

Edinburgh Research Explorer

A representable approach to finite nondeterminism

Citation for published version:
Anderson, S & Power, A 1997, 'A representable approach to finite nondeterminism' Theoretical Computer
Science, vol. 177, no. 1, pp. 3 - 25. DOI: http://dx.doi.org/10.1016/S0304-3975(96)00232-0

Digital Object Identifier (DOI):
http://dx.doi.org/10.1016/S0304-3975(96)00232-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

Publisher Rights Statement:
Open Access Document

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/S0304-3975(96)00232-0
https://www.research.ed.ac.uk/portal/en/publications/a-representable-approach-to-finite-nondeterminism(f5a95cb1-0cfa-4b71-aa19-fc8dd189b34b).html

Theoretical
Computer Science

Theoretical Computer Science 177 (1997) 3-25

A representable approach to finite nondeterminism

S.O. Anderson, A.J. Power*,’

Department of Computer Science, University of Edinburgh, Kiny’s Buildings, Edinburgh EH9 352, UK

Abstract

We reformulate denotational semantics for nondeterminism, taking a nondeterministic operation

V on programs, and sequential composition, as primitive. This gives rise to binary trees. We
analyse semantics for both type and program constructors such as products and exponential
types, conditionals and recursion, in this setting. In doing so, we define new category-theoretic
structures, in particular premonoidal categories. We also account for equivalences of programs
such as those induced by associativity, symmetry and idempotence of V, and we study finite
approximation by enrichment over the category of w-cpos with least element. We also show how
to recover the classical powerdomains, especially the convex powerdomain, as three instances of
a general, computationally natural, construction.

0. Introduction

Over the past few years, monads, equivalently Kleisli triples, have been advocated

as an appropriate mathematical structure with which to model “notions of computation”

[6]. The seeds of that idea, and its leading example, lie in Gordon Plotkin’s attempt

to model nondeterminism with a powerdomain in [7]. However, there is no need to

mode1 nondeterminism that way. In fact, there are computationally natural reasons,

as we explain later, to use different category-theoretic primitives, and to derive the

powerdomain from them via a simple category-theoretic construction.

Here we reformulate semantics for nondeterminism in a principled way, the structures

we develop forming a basis and leading example for modelling notions of computation

more generally, with that goal motivating some of our specific choices. In fact, our

semantics does generalise and we can recover all computational monads in the same

way as we recover the powerdomain here.

We seek to understand nondetenninism in denotational semantics. Classically, three

powerdomains, the lower, upper, and convex powerdomains, have been used. The struc-

ture of a powerdomain consists of, in the first instance,

* Corresponding author. E-mail: ajp@dcs.ed.ac.uk.

’ Supported by EPSRC grant GR/J84205: Frameworks for programming language semantics and logic.

0304-3975/97/$17.00 @ 1997-Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00232-O

4 S. 0. Anderson, A. J. Power1 Theoretical Computer Science 177 (1997) 3-25

l for a countable set S of states, a set P(S), which is then endowed with the structure

of an w-cpo with least element;

0 an “extension”, i.e., a function that takes any function f : X + P(Y) with X and

Y countable to a unique map f t : P(X) 4 P(Y) satisfying certain properties;

0 a “singleton” function { } : X + P(X) (a property of extension being that it

commutes with singleton); and

l a function U : P(X) x P(X) + Y(X) called binary union, which is to satisfy some

properties.

The partial order on P(X) is used to define extension, which is in turn used to define

composition of the semantics of nondeterministic programs, where the semantics of

a nondeterministic program is given by a map from X to P(Y). The partial order on

P(X) induces a partial order on X + P(X), which is used to define the semantics of

iteration or other recursion constructs.

It is also observed that if the first three pieces of data are given for all sets, or

more generally for all o-cpos with least element, then that corresponds precisely to

giving a Kleisli triple, or equivalently a monad, on the category of all sets or that of all

o-cpos with least element respectively. The basic theory of powerdomains is developed

in [7, 13, 15,8]. More recently, there has been substantial development of this theory.

For instance, Di Giantonio et al. [4] have made delicate use of oi-enrichment to

model countable nondeterminism, and Alex Simpson [121, based upon the work herein,

has modelled nondeterminism with a distinction between intensional and extensional

properties.

We wish to reformulate this semantics for the following reason: in the development

of semantics, sequential composition of programs is typically treated as a primitive

operation on programs, and its denotational semantics has reflected that; so we should

like to continue with that rather than relegate the semantics of sequential composi-

tion to the complex construction involving extension. In addition, the three classi-

cal powerdomains have typically been treated as separate constructions. Our approach

allows us to see them as three instances, indeed the only three instances, of a general,

construction applied to one generic formalism for nondeterminism.

We take as primitive constructions sequential composition of programs and non-

deterministic V. In order to ensure that this is not studied in isolation, we shall do it

in the context of if, while, and later print, to be sure we capture the spirit of o-cpos

with least element, specifically the idea of finite approximation of input, of output, and

of programs. We also account for simple type constructors: products, exponentials, and

positively recursively defined types.

There are at least two ways in which nondeterminism arises: one, the action of an

external agent, e.g., the human dealing with email. Here a deterministic program is

modelled by a nondeterministic operator because it is a useful simplification. Also this

illustrates how finite approximation need not be recursive: it could be given by human

interaction. This will be our leading example of nondeterminism through the course

of the paper. Second, from concurrency. We do not address that here as it involves

extra considerations, in particular that of nonobservable behaviour, such as in weak

S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 5

bisimulation or testing equivalence; the classical powerdomains do not handle such

equivalences anyway.

Nondeterminism is a complex and subtle phenomenon. A full conceptual analysis is

beyond the scope of this short paper. The leading example mentioned above, although

simple, provides sufficient detail to motivate and illustrate our general approach.

