Edinburgh Research Explorer

An Assessment of Locally Least-Cost Error Recovery

Citation for published version:
Anderson, SO, Backhouse, RC, Bugge, EH & Stirling, CP 1983, 'An Assessment of Locally Least-Cost Error
Recovery' The Computer Journal, vol. 26, no. 1, pp. 15-24. DOI: 10.1093/comjnl/26.1.15

Digital Object Identifier (DOI):
10.1093/comijnl/26.1.15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Computer Journal

Publisher Rights Statement:
Open Access Document

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 05. Apr. 2019


https://doi.org/10.1093/comjnl/26.1.15
https://www.research.ed.ac.uk/portal/en/publications/an-assessment-of-locally-leastcost-error-recovery(3038d7a2-d9e4-4790-8427-2007ad92fe3f).html

An Assessment of Locally Least-Cost Error

Recovery®

S. O. Anderson, R. C. Backhouse,} E. H. Bugge and C. P. Stirling
Department of Computer Science, Heriot-Watt University, Edinburgh, UK

Locally least-cost error recovery is a technique for recovering from syntax errors by editing the input string at the point
of error detection. An informal description of a parser generator which implements the technique is given. The
generator takes as input an extended BNF description of a language together with a set of primitive edit costs and
outputs a recursive descent syntax analyser including error recovery. Criteria for assessment of the technique are
offered. Using these criteria the technique is assessed with respect to a database of over 100 example programs, and
compared with an alternative local error recovery technique, that of follow set error recovery. The conclusion is that
locally least-cost error recovery is more effective than follow set error recovery but much less economical in its use of
storage space. The least-cost parser also runs between 15 and 209, slower than the follow set parser.

1. INTRODUCTION

Locally least-cost error recovery is a technique for
recovering from syntax errors by editing the input string
at the point of error detection. It was developed from
earlier theoretical work on syntactic error correction'™>
using an idea inspired by Fischer, Milton and Quiring.*
The theory on which the method is based is described by
Backhouse (Ref. 5, Chapt. 6) where the method is applied
to the ‘toy’ programming language PLO invented by
Wirth.®

Locally least-cost error recovery is essentially table-
driven and not amenable to hand-encoding. But, by the
end of 1980, we had completed the development of a
parser generator which implements the technique. The
generator inputs an extended BNF description of a
language together with a set of primitive edit costs and
outputs a recursive descent syntax analyser including
locally least-cost error recovery and associated error
messages. The purpose of this paper is to assess in some
detail the usefulness of this tool and the effectiveness of
locally least-cost error recovery.

A number of parser generators, automatically generate
error recovery. Lewi et al.” employ a notion of synchro-
triples to add error recovery to a recursive descent syntax
analyser which, like ours, is generated from an extended
BNF grammar. Pai and Kieburtz® use fiducial symbols
to direct the error recovery in a table-driven parser
generated from an LL(1) grammar. Error repair as the
basis for error recovery has been used by Feyock and
Lazarus® and Réhrich;!? the idea of edit costs to choose
among possible repairs goes back to Graham and
Rhodes.!! Closest to our own is the work of Fischer,
Milton and Quiring* whose notion of insertion-only error
correction is generalized by our notion of locally least-
cost repair.

* This work was supported by grants from the UK Science and
Engineering Research Council and the Carnegie Trust for the
Universities of Scotland.

t Present address: Dept of Computer Science, University of Essex,
Wivenhoe Park, Colchester, CO4 3SQ, UK.

Few assessments of error recovery schemes have been
given in any detail. Some evaluate the performance of
their schemes on one short program; others just provide
one or two small examples of the error recovery achieved.
Our assessment is based on comparing the performance
of locally least-cost error recovery with follow set error
recovery® 213 over 126 Pascal programs collected by
Ripley and Druseikis.'*

Section 2 of this paper gives an overview of the
principal elements of locally least-cost error recovery and
Section 3 describes the parser generator. Sections 4 and
5 discuss the basis for our assessment of the technique
and Section 6 discusses its effectiveness in producing
good error recovery and its efficiency with respect to
storage and time overheads. Section 7 summarizes our
results and examines the remaining weaknesses of the
technique.

2. LOCALLY LEAST-COST ERROR RECOVERY

The principal idea governing locally least-cost error
recovery is that the input symbol at an error-detection
point may always be edited to some string which allows
the parse to continue normally. The choice of string to
which the input symbol is to be edited is effected by
assigning costs to the primitive edit operations of
inserting or deleting a single symbol, or changing one
symbol to another. For example, suppose the parser
encounters the following assignment within a Pascal
program. (The ellipsis dots indicate unknown symbols
following the identifier c.)

a=2c...

An error is detected on reading the input symbol c; it
may be repaired by editing ¢ to the empty word—
effectively deleting c—Dby editing ¢ to one of ‘+¢’, ‘*¢’,
‘—¢’ etc.—effectively inserting an arithmetic operator—
or by editing c to ‘;c’—effectively inserting a semicolon.
Which string is chosen depends on the relative costs,
assigned by the compiler writer, of deleting c, inserting

CCC-0010-4620/83/0026—-0015 $05.00

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 15

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

S. O. ANDERSON, R. C. BACKHOUSE, E. H. BUGGE AND C. P. STIRLING

an arithmetic operator or inserting a semicolon. Suppos-
ing the latter is given the least cost the generated parser
will produce the output

a=2c ...
", inserted

and continue parsing as if the input had been ‘a =2;c¢
A more substantial example of locally least-cost error

recovery is shown in Example 1. The example is of a
MODULA program written by one of the authors (Stuart

1  interface module forkanddoor;
2 define enter, pickup, putdown, exit;

b A symbol deleted
e A identifier inserted
3 var forkinuse :array 0:1 of boolean;

4 noinroom : integer;

5 inroom : array 0:1 of boolean

6 down0, downl : signal;

xx A semicolon inserted

7  procedure enter(who : integer);

8  begin

9 noinroom := noinroom + 1; inroom{who) := true;
10 end enter;

11  procedure exit(who : integer);

xx A symbol deleted

xxk A

e A symbol deleted

12 begin

13 noinroom := noinroom — 1; inroom{who) := false;
14  end exit

xx A symbol deleted

15 procedure pickup( fork : integer);

T A A name misspelt
xx A symbol deleted
*%% AN AN
16

17 case fork of

Example 1. Error recovery for MODULA.

