = x.get′A (x, y).set′Aa = let x′ ⇐ x.set′Aa in (x′, y.set′B(x′.get′B))

Theorem 1. The composition (α ·β) is a well-defined coalgebraic set-bx. More-
over, coalgebraic set-bx-composition is associative, and has identities, up to equiv-
alence given by coalgebraic bisimulation.

3 Applications and Future Work

When applied to the set-bx given in [1], our coalgebraic definitions capture stan-
dard notions of composition for asymmetric and symmetric lenses, and algebraic
bx. In particular, there is a close relationship between symmetric lens composi-
tion and equivalence [2], and their coalgebraic counterparts. Rather than relying
on ad-hoc definitions of behavioural equivalence and composition for each class
of bx, our definition allows standard concepts of coalgebra theory, such as bisim-
ulations and final coalgebras, to be used for reasoning about bx.

Another advantage is that our definitions readily generalise to wider class
of bx than previously considered, such as the I/O example in [1]. These bx
are allowed to introduce effects, such as non-determinism or I/O, given by
some monad N ; here, they correspond to coalgebras for the functor GABS =
NA×(NS)A×NB×(NS)B , which compose in a similar manner to the above def-
inition. Moreover, coalgebraic bisimulation yields a natural notion of behavioural
equivalence which may be used for studying these structures.

References

1. Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita
Stevens. Entangled state monads. Third International Workshop on Bidirectional
Transformations (BX 2014), Athens, 2014.

2. Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric lenses. In
ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Austin, Texas, January 2011.

3. Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and
open questions. Journal of Software and Systems Modeling (SoSyM), 9(1):7–20,
2010.