In Section 1 we introduce results we need on V-categories with tensors, and explain

how we may recover powerdomains in general from our formalism. In Section 2, we

give semantics for the discrete part of our language, i.e., everything except print.

Sections 3 and 4 account for simple type constructors: the former for product types, in

order to account for programs of several variables; the latter for recursively defined and

higher-order types. In Section 5 we show how to account for factoring out equivalences

such as associativity, commutativity and idempotence in this setting. Section 6 shows

how to recover the three classical powerdomains. Finally, in Section 7, we account for

finite approximation via enrichment over cpos, enriching all the previous analysis with

one substantial modification.

An earlier version of this work was presented at MFPS’92 in Oxford.

1. Category-theoretic preliminaries

A monoidal category V consists of a category Vo together with a functor @ : Vo x

VO -+ Vo that is associative up to coherent isomorphism, with a two-sided unit up

to coherent isomorphism. A monoidal category is symmetric if the operation @ is

symmetric up to coherent isomorphism, and is closed if for each object X of V’& the

functor - @X : V’ll + 9’0 has a right adjoint.

The leading example of a symmetric monoidal closed category is the Cartesian closed

category Set of small sets and functions: the monoidal structure is given by finite

product, and the closed structure is given by exponentials. For another example, the

category Co of co-cpos with least element and maps preserving the least element also

has a symmetric monoidal closed structure, which is of tindamental importance in

domain theory. The monoidal structure is given as follows: given A and B, stip their

least elements, take the product, and add a least element again; equivalently, take the

product of A and B and identify any two elements of which one coordinate is the least

element. For details of the definition and for a range of examples used extensively in

mathematics, see Max Kelly’s book [5].

Given a symmetric monoidal closed category V, there are well-understood notions

of <category, cfunctor and cnatural transformation, giving a 2-category <Cat.

The idea of a ccategory is that in the definition of category, one has a set of ob-

jects and, for each pair of objects A and B, a homset of arrows from A to B; in a

ccategory Ce, one still has a set of objects, but for each pair of objects A and B, one

has a hornobject %?(A,B) of % The monoidal structure of -Y- allows one to express

a notion of composition in a <category, generalising that in the definition of ordi-

nary category. From the definition of <category, it is routine to define the notion of

6 S. 0. Anderson, A. J. Power I Theoretical Computer Science I77 (1997) 3-25

flfunctor; that of V’%atural transformation requires just a little more thought as one

needs to define the notion of arrow in a <category: an arrow from A to B is defined

to be an arrow in Y from the unit I to the hornobject %?(A,B). The details are all

spelt out at the start of Kelly’s book [5].

For example, for the Cartesian closed category Set, Set-Cat is precisely Cat, because

to give a hornobject V(A,B) of Set is precisely to give a homset. In the case of 0,

an O-category is a category together with, for each pair of objects A and B, an w-cpo

structure with least element on the set of arrows from A to B, such that composition

preserves the structure. Observe that for any symmetric monoidal closed category V,

we may consider “V as a <category: homobjects are given by the closed structure

of V. The standard reference for <categories is Kelly’s book [5].

Given the definitions of W’%ategory, <fi,mctor and <natural transformation, one

immediately has the notion of cadjunction: a 6fimctor H : 9 --+ %? has a right

adjoint K if there is a family of isomorphisms of homobjects between 9(D,KC) and

W(HD, C), that is <natural in C and D.

One can similarly, routinely, generalise many of the basic notions of ordinary cate-

gory theory to enriched categories. One construction that is important to us becomes

more vivid in this setting: it is the notion of a tensor, as follows.

Definition 1. A V-category %7 has tensors if for every object A of 93 and every object

X of V, the cfunctor [X, g(A, -)] : A -+ V is representable, i.e., if there is an object

X @A of V together with a collection of isomorphisms [X,%‘(A,B)] E g(X @A, B),

natural in B.

If a <category %? has tensors, then it follows that the collection of isomorphisms

in the definition is not only natural in B, but also natural in X and A. To have tensors

is a mild cocompleteness condition on a <category.

If V is Set, then the tensor of a set X with an object A of a category Q? is precisely

the coproduct of X copies of A. For V = 0, the situation is more delicate. However,

in the particular &category 0, which is our leading example, tensors are simple: the

tensor of an object X with another object Y is as above, i.e., the Cartesian product of

X and Y factored by (x, I) N (I, y) f or all x and y. The universal property can be

reexpressed as the assertion that X @ Y classifies bistrict maps out of X and Y.

A cfunctor is said to preserve tensors when it preserves this construction. It is

routine to verify that if H : 23 + %? and K : V + 9 preserve tensors, then so does the

composite KH.

Proposition 2. Let %7 be a tensored V’-category. Then, a V-functor H : V+ %? has

a right adjoint if and only if H preserves tensors.

Proof. One way follows since tensors, being colimits, are preserved by left adjoints.

Alternatively, one can verify the result directly from the definition of tensor: we need to

show that H(X@A) satisfies the defining condition for X@HA, i.e., that ‘S(H(X@A), B)

is isomorphic to [X,V(HA,B)]; but that may be proved by two applications of the

S.O. Anderson, A.J. Power/ Theoretical Computer Science 177 (1997) 3-25 7

adjunction isomorphism together with the definition of tensor. For the other direction,

the right adjoint is given by %‘(HI, -), where I is the unit of the monoidal category V.

That this is a right adjoint is an immediate consequence of the definition of tensor and

the fact that H preserves tensors. 0

Corollary 3. For any Vkategory W, an identity on objects Cjimctor H : V + V

has a right adjoint if and only if H preserves tensors.