Anderson). At the time he was a novice MODULA
programmer and, inadvertently, he used exit, a reserved
word, as the name of a procedure. Throughout the
program exit has therefore been deleted. Thus, for
example, the suggested repair of line 11 is

procedure who: integer;

Note that when the chosen repair consists of deleting a
sequence of symbols the message ‘symbol deleted’
appears only under the first, the remaining symbols being
marked simply by ‘“’. Note also that an insertion is
indicated beneath the symbol following the place of
insertion. Thus the message ‘insert semicolon’ beneath
down0 in line 6 indicates that a semicolon should be
inserted immediately before down0.

Unlike many other proposed recovery schemes, locally
least-cost error recovery is totally independent of any
parsing algorithm. The only requirement on the parser is
that it have the valid prefix property; it should announce
an error as soon as a prefix of the input has been read for
which there is no valid continuation. The LL(1), LR(1)
and Earley’s parsing algorithms all enjoy this property,
and techniques for incorporating locally least-cost error
recovery in them have been described elsewhere.> !5 16

Two deficiencies of locally least-cost error recovery are
worth stressing. The first, the local nature of the choice

16 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

of error repair, is well illustrated by our earlier example.
If the actual input were

a:=2c:=...

then inserting a semicolon is clearly a plausible repair.
However, had the input been

a=2c+--

its plausibility is much reduced. The second deficiency is
the fact that repairs are made to the input symbol at the
point of error detection. Thus the input

ifa=bthenx=0;else. ..

would be repaired by deleting the symbol else rather than
the semicolon because it is not until the symbol else has
been seen that an error in the input is detected.

Other deficiencies of the scheme are its inability to
recognize multiple occurrences of the same error (for
example, a misspelt identifier within a declaration will
lead to ‘undeclared identifier’ errors wherever it is used)
and to recognize systematic misuse of a language
construct. An example of the latter would be the use of
the Algol 60 step . . . until within a Pascal for statement.
It also makes no attempt to handle semantic or context
sensitive errors in the input.

The virtue of the scheme is that it makes no
assumptions about the most likely kinds of errors—its
only assumption is that any input string can be edited to
a syntactically correct string by a sequence of insertions,
deletions and changes—and yet it provides within the
primitive edit costs a simple mechanism whereby the
compiler designer may tune the error recovery to foreseen
error patterns. Thus, at one extreme, the compiler
designer may set all edit costs to infinity, in which case
there will be no recovery—the compiler will abort
whenever an error is detected. One may set all delete
costs to finite values and all insert/change costs to
infinity, in which case ‘panic mode’ error recovery will be
invoked on error detection, causing whole sections of
code to be skipped until an expected symbol is encoun-
tered. Or one may, as we have done, begin with a
preconceived idea of the most likely errors (e.g. missing
semicolons), assign low costs to the corresponding edit
operations and then proceed to experiment with the
costs, using a database of observed errors to adjust the
edit costs until the recovery is the best possible within the
limitations of the scheme. In summary, locally least-cost
error recovery consists of the single mechanism of editing
the next input symbol at least cost; but it incorporates
flexibility by allowing edit costs to be chosen at will.

3. ELEMENTS OF THE PARSER GENERATOR

The software we have written generates a recursive
descent syntax analyser, written in Pascal, incorporating
locally least-cost error recovery. The input is an extended
BNF description of the language!’ together with edit
cost information for each terminal symbol. The bulk of
our software is written in Pascal but we also make
extensive use of facilities in Unix* primarily to overcome
limitations of our Pascal compiler.

* Unix is a trademark of Bell Laboratories.

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

AN ASSESSMENT OF LOCALLY LEAST-COST ERROR RECOVERY

Using a PDP 11/34 we have successfully generated
syntax analysers for Algol 68, MODULA and Pascal as
well as for many toy programming languages. However,
for real programming languages the software runs at the
limits of the storage capacity of our machine; it would
not be possible, for example, for us to generate an Ada
syntax analyser.

There are four phases in the generation of a syntax
analyser, which are as follows:

(1) Checking phase. In this phase three checks are carried
out on the input grammar, namely a syntax check, a
check for useless productions, and an LL(1) test. Any
adverse results reported by the first two checks cause
subsequent processing to be discontinued. On the
other hand, if the grammar is not LL(1) a syntax
analyser will still be generated but locally least-cost
error recovery cannot always be guaranteed and the
generated parser may require modifications to elim-
inate non-deterministic choices at the non-LL(1)
positions.

(2) Terminal symbol classification. Two terminal symbols
tand ¢’ are in the same class when:

(i) whenever ¢ is a valid continuation of some input
string then ¢’ is so also, and vice versa
(i) tand ¢’ have identical delete costs and the cost of
changing ¢ to any ¢” is the same as changing ¢’ to
t.
Classifying terminal symbols leads to considerable
compression in the size of the sets and tables needed to
determine error recovery. However, it does add some
complexity to the parser since error recovery is defined
with respect to the classes while correct parsing is done
with respect to the symbols. For more details of the
classification algorithm see Ref. 18.

(3) Recovery policy determination.
(4) Final parser generation.

The core of the system is phase 3 whose task is to
construct a table of recovery policies for each production
in the extended BNF grammar. These tables indicate,
for every possible combination of input symbol and state
of the syntax analyser, what action should be taken to
simulate editing the input symbol. The general form
taken by these tables is illustrated by Fig. 1, which
contains the recovery policies for the two productions

st — if u then {s/} [e] fi
sl—st;

in a simple grammar.