Proof. In order to apply the previous result, we need only check that %? has tensors.

Given X an object of V and A an object of V, since the objects of q are equal to

those of V, it follows that A is an object of V. The <category -Y- has tensors given

by the tensor in V regarded as a monoidal category, so we have the tensor X @ A

in V. If H is assumed to preserve tensors, then since H is the identity on objects, it

follows that X@A acts as the desired tensor in V, and if H is assumed to have a right

adjoint, then again X @A is the tensor in %‘, with proof given as in the first part of

the proof of the proposition. q

This is all we need about enriched categories in this paper. We next turn to the basic

category theory we need to show the relationship between our account of nondeter-

minism and the traditional one based on powerdomains. We recalled the definition of

powerdomain in the introduction. More recently, rather than spelling out the structure

of a powerdomain as in the introduction, the tendency has been to identify the structure

of a powerdomain with that of a monad P on a category %‘, together with a natural

transformation with components U : PX x PX -+ PX, subject to laws for associativity,

commutativity, and idempotence. A monad may be defined as follows.

Definition 4. A monad (P, m, j) on a category V consists of a fimctor P : V -+ %

together with natural transformations with components rnx : PPX + PX and jx : X -+

PX subject to one equation expressing associativity of m with respect to P and two

equations to the effect that j provides a two-sided unit for m.

One would typically write P for the monad, taking the natural transformations in the

definition as implicit. It is straightforward to verify that a powerdomain, as defined in

the introduction, gives rise to monad together with a natural transformation as above.

For more detail on monads in this regard, see [6].

The usual way to obtain a monad is from an adjunction: given any adjunction,

H i K, with unit q and counit E, it is routine to verify that the triple (KH, K&H,?) is

a monad. One can give a converse to that in two canonical ways. The one of primary

interest to us is given by Kleisli as follows.

Proposition 5. To giue a monad (P, m, j) on a category % is to give an identity on
objects functor J : % + X that has a right adjoint.

Proof. Given (P,m, j), define S” to be the Kleisli category for the monad: ~7 has

the same objects as %7, with Z”(A,B) defined to be %‘(A,PB), and with composition

8 S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25

defined by use of the natural transformation m. There is a functor J from V to 2”

defined by the identity on objects, and on arrows, by composing an arrow from A to

B with the B-component of j. The fimctor J has right adjoint given on objects by P.
Conversely, given J, the monad arises from the adjunction. It is routine to verify that

these constructions are mutually inverse. 0

For a general study of the relationship between identity on objects hmctors and

monads, see [14, Section 51. We do not need such generality in this paper, so we

restrict our attention to the simple structures we do need.

Proposition 6. Let %? be any category with jinite products, and let P be any monad
on it. Then, to give U : PX x PX + PX is to give for each object Y of (27, a function

V : x(Y,X) x %“(Y,X) + ,X(Y,X) natural in Y regarded as an object of W, where
x is the Kleisli category for P. Moreover, U is associative if and only if V is, and

similarly for commutativity and idempotence.

Proof. This is a consequence of the Yoneda lemma. First note that, by the definitions of

finite products and adjunctions, 37(Y,X) x Z”(Y,X) = %?(Y,PX x PX) and 37(Y,X) =

U(Y,PX). So, given U, one can define V by composition. Also, having noted the

above, the converse construction, i.e., that of U from V, is a direct instance of the

Yoneda lemma. The last line of the theorem also follows from the Yoneda lemma:

associativity of U is preserved by composition with any map from Y to PX, thus

yielding associativity of V, and the Yoneda lemma provides the converse; similarly for

commutativity and idempotence. 0

We shall take as our primitive data to define a denotational semantics for nondeter-

minism:

l a category %? to provide denotational semantics for the deterministic part of the

language,

l an identity on objects functor (or O-functor later) J : V -+ Nondet(V) with the

latter G-category providing our full semantics. The inclusion J represents taking

a deterministic program and regarding it trivially as a nondeterministic program. It

is evident that one would want such a J to preserve composition and identities; it

will be further evident, when we discuss enrichment, that we will want J to enrich

too. In order to model nondeterminism, there is no inherent reason to insist that J be

the identity on objects. However, initially there is no reason to alter the objects of

V in extending the semantics. Thus for simplicity we choose an identity on objects

functor. Of course, Nondet(k?) will be equipped with a binary operation on each

horn to model V.

We shall use Propositions 5 and 6 to recover the powerdomains.

2. The basic case

As a first attempt to model nondeterminism, we assume we have a language as

outlined in the introduction except for print, with a denotational semantics of its

S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 9

deterministic totally defined part in the category Set. We now extend Set to a new

category Nondet(Set) in order to model the language including nondeterministic or. In

principle, we freely adjoin a binary operation V to each horn. Formally, it is not quite

so simple. The main reason is that in order to account for recursion in the guise of

while, we need to allow application of V infinitely many times. This inelegance may

be resolved by passing to enrichment over 0. That works best when the base category

is 0 rather than Set, as in Section 7, as Lo is O-enriched, while Set is not. However,

for ease of exposition, we first restrict ourselves to Set, then extend to 0. This follows

Plotkin’s exposition in [8]: the use of CO allows a more elegant treatment, but one that is

also more complex. Formally, Nondet(Set) is given by freely making Set o-enriched,

and equipping each horn with a binary operator V that respects the &structure and

is natural in its domain, i.e., that is given pointwise. In the category Nondet(Set),

we model if by use of coproducts, sequential composition by composition, while by

iteration or equivalently by the O-structure, and nondeterministic or by V.

We now describe Nondet(Set), together with an elementary explanation of its com-

putational motivation. An object of Nondet(Set) is a set. An arrow from X to Y is

the assignment to each x E X of a possibly infinite nonempty binary tree with leaves

labelled by elements of Y.