Consider the first of these tables. The first row is the
production and the first column is a list of the terminal
symbols in the grammar. The remaining non-numeric
entries are the recovery policies for each combination of
production position and input symbol. Suppose, for
example, that the recursive descent procedure st is called
with input if fi. Then, according to the table, the symbol
if is ok. The symbol fi following it is not; from the row
labelled by fi in the upper table we see that to recover
from the error one must ins(ert) the sequence of symbols
u then {s/} [e] before recovery is achieved. Note that
inserting an iterated construct like {s/} or an optional
construct like [e] costs nothing because each may be
empty.

st if u then  {s/} [e] fi

then ** ins ok del x %

fi o ins ins ins ins ok
0

else *x del del ins call *x
0 r+1

. % del del del % *
r+1 r+1

if ok ins ins call *x x

; ** ins ins call *% *x

id *x call cha call % *x

EOF = abort abort abort xx x%

sl [s] ;
then *x del

fi *x del 4
else *x del 1
r+1
. *% del 1
r+1
if call ins
; ins ok
id call ins

EOF  *=* abort

Key
ok  input symbol and expected symbol agree
del delete input symbol
ins  insert expected symbol
call call procedure corresponding to expected symbol
cha change input symbol to expected symbol
abort no repair possible with given costs—abort parse

Numbers following a policy (e.g. del 4) indicate that the policy depends
on the value of a parameter passed to the lhs procedure. Numbers
beneath a policy indicate how these parameters are to be evaluated.
Entries marked ** will never be accessed.

Figure 1. Tables of recovery policies.

Sometimes the recovery policy is contingent upon the
history of the parse. For example, suppose one is parsing
an Algol program and an error is detected on reading the
symbol else. Two situations in which this might occur are
shown below.

ifa=>bthenx=2+(y + zelse. .. (1)
ifa=bthenx=0;else. .. 2)

In (1) else is expected following a closing parenthesis. In
other words the appropriate edit sequence is to insert )’
and then else is ok. In case (2) the semicolon terminates
the conditional statement. Thus else is left dangling with
no associated if-part. If backtracking is disallowed, as it
is in our scheme, then the appropriate method of recovery
is to delete else and resume parsing at the following
symbol.

Such contingencies are handled by parameterizing
some of the entries in the table of recovery policies. The
second table in Fig. 1 shows three examples. Specifically,
when a semicolon is expected and fi, else or ‘.’ is
encountered the chosen edit sequence is dependent on
the value of a parameter passed to the procedure s/. This
is indicated by the integer following each of the relevant
entries in Fig. 1. Such integers are called boundary costs
because they represent the boundary between choosing
the tabulated policy or returning from the procedure call.
The tabulated policy is called the non-return policy; the
alternative, chosen when the parameter exceeds the
boundary cost, is to continually ins(ert) symbols until the
procedure has been left.

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 17

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

S. O. ANDERSON, R. C. BACKHOUSE, E. H. BUGGE AND C. P. STIRLING

The entries beneath the policies in the upper table of
Fig. 1 specify how the parameters are to be evaluated.
We shall not discuss the parameter evaluation mechanism
here since it is not relevant to our assessment. The
interested reader is referred to Ref. 5. What is relevant to
our assessment, however, is that the technique requires
the storage of a potentially very large number of integer
values. We have, therefore, expended a great deal of
effort to develop automated techniques for reducing the
size of the parameter and boundary cost tables. Classi-
fying the terminal symbols'® cuts down their size by
about 40%, after which a global flow analysis of the
parameters'® makes significant economies, reducing the
incidence of parameters and boundary costs to the level
typified by Fig. 1. Statistics on the size of these tables for
Pascal are given in Section 6.

Having computed the recovery policies the final phase
istoencode them into a recursive descent syntax analyser.
The result of encoding the tables in Fig. 1 is shown in
Fig. 2.*

An important observation to be made about Fig. 2 is
how closely the generated code resembles the code that
a programmer might well write. This, we believe, is one
of the most commendable features of our software since,
compared to a table-driven parser, it will be relatively
straightforward for an experienced compiler writer to
amend or augment the basic syntax analyser.

The procedures insert, change, delete and abortparse,
referred to in Fig. 2, perform very simple functions. Insert
and change simply output an error message (‘x inserted’
or ‘changed to y’, respectively). Delete consists of a simple
loop which outputs ‘symbol deleted’ and advances the
input on each iteration and terminates when the input
symbol is not in a given set.

Two types of set are evident in Fig. 2. The first consists
of elements of type symbol, e.g. [idsy, ;sy, fisy], and the
second elements of type class, e.g. [.cl, thencl]. The class
sets are obtained by grouping together common elements
in each column of a table of recovery policies (e.g. all
elements for which the policy is del); the symbol sets are
a by-product of the LL(1) test.

The above-mentioned process of parameterizing the
error recovery is hidden away in five procedures. Three
of these are shown in Fig. 2—addparam, removeparam
and pdelete. Addparam and removeparam maintain a stack
of parameter-table indices as the parsing proceeds.
Pdelete is a more complicated version of delete which
makes use of the parameter stack.

Significant modularity of the code generation routines
in Phase 4 is achieved by giving a unique name to each
production position in the grammar; each type of set is
identified by a unique symbol which is prefixed to the
position name. For instance the position names in Fig. 2
are st_101, st_102 etc., d is the prefix for a delete set, a is
the prefix for an abort set, and so on. In this way the
recursive descent routines can be generated separately
from the set assignments. A disadvantage is that a very
large number of scalar variables are generated, but this
is rectified by using the C preprocessor provided with
Unix to eliminate the majority of them before the parser

* The code in Fig. 2 is, of course, illegal in Pascal. The requirement
imposed on the user in order to generate valid code is that all terminal
and non-terminal symbols of the input grammar are valid Pascal
identifiers. This requirement has been ignored here for greater clarity.

18  THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

Ist_0 = [idsy];

Sl := [idsy, ;sy, ifsy];
fu = Ist_0;
fe = [elsesy];

as_0 :=[EOFcl];
dst_101:= [-cl, elsecl];
ast_101:=as_0;
dst_102:=dst_101;
gst_102:= [idcl];

ast_102:=as_0;
dst_103:=[-cl, thencl];
ast_103:=as_0;

procedure st (fstparamindex, lastparamindex : paramindex);
addparam ( fstparamindex, lastparamindex);
else begin
next {skip if };
delete(dst_101);
if (cursymbol in fu)
then u
else if curclass in ast_101 then abortparse
else insert (iu);
delete (dst_102);
if (cursymbol = thensy) or (curclass in gst_102)
then begin
if cursymbol () thensy then change (gthen);
next
end
else if curclass in ast_102 then abortparse
else insert (ithen);
delete (dst_103);
while (cursymbol in f5!) do

sl (mst_103, nst_103);
delete (dst_103);
end;
if curclass in ast_103 then abortparse;
if (cursymbol in fe)
then e(mst_104, nst_104);
next {skip fi};
end;
removeparam( fstparamindex, lastparamindex);
end; {st}
procedure s/ ( fstparamindex, lastparamindex : paramindex);

addparam ( fstparamindex, lastparamindex);

if (cursymbol in f51)

then st (msi_0, nsi_0);

pdelete (dsl_1, esl_1, bsl_1);

if (cursymbol = ; sy)

then next:

else if curclass in asl_1 then abortparse

else insert (i;);

removeparam ( fstparamindex, lastparamindex);
end; {s/}

Figure 2. Code generated from policies in Fig. 1.

is compiled. Another disadvantage, which is less easy to
rectify, is that we are obliged to use very short names for
non-terminals—‘st’ instead of ‘statement’, ‘sI’ instead of
‘statement_list’. This is because both the C preprocessor
and the Pascal compiler we use assume that all identifiers
are unique up to the first eight characters. We get around
this by using the Unix editor to abbreviate non-terminal
names in the input grammar and then to reverse the
abbreviations in chosen circumstances after all the
processing is complete. The final effect is a highly
readable, well-structured Pascal program with meaning-
ful procedure names like statement, expression, etc.

A straightforward examination of the generated code
enables one to make a number of preliminary remarks on
its efficiency. First, compared to a syntax analyser with
no error recovery, the overheads on parsing correct input

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

AN ASSESSMENT OF LOCALLY LEAST-COST ERROR RECOVERY

strings are: (1) evaluation of the parameters; (2) calls to
delete or pdelete; (3) classification of the input symbols.
Additionally, excluding calls to next (the lexical analyser),
parsing incorrect strings is virtually equivalent to parsing
the edited input suggested by the syntax analyser. In
other words, there is a high correlation between the time-
efficiency of the syntax analyser and its effectiveness.

4. BASIS FOR THE ASSESSMENT

Making an objective assessment of a recovery scheme
developed by oneself is fraught with difficulties. Assess-
ments of other schemes?® 2! have used a simple classifi-
cation of error diagnostics as ‘good’, ‘acceptable’ or
‘poor’. But who is to judge the ‘goodness’ of a diagnostic?
It ought not to be the implementor of the system, although
that is who it invariably is. Other assessments, as noted
by Ripley and Druseikis,'* ‘consist at best of an
illustration of the technique on a few examples, almost
invariably leaving the reader wondering how represent-
ative these examples are, and how well the technique
works in general’.

In order to be as objective as possible we made two
decisions. First, we have based our assessment almost
entirely on a database of erroneous Pascal programs
kindly supplied to us by G. David Ripley.'* Second, we
decided to compare our scheme directly with the ‘follow
set’ scheme described by Wirth.® To this end two of our
team (Edle Bugge and Colin Stirling) were given the
tasks of producing the best possible error recovery for
Pascal within the constraints of, respectively, locally
least-cost error recovery and follow set error recovery.
Both worked independently on the syntax analysers but
collaborated on the assessment of the schemes; both were
inexperienced in the schemes they were implementing
when they began their tasks.

The systematics of follow set error recovery®!%13 is
that with each state s of the parser there is associated a
set f(s) of follow symbols, those terminal symbols which
are ‘admissible’ in state s. Should the symbol ¢ returned
by the scanner happen to be unacceptable in state s, then
an error message is emitted and several symbols are
skipped until a symbol ¢’ in the set f(s) is reached. The
parser and the function fare tuned in such a way that the
parser will advance to a state s’ in which ¢ is accepted.
Note that advancing to state s is effectively equivalent to
inserting some sequence of symbols which would in the
normal course of events take s to s'. Skipping symbols is
also equivalent to deleting them.

There is considerable variation in the choice of f. At
one extreme only symbols acceptable in state s are in
f(s); this defines ‘panic mode’ error recovery in which
symbols are skipped until an acceptable symbol is
encountered. At the other extreme all terminal symbols
are included in f(s) giving ‘insertion-only’ error recovery.

Wirth® describes a systematic way of achieving a
compromise between the two extremes but there is still
latitude in his description. For instance, Wirth’s code for
recognizing {*;’ statement} (Ref. 6, p. 343) is

while sym in [semicolon) + statbegsy do
begin
if sym = semicolon then getsym else error(10);
statement ([semicolon, end] + fsys)
end

whereas his code for recognizing {‘,” vardeclaration} (Ref.
6, p. 345) is

while sym = comma do
begin getsym; vardeclaration
end

In both cases zero or more repetitions of a construct of
the form 74 are being recognized, where ¢ is a terminal
and A is a non-terminal symbol. By testing for both sym
in statbegsys and sym = semicolon in the former, one is
anticipating the possibility of a missing semicolon; in
contrast, a missing comma is not anticipated in the latter
segment of the code.

A second instance of the latitude in Wirth’s scheme is
in the recognition of terminal symbols. Typically the code
may take the form (Ref. 13, p. 237)

if sy = semicolon then insymbol else error(14)
or (Ref. 13, p. 229)
if sy = semicolon then insymbol else

begin error(14);
if sy = comma then insymbol
end

Both conditional statements accept semicolons but the
second anticipates the use of a comma instead of a
semicolon whereas the first does not. In terms of error
repair, the second conditional simulates the operation of
changing a comma to a semicolon.