The idea is that a program p with input x starts doing a deterministic part of p. Either

it stops with output y, or it never stops, or it reaches a nondeterministic choice. In the

first case, we would have a tree consisting of one point labelled y. In the second, we

will write the infinite leafless tree. In the last, the program may choose left or right:

so we would have an initial branching, then continue inductively.

Observe that there are two ways of failing to halt on input x:

1. one could reach a deterministic part of p that fails to halt. For instance, p could

be a deterministic program that does not halt on input x.

2. one may follow an infinite branch, each piece of which is deterministic. For

instance, one could consistently follow the left branch of while x = 0 do (x = 0 V x = 1)

on input 0.

In our semantics, we wish to identify the two ways to fail to halt on the grounds

that, in both cases, there is no observable output: that is why we did not introduce the

10 S.O. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25

Fig. 1. Component trees.

Fig. 2. Composite tree.

empty tree in our second case of the previous paragraph,

case with that which would yield the infinite leafless tree,

as we wish to identify that

An arrow in Nondet(Set) from X to Y may be described algebraically as a partial

hnction f from [0,2] x X into w x Y, such that if f(s,x) = (n, y), then if t agrees

with s on 0 to n - 1, then f (t,x) = (n, y). This algebraic definition has computational

significance in that the argument s : w t 2 amounts to a choice function, or an oracle,

which tells the computation which way to proceed at every stage i. It may appear that

our algebraic formulation asserts that we insist upon an oracle to model nondeterminism

and that we insist upon it acting in a particular way, but that appearance is only

incidental as the definition in terms of trees shows.

We define composition in Nondet(Set) as follows: given f : X --f Y, g : Y --+ Z,

and x E X, define d(x) to be the tree given by replacing each leaf in f(x) by the

labelled tree determined by g evaluated at that label of the leaf. For instance, if f(x),

g(y) and g(y’) are as shown in Fig. 1, then (gf)(x) would be as shown in Fig. 2.

Algebraically, this may be described as follows: given f : [0,2] x X - o x Y

and g : [w,2] x Y- w x Z, suppose f (s,x) = (a, y), and denote by s(n) the sequence

(G,.G+~,...). Then, ifgMn),y) = (m,z), we have d(s,x) = (n+m,z). If either f(s,x)

or g(s(n), y) is undefined, then gf (s,x) is undefined.

The idea of this composition is evident from the ideas of sequential composition

of programs and of the maps in Nondet(Set). Observe that Nondet(Set) is enriched

over 0, with the partial order on the horns given by pointwise definedness.

S.O. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 11

There is an evident fimctor J : Set -+ Nondet(Set), and it has a right adjoint given

by

PY = {possibly infinite nonempty binary trees labelled by elements of Y),

or, equivalently,

PY = {f: [0,2] - o x Y liff(s) = (n,v) and t agrees with s on 0 to n - 1,

then f(t) = (n, Y)}.

Observe that our programming language does have a semantics in Nondet(Set): the

semantics of while is given by iteration; that of V is evident. Observe also that the

construction V : Nondet(Set)(X, Y) x Nondet(Set)(X, Y) -+ Nondet(Set)(X, Y)

(f,s) H (f v 9) : ha) H
{

f(s(I), a) if SO = 0,
g(s(l) a>

?
if so = 1

is natural in X as an object of Set. So the hypotheses of Propositions 5 and 6 are

satisfied, and hence V is represented by U. Observe that U respects the O-structure given

by definedness: that fact will follow automatically from our formalism of Section 7.

We shall adopt Nondet(Set) as our primitive category in which to model nondeter-

minism. However, we have not yet tackled tindamental issues. First, if our program-

ming language is typed, we want an account of programs with several variables. We

should also like accounts of recursively defined types and higher-order types: these lead

us to move beyond Nondet(Set). Second observe that V on Nondet(Set) is neither

associative, nor commutative, nor idempotent; but in our leading example of the action

of an external agent, the programming V is associative, commutative, and idempotent.

So we seek an account of equivalence of arrows in Nondet(Set). Third, we want

a study of finite approximation to incorporate print. Finally, we shall see how to recover

the classical powerdomains. These tasks constitute the remaining sections of the paper.

3. Programs with several variables

In this section we begin the study of types. The category Set is Cartesian closed

and cocomplete, so we can speak of (finite) product types, sums, and positively re-

cursively defined types. Binary sums are used to model conditional statements, and

J : Set -+ Nondet(Set) preserves sums: that is why the semantics of “if b then p else
q” where p and q are deterministic, extends in a modular fashion to nondeterministic

programs. Product types are used to model programs with several variables such as

“if x > 0 then x else y”. However, the functor J does not preserve finite products;

and indeed, finite products on Set do not even extend naturally to a monoidal struc-

ture on Nondet(Set): consider the nondeterministic programs xl V x2 : 1 + X and

_yl V y2 : 1 + Y. Given f : A + B and g : C + D in a monoidal category the two

composites from A 0 C to B 0 D given by (f 0 D)(A 0 g) and (B 0 g)(f 0 C) would be

12 S. 0. Anderson, A. J. Power I Theoretical Computer Science 177 (1997) 3-25

equal. So if J sent the binary product in Set to a monoidal structure on Nondet(Set),

it would follow that the two trees

A /A
LY,) cq,Y*) (%,Y,) (~Z~YJ (%Yl) (-sY,) (-qrYJ c%YJ

would agree: but they do not, and hence binary product on Set does not extend

naturally to monoidal structure on Nondet(Set).

This anomaly can be resolved by recourse to a new category-theoretic definition,

that of symmetric predistributive category. For our leading example of a nondeter-

ministic programming language, we have adopted a simple imperative language with

a nondeterministic operator. To model that specific language, the notion of symmet-

ric predistributive category is not obviously significant: our nondeterministic operator

in that language is associative, commutative, and idempotent, and when one factors

Nondet(Set) by a congruence that forces V to satisfy those equations, then the predis-

tributive structure collapses to a distributive structure. However, that is not typical. For

instance, if we had a functional language with a nondeterministic operator and we al-

lowed side effects in our language, then the predistributive structure would not collapse

under associativity, commutativity and idempotence to a distributive structure. See [lo]

for details. The same remarks would hold if we were modelling the expressions of an

imperative language with nondeterministic expresssions. However, for simplicity, we

will not introduce such complex languages in detail solely to motivate the definition of

symmetric predistributive category. Instead, we will illustrate how such structure arises

before one factors out the various congruences, with this side remark that the structure

typically does not collapse under interesting congruence.

We begin by introducing some subsidiary definitions.

Definition 7. A binoidal category is a category q together with, for each object X of

97, fimctors HX : %? + +? and Kx : %? + %? such that for each pair (X, Y) of objects of

V, HxY = KyX.

We will denote the joint value of Hx Y and KyX by X 0 Y.

Definition 8. An arrow f : X + Y in a binoidal category is called central if for each

arrow g : X’ + Y’, the diagrams

Hxs I I Hyg

KY/f
XOY’ - Y 0 Y’

S.O. Anderson, A. J. Power1 Theoretical Computer Science 177 (1997) 3-25

and

13

Kw
X’OY - Y’ 0 Y

commute.

Definition 9. A premonoidal category is a binoidal category together with a family of

central isomorphisms a : (X 0 Y) 0 2 -+ X 0 (Y 0 Z) natural in each argument, an

object I, and families of central isomorphisms 1 : X -+I@Xandr:X--+XOI

natural in X, such that

002

((wox)OY)oz c

+
(WOX)O(YOZ)

(wo(xoY))oz

\
a

/

WC30

\

Wo(Xo(YoZ>>

and

commute.

It is trivially true that every monoidal category is a premonoidal category, with

HX =X0_ and Kx =-OX.

14 SO. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25

Definition 10. A symmetry on a premonoidal category is a natural family of central

isomorphisms c : X 0 Y + Y 0 X such that c2 = 1 and

(XOY)OZ a XO(YOZ)

COZ I
(YOX)OZ

a I
I c

commutes. A symmetric premonoidal category is a premonoidal category together with

a symmetry on it.

There are coherence theorems for premonoidal and symmetric premonoidal categories

generalising those for monoidal and symmetric monoidal categories (see [l 11): these

show that “all diagrams commute”, and so we may pass from two to many variables

unambiguously.

A strong premonoidal functor is a functor that preserves premonoidal structure up

to coherent natural central isomorphism. It is called strict if the isomorphisms are

identities. One may define strong and strict symmetric premonoidal fimctors along the

same lines.

Definition 11. A predistributive category is a premonoidal category with finite sums,

for which Hx and Kx preserve finite sums. A symmetric predistributive category is a

predistributive category together with a symmetry.

It is evident how to define strong predistributive functors and variants: they are

strong premonoidal functors that preserve finite sums and variants.

Proposition 12. Nondet(Set) is a symmetric predistributive category and J : Set -+

Nondet(Set) is a strict symmetric predistributive jiinctor.

Proof. This is a routine calculation, but also may be deduced in greater generality

from the fact that Nondet(Set) is the Kleisli category for a monad on Set. First

observe that any monad on Set has a unique strength, as it has a unique, in fact

trivial, enrichment over Set. Any strength on a monad on a Cartesian closed category

with finite sums yields a symmetric predistibutive structure on the Kleisli category,

with J strict symmetric predistributive: see [l 11. 0

S. 0. Anderson, A.J. Power I Theoretical Computer Science 177 (1997) 3-25 15

The symmetric predistributive structure on Nondet(Set) allows a treatment of non-

deterministic programs of several variables, a program with input a pair of variables

(x, y) of types X and Y being modelled by a map with domain X 0 Y, the premonoidal

product of X and Y. The condition that X 0 _ preserves finite sums ensures that the

semantics of programs with several variables behave well in the presence of condi-

tionals, cf. Walters and colleagues’ work on distributive categories [3]. The fact that

J is a strict symmetric predistributive functor means that the analysis extends that for

deterministic programs of several variables in the evident simple way.

4. Recursively defined types and higher-order types

In order to account for positively recursively defined types, we need to take co-

limits in our category. The reason is as follows. Consider a positive recursive domain

equation, for instance X = 1 +X. First observe that simply to define this equation,

we have used binary coproducts; so we want the existence of binary coproducts in our

category of domains. Now, to obtain a solution to this domain equation, one first takes

the initial object 0 of the category: so we want an initial object in our category in

addition to binary coproducts, hence all finite coproducts. Next, we apply the functor

1 + () to the initial object, and we continue to apply 1 + () inductively, yielding a

sequence X,, of objects of the category, with, for each n, a map from A’, to &+I: for

IZ = 0, it is the unique such map, and for greater n, it is given inductively by 1 + ()

applied to that map. Finally, we take the colimit X, of the sequence: so we want

the existence of such o-directed colimits in our category. This colimit is preserved by

1 + (), so provides a solution to our domain equation. That domain equation is one

for the natural numbers, so one certainly wants an account of such constructions. In

making this construction, we have used finite coproducts and o-directed colimits. They

do not generate all colimits, but they do generate a large class of them. So we seek

to add colimits to our semantic category.