Because of this latitude in Wirth’s scheme (which, by
the way, is not well documented) we have been obliged
to experiment in order to achieve the best possible results
with the scheme. The statistics we give for the assessment
of the follow set scheme are therefore themselves the
outcome of a separate inquiry into its effectiveness. For
further details see Ref. 22.

There are many similarities between locally least-cost
error recovery as implemented in a recursive descent
syntax analyser and follow set error recovery. Both
recover at the point of error detection without backtrack-
ing over the input, both use one-symbol lookahead to
evaluate the recovery policy. Neither contains a mecha-
nism for handling context-sensitive errors or repeated
misuse of a language. Finally, both are intended to offer
a compromise between economy and effectiveness; they
should provide sensible diagnostics with only a marginal
overhead on computational resources. The comparison
we make is therefore one of like with like. It is made
more valuable by the fact that follow set error recovery is
undoubtedly popular and is also recommended for use in
an environment where introductory programming is
taught.!3

Our assessment of the follow set scheme may be
unorthodox and so requires explanation. It is common
when using this scheme to simply indicate the symbol or
symbols expected at the point of error detection. Thus,
for example, Wirth’s implementation of Pascal-S'3
includes a preponderance of messages like ‘dot expected’,
‘then expected’ and ‘a constant cannot begin with the
indicated symbol’. Sometimes the recovery action taken
by the compiler is obvious from the error message—if
‘semicolon expected’ appears it is often safe to assume
that the compiler has effectively inserted a semicolon at
the error detection point—but, more often than not, the
diagnostic whitewashes over the recovery action. Com-

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 19

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

S. O. ANDERSON, R. C. BACKHOUSE, E. H. BUGGE AND C. P. STIRLING

monly one or more symbols may be skipped before
parsing resumes but it is rare for this to be indicated to
the user. To get a clearer and, we believe, more objective
appraisal of follow set error recovery we have modified
the diagnostics so that they indicate the effective repair
of the input string made by the parser. Thus, if a symbol
is skipped the diagnostic is ‘symbol deleted’; if a
particular symbol x is expected and effectively inserted
(for example a semicolon) the diagnostic is ‘x inserted’;
finally, if a symbol x is expected and the input symbol is
effectively changed to x (as might happen for instance
when ‘=" instead of ‘=’ is used in an assignment) the
diagnostic is ‘changed to x’.

The criticism that may be made is that in so doing we
have made follow set error recovery look like a scheme
for error repair when it was never originally conceived as
such. Our counter to this criticism is that we are
attempting to assess the error recovery rather than the
diagnostics. Good diagnostics are vital, of course, but
their design is a separate issue from the design of the
error recovery. Good diagnostics are useless, however, if
the error recovery is poor!

Note that our comparison is of the ‘bare’ schemes,
locally least-cost versus follow set error recovery, although
for a truly practical compiler we would normally
recommend augmenting both by the use of error
productions?® or semantic routines.” There are two
exceptions to this statement. First, the strict syntax of
Pascal insists on declarations in the order label-, const-,
type-, var-, and procedure/function-declarations. Follow-
ing common procedure our syntax analysers allow
declarations in any order but code has been added to flag
an error if the given order is violated. Second, Pascal is
non-LL(1) in that an identifier may begin an assignment
statement or a procedure call. We overcome this problem
indifferent ways in the two analysers, by using a primitive
symbol table in the locally least-cost analyser and by
using a modified LL(1) grammar in the follow set
analyser. For further details see Refs 22 and 24.

S. CRITERIA FOR ERROR REPAIR

Ripley and Druseikis'# report that the most common
type of Pascal programming error is a single symbol
error. Hence, in actual practice, one can often speak of
the ‘most plausible’ error repair. This is the central
criterion for ‘best repair’ that we use. However, there are
cases where there is a group of equally plausible repairs
and other cases where there just is not a plausible repair.
(An instance of the latter is where the error is a ‘wrong
language’ error, for example ‘f=if x =0 then 1 else
x*#f(x — 1)’ in a Pascal program.) In these cases the
minimum distance criterion’ is useful. The distance of a
repair from the input string is the sum of the primitive
edit operations used, where a single insert, delete or
change counts as one. A minimum distance repair is one
closest to the input string. Thus, we use this criterion to
thin down an initial set of equally plausible repairs, and
to constitute the definition of ‘best repair’ in those
circumstances where there is not a unique most plausible
repair. Note that, as in example 4 below, a minimum
distance repair can be implausible.

An error recovery scheme is not only to be judged upon
what repairs are made, but also upon how it actually

20 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

makes those repairs. This accounts for the different
categories (i) and (ii) below. We have divided the repairs
made by a recovery scheme into seven groups.

(1) The recovery scheme repairs to the most plausible
repair and it does so in minimum distance.
(Abbreviated MPR)

(ii) The recovery scheme repairs to the most plausible
repair but does not do so in minimum distance.
(Abbreviated PR)

(iii) The recovery scheme repairs to a minimum distance
repair which is not the most plausible repair.
(Abbreviated MD)

(iv) The repair is not the most plausible (and sometimes
not at all plausible) nor minimum distance but has
no effect upon the parsing of subsequent symbols.
(Abbreviated R)

(v) The recovery scheme repairs neither to the most
plausible repair, nor to a minimum distance repair
and does so by entering into panic mode. That is, it
deletes a number of symbols until a ‘safe’ symbol is
found. (Abbreviated P)

(vi) The recovery scheme cascades; that is, it repairs in
such a way as to cause errors to be found in later
correct parts of the program. (Abbreviated C)

(vii) The repair satisfies both (v) and (vi). (Abbreviated
PC)

The difference between categories (i) and (ii) is illustrated
by examples 2 and 3. The resulting repaired program is

1 program p(input, output); begin begin
2 end-
X% A end inserted

Example 2. MPR repair.

1 program p(input, output); begin begin

2 end-

e A symbol deleted
% A end inserted
T A dot inserted

Example 3. PR repair.

program p(input, output);

var count, listdata : array[1. .2] of integer;

begin

if count|listdata[sub) := 0

** A changed to plus
then begin f := listdata[sub];

T A ]inserted

6 end;x:=1end

1
2
3
4
*
5

Example 4. MD repair.

1 program p(input, output);
2 function search(i: integer; x: order; ) : boolean

xx A id inserted
£x% A colon inserted
k% A type id inserted

3 vargq:integer; begin x := 1 end; begin end.
Example 5. R repair.

1 program p(input, output); begin

2 repeat writeln(‘ input is:’, number)
3 if number) 1

xx A symbol deleted

. AAA

4 then x := 1 until x = 1 end.

* kK AN A A

Example 6. P repair.

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

AN ASSESSMENT OF LOCALLY LEAST-COST ERROR RECOVERY

the same in both cases and is the most plausible. But,
unlike the former, the latter does not make the repair in
minimum distance.

Example 4 is an instance of category (iii). The repair
is minimum distance but is not a plausible repair. -

Group (iv) consists of those repairs that are neither
plausible nor minimum distance and also are not the
result of panic or cascade. Example 5 is a case in point.

An instance of category (v) is given by example 6.

Here the follow set scheme deletes until it reaches the .

‘safe’ symbol until. This is an instance of a highly
implausible repair caused by the error recovery scheme
entering into panic mode. Such is a central facet of follow
set error recovery, but in many cases it results in a most
plausible repair (for instance, when a single symbol only
is deleted). Hence, category (v) is intended to capture
only those instances of implausible repairs which are a
result of panic mode.

Sometimes an error recovery scheme repairs an error
in such a way that it later detects errors in the program
which are not errors. This ‘cascading’ of error messages
happens in example 7. Example 8 is a mixture of
cascading and panic mode.

1 program p(input, output); begin

2 writeln (‘the call to getelement resulted in no
3 nodes avail’,),;

ek A symbol deleted

*kk A

4 x:=1end.

%% A changed to plus

xxx A ) inserted

Example 7. C repair.

1 program p(input, output); begin

2 repeat writeln(‘ input is:’, number)
3 if number ) 1

% A symbol deleted

5% A until inserted

4 then x := 1 until x = 1 end.
%% A symbol deleted

P AAA  AAAA

Example 8. PC repair.

We divide the seven groups into three larger groups as
a means to offering an overview of the recovery schemes.

Good repair  —contains groups (i) and (ii)
Marginal repair—contains groups (iii) and (iv)
Poor repair —contains groups (v), (vi) and (vii)

Hence, a good repair is a most plausible repair or, in the
case where there is not a plausible repair, a minimum
distance repair. Marginal repairs, on the other hand, are
not generally acceptable; they represent incorrectly
diagnosed errors but have some virtues, unlike poor
repairs which cause cascading or may result in other
errors not being observed.

6. RESULTS AND EXPERIENCE WITH THE
RECOVERY SCHEMES

6.1 Effectiveness

Each program from Ripley and Druseikis’s database has
been put into one of two main groups; those containing

a single symbol error, and those containing two or more.
Following standard practice we count as a single error
program one that contains more than one instance of the
same error.

Four of the 126 programs, those whose only error is a
declaration out of order, do not appear in our results.
This is because the grammar of Pascal we have used does
not impose an ordering on the declarations, and so this is
not picked up by the recovery schemes. The remaining
122 programs are distributed as follows.

single error programs 76
multiple error programs 46

Table 1 gives the overall results using the categories
‘good’, ‘marginal’, and ‘poor’. Table 2 is a breakdown of
these results using the categories we introduced in the
last section. Note that the acronyms LLC and FS are
used in these and the following tables for locally least-
cost and follow set error recovery, respectively.

Table 1. Overall results for the 122 examples

LLC FS
Good 70 55
Marginal 26 33
Poor 26 34

Table 2. Breakdown of overall results into the 7 categories

LLC FS
MPR 64 54
PR 6 1
MD 6 8
R 20 25
P 4 18
Cc 20 24
PC 2 2

The conclusion from these results is that locally least-
cost error recovery is better on aggregate than follow set
error recovery, particularly in avoiding panic mode
recovery. Note, though, that the difference in their ability
to avoid cascading of error messages (group C in Table
2) is marginal. We now consider the results for each of
the main groups in turn.

(a) Single error programs. The 76 single error programs
have been subdivided as follows

(i) The most plausible error repair is a single insert 34
(ii) The most plausible error repair is a single delete 11
(iii) The most plausible error repair is a single

change 20
(iv) The single error is a misuse or a misspelling of
a keyword 11

The overall results of the single error programs are given
in Tables 3 and 4. We have counted a program as
belonging to the first of these subdivisions if the most
plausible error repair may either be a single delete or a
single insert.

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 21

#T0Z ‘6 9unc uo AysleAlun ybinquip3 e /Bio'sfeulnolpioxo’ ufwoo//:dny woiy pepeoumoq


http://comjnl.oxfordjournals.org/

S. 0. ANDERSON, R. C. BACKHOUSE, E. H. BUGGE AND C. P. STIRLING

Table 3. Results for the 76 single error examples

LLC FS
Good 49 40
Marginal 15 17
Poor 12 22

Table 4. Breakdown of single errors into the 7 categories

LLC FS
MPR 46 39
PR 3 1
MD 2 2
R 13 15
P 1 4
C 9 13
PC 2 2

Both schemes yield their best results on these errors.
Locally least-cost error recovery offers almost 75% of
‘good’ repairs for each of the error types described above.

Four of the single-symbol errors in the sample involved
erroneous string delimiters (wrong symbol or delimiter
missing). Neither scheme was able to handle these well
because such errors, and those in comment delimiters,
are lexical errors in our parser. Strings are recognized by
the lexical analyser and passed on to the syntax analyser
as single symbols. On the other hand, comments are
removed by the lexical analyser. Therefore these errors
can never be repaired in the most plausible fashion.

There are a few errors in this group that cannot be
repaired satisfactorily without some form of backtrack-
ing. Example 9 is a case in point. Here the most plausible
repair is to replace procedure with function, but this error
can not be detected at the point it occurs because the
occurrence of procedure in this position is valid.