Since we need to add colimits, the least intrusive way to do so is to add them freely

to Nondet(Set). In passing to this new cocomplete category, the free cocompletion of

Nondet(Set), we still want to maintain the modularity of our programs; i.e., we want

to preserve the program and type connectives we already have in Nondet(Set), namely

sequential composition, sums, and the premonoidal structure. We also do not want to

identify the semantics of any two programs whose semantics have not already been

identified. Such requirements are delicate but achievable modulo a mild size condition:

if we let Nondet(Set,) denote the full subcategory of Nondet(Set) determined by the

countable sets we have:

Theorem 13. The finctor

g : Nondet(Set,) -+ FP(Nondet(Set,)oP, Set),

X - Nondet(Set,)(_, X)

16 S. 0. Anderson, A. J. Power I Theoretical Computer Science 177 (1997) 3-25

is fully faithful and exhibits the category FP(Nondet(Set,)Op, Set) of finite prod-
uct preserving functors from Nondet(Set,)“P to Set as the free cocompletion of
Nondet(Set) that preserves those jinite sums that exist in Nondet(Set,).

The point of this construction is that, if we seek to model positively recursively

defined types, we cannot a priori do so in the category Nondet(Set) because it does

not have colimits. So this construction gives us a category FP(Nondet(Set,)“r,Set)

in which we can give all semantics as we have in previous sections, together with

a semantics for positively recursively defined types, in such a way that the original

semantics extends while respecting modularity, and without making any further iden-

tifications of semantic maps. The freeness in the construction is not really essential: it

is just a least intrusive way of getting such a semantic category.

A proof appears of a more general situation than the above theorem in [5], Theorem

6.11. The result gives us what we need, i.e., colimits, for an account of positively recur-

sively defined types, while preserving the existing structure. In fact, one only requires

initial objects and colimits of o-chains for inductive definitions that do not involve

binary coproducts in their definition, but since we already require finite coproducts to

model the semantics of if, we seek countable colimits. We are unaware of an attractive

characterization of the free addition only of countable colimits, while respecting some

already existing ones.

This construction is not quite as useful as we should like. For any object X of

Nondet(Set,), the functor _ 0 X extends to FP(Nondet(Set,)Op, Set), so we obtain

some account of programs of several variables. However, we see no way to obtain

a premonoidal structure on the whole category FP(Nondet(Set,)OP, Set). So although

we extend all our original semantics and have an account of recursively defined types,

our account of semantics for programs of several variables does not extend to all pairs

of types.

The above construction also gives us a limited account of higher-order structure: each

_ OX on Nondet(Set,) preserves finite sums, so lifts to a functor on FP(Nondet(Set,)Op,

Set) which has a right adjoint (X + -), which acts as a higher-order type. This is not

a complete analysis of higher-order types for two reasons: first, we only have (X + _)

for those X in Nondet(Set,), and cannot iterate the process; and second, we have

not yet accounted for equivalences of programs, and such a treatment will necessarily

fundamentally affect the choice of a higher-order type, as well as affecting everything

else. We will return to this in the next section.

Finally, it follows from countable versions of Barr and Wells’ [2] Theorem 4.3.5

and Example 4.3 (SSFP) that we have

Theorem 14. The functor 94 : Nondet(Set,) 4 FP(Nondet(Set,)Or, Set) factors

through fully faithful %Yv, : Nondet(Set,) 4 CP(Nondet(Set,)Op, Set), where the lat-
ter category is the full subcategory of FP(Nondet(Set,)Or, Set) consisting of those
functors that preserve countable products. Moreover, it is equivalent to the category

X0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 17

PJ-Alg of PJ-algebras with PJ the monad on Set determined by the adjunction of
Section 1.

To understand the idea of PJ-algebras, recall that, in Section 1, we mentioned that

there are two canonical ways in which one can obtain an adjunction from a monad.

The first way, which has been of primary interest to us here, is the Kleisli construction,

as explained in Section 1. The second is by construction of the category of algebras.

That construction is studied in depth in [Z]. We will not develop that further in this

paper, but mention the result for those readers who already know the construction. The

reason we mention the above result is that, on occasions, as for instance in Plotkin’s

LICS talk [9], when one has modelled nondeterminism with a powerdomain P, the

category of algebras has been used as a semantic category: so this result shows how

the category of algebras appears as a special case of our construction freely adding

colimits while preserving some existing ones.

Upon generalising to the category of w-cpos with least element, as we shall do

later, passing to the category of algebras allows an account not merely of recursion

on programs but also of a recursion operator as explained in Plotkin’s LICS talk

[9]. That is sometimes useful, as nondeterminism may arise from a recursive oracle,

for instance in complex systems. However, it is not always useful, as an oracle may

arise nonrecursively, for instance by human intervention in a program; so we do not

regard a recursion operator as essential to modelling nondeterminism. In summary, for

a recursion operator, one seems to need algebras, but a recursion operator need not

exist even while recursion does exist. That is why we prefer to take the category of

algebras as a derived construction, as we have done in this section, rather than as a

primitive construction as has been done in the past.

5. Factoring out equivalences

The connective v on Nondet(Set) is neither associative, nor commutative, nor idem-

potent; but in our leading example of the action of an external agent, the program-

ming v is associative, commutative and idempotent. So we seek to identify arrows in

Nondet(Set) to take account of that. More generally, we seek an account of factoring

out any reasonable equivalence on arrows in Nondet(Set).
In factoring out equivalences, we want to preserve the denotational semantics we

have already given in Nondet(Set), so we need to preserve sequential composition,

premonoidal structure and finite sums, and respect V, i.e., we want a strong symmetric

predistributive functor that respects V. In preserving sequential composition and finite

sums, it is natural to restrict attention to those equivalences - such that - is a congru-

ence, i.e., such that if f - g, then for any composable h and k, we have kjh - kgh;
and such that f N g if and only if for all x E X, fx - gx. This is equivalent to Jh N gh
for all h composable with f. For any congruence, f N g implies fx - gx for all x: we

additionally demand the converse. This is an extensionality condition that is sufficient,

18 S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25

but not necessary, to preserve finite sums. It is not true of an arbitrary congruence, as

one could have a V b N b V a but also (a, b) V (b, a) # (a, a) V (b, b) : 2 + Y. But we

do want our congruences to satisfy this extensionality condition. For instance, suppose

f was if x = 1 then (a V 6) else (b V a) and g was if x = 1 then (a V b) else (a V b).
If we put a V b N b v a, we would have fx N gx for all x E X. We want to conclude

that f is congruent to g, and we believe that any reasonable congruence should allow

us to do so. So we say

Definition 15. An extensional congruence on Nondet(Set) consists of an equivalence

relation - on each homset Nondet(Set)(X, Y) such that f N g if and only if for all

x E X, fx - gx.

Extensionality is an inherently natural condition, and it is particularly convenient, as

we have

Proposition 16. For any extensional congruence N on Nondet(Set) the composite

Set -+ Nondet(Set) + Nondet(Set)/ N

has right adjoint P”.

Proof. Since N is extensional, ()” : Nondet(Set) -+ Nondet(Set)/- preserves

coproducts, and hence tensors, so we may apply Proposition 5. For a map in

Nondet(Set)/ N from X to Y is an equivalence class of maps in Nondet(Set), but

an element of such is a set of X maps from 1 to Y, and any two are equivalent if

and only if each of the X pairs is equivalent, so to give the map is to give X maps

in Nondet(Set)/ N from 1 to Y. 0

It follows from Proposition 16 that ()” is necessarily strong symmetric predis-

tributive, because the premonoidal structure on Nondet(Set) agrees with the Cartesian

product of Set, which is necessarily preserved as a premonoidal structure by the proof

of Proposition 12.

Corollary 17. For any extensional congruence N on Nondet(Set) that respects V,

the operation U : PX x PX 4 PX is sent to a dejined operation U”.

Proof. This follows from the Yoneda lemma. The value of ()” at X is given by

taking equivalence classes under - applied to the set of maps from 1, and U” is

determined by its value on elements of the equivalence classes. 0

In general, it does not seem possible to give explicit definitions of the above

powerdomains.

This result is mildly misleading, as we have ignored the B-structure of

Nondet(Set). In computational terms, we have ignored recursion. It does return us

a monad, and it does give us a convenient partial result; but both our assumptions and

S. 0. Anderson, A.J. Power/ Theoretical Computer Science 177 (1997) 3-25 19

our conclusions are mildly weaker than those we ultimately seek. Informally, we have

freely adjoined a binary operation on terms in Section 2, and now we have factored

it by equations. The category of algebras for the induced monad here is essentially,

but not precisely, the category of algebras for those operations and equations. That

statement becomes precise when we have 0 as our base category and we consider

only categories, fimctors, and operations that are O-enriched, as we do in Section 7.

Consideration of such operations and equations is a general situation applying not

only to nondeterminism but also to two nondeterministic operators together with an

equational relationship between them, and more generally to any system of opera-

tions and equations. However, it does not apply to all monads used as notions of

computation by Moggi as they do not all arise from operations and equations in this

way. For a specific example, consider the addition of side effects or the study of

partiality.

6. Recovering the classical powerdomains

In this section, we use the techniques of Section 5, specifically Corollary 17, to

rediscover the convex powerdomain. This section is the fundamental section of the

paper. First, it shows precisely how our setting generalises the use of a powerdomain.

Second, it gives a formal account of how one might discover the convex powerdomain

from a more primitive analysis of nondeterminism. Formally, recovering the upper and

lower powerdomains is similar. However, the convex powerdomain is clearly illustrated

as more primitive.

First we recall the traditional powerdomains, and the thinking behind their devel-

opment as explained in [8]. The idea is that one starts with a countable set of states

S. Then, for a given initial state, a nondeterministic program has a set of possible

outcomes. Taking recursion into account, a program may or may or may not terminate,

and if not, may or may not produce any output: we investigate that possibility more

closely in the next section. If the set of possible outcomes is infinite, then since we

only allow finite branching, it follows by Konig’s lemma that nontermination must

have been a possibility. So the convex powerdomain P,(S) is defined to be the set

of all nonempty subsets of Sl which are either finite or contain 1. This set is then

given a natural order, yielding an o-cpo with least element. This construction has been

generalised in several ways to a more general class of domains, but the situation for a

countable set is the basic one. For convenience, we will take it, for general X, to be

the set of all countable nonempty subsets of XL which are either finite or contain 1.

We will do similarly for the other powerdomains too.

For the other powerdomains, one has a slightly less refined analysis: in one case,

one ignores nontermination and just asks for the set of possible outcomes, hence P(S);

this may be seen as taking the convex powerdomain and deleting -L from any set that

contains it. This identifies any finite set not containing I with the union of that set

with {I}. For the other case, one identifies all sets containing L on the basis that

20 S. 0. Anderson, A. J. Power I Theoretical Computer Science 177 (1997) 3-25

Fig. 3. Two computations.

no output can be guaranteed of them. These powerdomains are again given natural

orderings making them into o-cpo’s with least element.

Note that they are motivated by less dynamic arguments than we have made: the

emphasis being on a set of possible outcomes rather than a tree of possible behaviours.

Nevertheless, we find it striking how easy it is to recover the convex powerdomain by

putting a very mild equivalence on our set of trees. The argument is as follows.