1 program p(input, output);

2 procedure factorial (x: integer; var fact: integer)
3 :integer;

* A changed to semicolon

% A symbol deleted

EE 23

A
4 var q: integer; begin x := 1 end; begin end.

Example 9. Local error recovery is unsatisfactory.

The single insert repair results (Table 5) are quite good
for both schemes, but better for locally least-cost error
recovery. On one type of error—a missing semicolon,
which is by far the most common single-symbol error
made by Pascal programmers—the scheme has a 1009,
record of success.

Table 5. Number of ‘good’ repairs for each error type

Total no. of Number of good repairs
programs -_—
LLC FS
Single insert 34 29 25
Single delete 11 7 6
Single change 20 11 8
Keyword error 11 2 1

Unlike the results for single symbol change, those for
misuse/misspelling of keywords are not good (Table 5).
This is, in part, because none of the schemes can correct
spelling errors and a misspelt keyword will be regarded
as an identifier. Local error recovery techniques are not
particularly suitable for correcting this type of error.
Example 10 is a case where the repair is very poor.
Therefore, a simple spelling correction routine inside the
parser would have improved the performance on this
group, especially in cases like example 10.

1  program p(input, output); begin repeat
2 writeln (* —————————— ");

3 untill eof (input);

%% A := inserted

4 x:=1end.

T A symbol deleted
xEX A

T A until inserted
% A id inserted
%% A end inserted
% A dot inserted

Example 10. Keyword error.

(b) Multiple error programs. Multiple error programs are
those programs where a most plausible repair involves
more than one edit operation. We include in this group
complementary errors—for example the use of parenthe-
ses () instead of brackets [ ] when indexing an array. Also
included are ‘wrong-language’ errors for which, as
discussed earlier, we count the minimum distance repair
as the most plausible.

Twenty-two of the programs in this group contained
errors which could be repaired by just two edit operations
and, of these, the errors occurred together in twelve cases.

Table 6. Overall results for the 22 two error programs

LLC FS
Good 12 9
Marginal 5 1
Poor 5 2

Table 7. Breakdown of the two error programs into the 7
categories

LLC FS

MPR 1
PR
MD
R
P
C
PC

OCQUIONW-
C =220

Table 8. Overall results for the multiple error programs

LLC FS
Good 21 15
Marginal 11 16
Poor 14 15

22 THE COMPUTER JOURNAL, VOL. 26, NO. 1, 1983

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

AN ASSESSMENT OF LOCALLY LEAST-COST ERROR RECOVERY

Table 9. Breakdown of the multiple error programs

LLC FS
MPR 18 15
PR 3 0
MD 4 6
R 7 10
P 3 4
c 1 11
PC 0 0

In such circumstances both schemes did well (8 good
repairs for locally least-cost and 7 for follow set error
recovery). Their performance on the remaining errors
was, as might have been expected, relatively poor. Follow
set error recovery did particularly badly on the five
examples of complementary errors.

6.2 Efficiency

Although locally least-cost error recovery may more
effectively diagnose errors, it does so at the expense of
economy in the use of storage space. This is evident from
the difference in size of the object code of the two parsers
we used in our assessment ; the parser using the follow set
scheme compiled into 19 146 bytes, the parser using the
locally least-cost scheme compiled into 26 618 bytes of
storage space.

These figures are not the whole picture, however, since
a large amount of code in the locally least-cost parser
consisted of assignments to set up the various tables and
sets needed to drive the error recovery. Table 10 shows a
breakdown of the two programs into their various
components. The large difference in the number of lines
of code is partially explained by the declaration and
initialization of the class sets in the locally least-cost
scheme. More significantly, though, the recursive descent
routines are 507 longer when using least-cost recovery
than when using follow set recovery. This is, perhaps, the
best indicator of the extra complexity of the former
scheme.

Table 10. Size of source code in lines

LLC FS

Lexical analyser 135 135
Recursive descent routines 1600 1035
Declarations 246 81
Error procedures — 151
Initializations

Symbol/class sets 516 162

Others 381 155
Total program length 2878 1719

Each class set declared in the least-cost parser is a bit
vector of length 38 and so occupies six bytes. There are
140 class sets; the follow set scheme used 56 sets for a
comparable purpose. The symbol sets are used by both
parsers; there are 68 of them and each occupies eight
bytes.

The figures in Table 10 do not include details of the
boundary and parameter tables which had, respectively,

986 and 660 entries. Each entry in the boundary table
occupies two bytes and in the parameter table three
bytes. Our Pascal grammar has 69 terminal symbols and
368 production positions; thus, the worst-case size of
these tables is 69 x 368 which is approximately 25 000
entries each. Indeed, the boundary table is larger than
necessary because, for ease of access, it is stored as a two-
dimensional array; only 228 elements in this array are
actually defined. By storing the entries as a one-dimen-
tional array together with an access table one could
reduce the storage requirements considerably but at the
expense of a small increase in access times.

We have timed both schemes over the complete
database of programs and over themselves. For the least-
cost scheme the most dominant factor in its runtime was
the large number of initializations. This, however, is a
limitation of Pascal rather than the recovery scheme—by
using the unit facility in UCSD Pascal, for example, the
initializations could all be performed at compile-time
and so would have no effect upon the runtime. Excluding
the time taken for performing initializations, the follow
set parser took 293 s whereas the least-cost parser took
359 s to parse the complete database of programs, a
difference of approximately 20%,. When the parsers were
used to parse the source codes of both schemes the least-
cost scheme was approximately 159 slower.

7. CONCLUSION

This paper has described a parser generator which
generates highly readable Pascal code from a given
extended BNF grammar. The code includes locally least-
cost error recovery which can be tuned to anticipated
error patterns by setting primitive edit costs. There is,
therefore, a great deal of flexibility in the standard of
error recovery achieved. Meaningful error messages
describing the repairs made by the parser are also
automatically generated.

Locally least-cost error recovery, according to our
assessment, is more effective than follow set error
recovery. Overall, 57%; of the repaired example programs
are diagnosed as ‘good’ whereas the figure for the follow
set scheme is only 45%,. In more detail, the figures are
64% in contrast to 53% and 46%; in contrast to 337, for
programs containing single and multiple errors, respec-
tively. This increase in effectiveness is paid for by a loss
in efficiency, particularly with respect to the storage
requirements. Moreover, the least-cost scheme still
retains the same fundamental limitations as the follow
set scheme; repairs are made at the point of error
detection, multiple occurrences of the same error are not
recognized and no mechanism exists for handling
context-sensitive or semantic errors. Consequently, the
improvement offered by the least-cost scheme over the
follow-set scheme is not as significant as the statistics
may suggest.

There are improvements which could be made to the
least-cost technique which, we believe, would make it
viable. These improvements are, first, a further reduction
in the size of the parameter and boundary cost tables
and, second, the development of a calculus for setting the
primitive edit costs. At the present time work on these
developments is in its first stages.

The main cause of the excessive size of the parameter

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 23

#T0Z ‘6 9unr uo AysleAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy pepeoumoq


http://comjnl.oxfordjournals.org/

S. 0. ANDERSON, R. C. BACKHOUSE, E. H. BUGGE AND C. P. STIRLING

and boundary cost tables is that they contain integer
values; the follow sets, on the other hand, are essentially
Boolean values. However, the parameters perform a
Boolean function—they serve to indicate whether the
cost of a set of edit operations is greater than a given
boundary cost or not. In some circumstances, therefore,
it is possible to map the parameters homomorphically to
Boolean values and hence store them as bit vectors. In
other circumstances their function is as counters, for
example counting the depth of parenthesization of an
expression, and sometimes the same parameter is
compared against more than one boundary value. At
present we have no algorithms to test whether a given
parameter can be replaced by a Boolean and it remains
to be seen whether the reduction in storage space so
obtained would be worthwhile.

The possibility of developing a calculus for setting the

costs has been, for us, a major motivation for the use of
such costs. The idea is that one should be able to compute
an optimal set of edit costs from a sample of error
patterns and the preferred repairs for each of the error
patterns. We ourselves have partial solutions to this
problem.?* Elsewhere, N. Kotarski (private communi-
cation) claims some success in applying integer program-
ming techniques to the problem but much work needs yet
to be done. Were such a calculus to be developed,
however, it would add immensely to the convenience and
flexibility of our system.

Acknowledgement

Thanks go to M. H. Williams for his careful reading and criticism of
this paper.

REFERENCES

1. A. V. Aho and T. G. Peterson, A minimum distance error
correction parser for context-free languages. SIAM Journal of
Computing 1, 305-312 (1972).

2. R. A Wagner and M. J. Fischer, The string-to-string correction
problem. Journal of the ACM 21(1), 168-173 (1974).

3. R. A. Wagner, Order-n correction for regular languages.
Communications of the ACM 17(5), 269-271 (1974).

4. C. N. Fischer, D. R. Milton and S. B. Quiring, An efficient
insertion-only error corrector for LL (1) parsers. Acta Informatica
13, 141-154 (1980).

5. R. C. Backhouse, Syntax of Programming Languages: Theory
and Practice, Prentice-Hall International, London (1979).

6. N.Wirth, Algorithms + Data Structures = Programs, Prentice-
Hall, Englewood Cliffs, New Jersey (1976).

7. J. Lewi, K. DeVlaminck, J. Huens and M. Huybrechts, The
ELL(1) parser generator and the error recovery mechanism.
Acta Informatica 10, 208-228 (1978).

8. A. B. Pai and R. Kieburtz, Global context recovery: a new
strategy for syntactic error recovery by table-driven parsers.
ACM Transactions on Programming Languages and Systems
2(1), 18-41 (1980).

9. S.Feyock and P. Lazarus, Syntax-directed correction of syntax
errors. Software—Practice and Experience 6,207-219 (1976).

10. J. Rohrich, Methods for the automatic construction of error
correcting parsers. Acta Informatica 13, 115-139 (1980).

11. S. L. Graham and S. P. Rhodes, Practical syntactic error
recovery. Communications of the ACM 18(11), 639-650
(1975).

12. U. Amman, The Zurich implementation. In Pasca/l—The Lan-
guage and its Implementation, ed. by D. W. Barron, Wiley,
Chichester (1981).

13. N.Wirth, Pascal-S: a subset and its implementation. In Pasca/l—
The Language and its Implementation, ed. by D. W. Barron,
Wiley, Chichester (1981).

14. G.D. Ripley and F. C. Druseikis, A statistical analysis of syntax
errors. Computer Languages 3, 227-240 (1978).

15. S. O. Anderson and R. C. Backhouse, Locally least-cost error
recovery in Earley’s algorithm. ACM Transactions on Program-
ming Languages and Systems 3(3), 318-347 (1981).

16. S. O. Anderson and R. C. Backhouse, Locally least-cost error
recovery in LR parsers: a basis, submitted for publication.

17. N. Wirth, What can we do about the unnecessary diversity of
notation for syntactic definitions. Communications of the ACM
20(11), 822-823 (1977).

18. R. C. Backhouse, Classifying terminal symbols in LL(1)
grammars, submitted for publication.

19. R. C. Backhouse, Two global data flow analysis problems
arising in locally least-cost error recovery, submitted for
publication.

20. K-C. Tai, Syntactic error correction in programming languages.
IEEE Transactions on Software Engineering SE-4(5), 414-425
(1978).

21. T. J. Pennello and F. DeRemer, A forward move algorithm for
LR error recovery. Conference Record 5th ACM Symposium on
Principles of Programming Languages, 241-254 (1978).

22. C. P. Stirling, Follow set error recovery. Research Report,
Heriot-Watt University, Department of Computer Science
(1981).

23. C. N. Fischer and J. Mauney, On the role of error productions
in syntactic error correction. Computer Languages 5, 131-139
(1980).

24. E. Bugge, Implementing and assessing locally least-cost error
recovery for Pascal. MSc. Thesis, Heriot-Watt University,
Department of Computer Science (1982).

Received December 1981

24  THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq


http://comjnl.oxfordjournals.org/