As mentioned in Section 5, the programming V is associative, commutative and

idempotent. So we wish to factor out the minimal equivalence to force the semantic

V to be likewise. However, we also want while x = 0 do (x = 0 V x = 1) to have the

same meaning as while x = 0 do (x = 1 V x = 0), and this is not assured by ordinary

commutativity and associativity of V, i.e., we want to identify the two computations

of Fig. 3.

This is simply resolved by insisting that our congruences respect the O-structure of

Nondet(Set), and v continues to respect O-structure after being factored, cf. [l].

We then have

Theorem 18. Let - be the minimal extensional congruence on Nondet(Set) that
respects the O-structure and makes V associative, commutative and idempotent. Then
(P”, W) is the convex powerdomain.

Proof. By extensionality, one need only consider maps with domain 1. So consider

those maps from 1 to X. For finite trees, it follows by induction that two trees are

identified if and only if the sets of labels on their leaves agree. For infinite trees,

respect for the Co-structure applied to the definitions of commutativity and idempotence

force the same result but with a least element to represent undefinedness added. Thus

we have the convex powerdomain as restricted to sets, i.e., the set of those subsets of

XL consisting of the finite subsets together with those countable subsets containing I,

see [8, Section 8, p. 61. It is routine to verify that U” amounts to union. 0

The upshot of this result is that factoring by extensional CJ-congruences satisfying

the conditions of the theorem reduces the trees to the set-of-possible-outputs view

advocated in the traditional literature on powerdomains. We think this fact helps

S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 21

to justify the primacy of the convex powerdomain in the study of nondeterminism,

while giving scope for modelling more intensional properties, as for instance done by

Simpson [121.

We can go further than this and show that the various powerdomains are the only

nontrivial constructions one obtains by factoring by congruences subject to mild, natural

conditions. We regard this result as a strong vindication of the study of the power

domains. 2

Theorem 19. There are precisely three nontrivial extensional O-congruences N on

Nondet(Set) that respect V, and make it associative, commutative and idempotent.
These yield the upper, lower and convex powerdomains.

Proof. Take any congruence - on Nondet(Set). By Theorem 18, we may consider N

as a congruence on the Kleisli category for the convex powerdomain. Assuming it is

nontrivial, then it follows from the fact that composition with any map from the one

point set must preserve -, that for some set X, two different subsets A and B of X_L,

regarded as maps from 1 to X, are identified. Postcomposing with the characteristic

function for one of them, it follows that - identifies at least two of the three maps

from 1 to 1: choosing 1, I, or the union. Identifying either of the first two with the

last yields the other two classical powerdomains. One identifies all sets containing I,

and the other ignores 1. If one identifies 1 with I, then since N is a congruence,

it follows by postcomposition that all maps from 1 to any X are identified with that

choosing I, and so by extensionality, any two maps are identified. 0

Finally, observe that forcing V to be associative, commutative and idempotent while

respecting the Co-structure forces the premonoidal structure on Nondet(Set) to be sent

to a monoidal structure. With premonoidal replaced by monoidal, the discussion about

higher-order types at the end of Section 4 returns to the realm of known category

theory: FP((Nondet(Set,)/ -)“r, Set) is then symmetric monoidal closed, allowing

iteration of higher-order types respecting equivalences.

7. Finite approximation

There is only one substantial change in moving from sets to w-cpos to account for

finite approximation: equality is no longer the primitive relation between the functional

behaviour of programs. The partial order is. For instance, to show that [p] = [q], we
show that [pn] L fq] and l[qm] L up] given (p,) + p and (qm) --f q. So we no longer

use a congruence N, but we insert a partial order. In doing so, we introduce new maps!

The reason for introducing new maps is as follows: suppose we wish to refine a

horn o-cpo by forcing g 5 h : A -+ B (e.g., x V y !& y V x). This may produce

a new increasing sequence (fn). We need a limit for this sequence, but there is no

2 We should like to thank Gordon Plotkin for pointing this result out to us.

22 S. 0. Anderson, A. J. Power I Theoretical Computer Science I77 (1997) 3-25

computational reason to force any existing map to be that limit: so we add a new map

to act as the limit.

When we introduced and factored out congruences, we considered extensional con-

gruences, i.e., those equivalence relations N for which f - g if and only if for

all x, fx N gx. The reason was that programs could be observed only by observing

their behaviour on input. For the same reason, we need an account of extensionality

here.

Mathematically, this can be expressed simply by a strong extensionality condition:

we want every map f : A -+ B, new or old, to be determined by giving an A-indexed

family of maps fa : 11 -+ B, subject to the partial order and limiting information of A.
This is the assertion, in categorical terms, that each A E Nondet(O)/ L is the tensor

of A, regarded as an object of 8, with 1 1, regarded as an object of Nondet(Co)/ &.
(See Section 1). So, we will insist that ()’ : Nondet(B) + Nondet(B)/ C preserves

tensors (equivalently, tensors with 11).

This condition was redundant in the discrete setting because it was a consequence

of restricting to extensional congruences and not introducing new maps. Adding new

maps allows us to model print, and preservation of tensors ensures preservation of

conditionals, because sums can be treated as tensors here. We introduce print following

Plotkin [8]. The idea, in a simple setting, is that a program prints a succession of O’s

and 1 ‘s, and that is the output of the program. The reason this affects the modelling

of nondeterminism is that the printing need not all happen when the program halts,

but may occur during the running of the program. So in particular, a program may

never halt but may have an output that is gradually generated. So in order to model

print adequately, one needs to model the notion of finite approximation of output, and

implicitly dataflow composition, whereas our setup so far has been directed towards

modelling sequential composition. It was the semantics of print that motivated the

binarily generable trees of [8], and it is therefore binarily generable trees that we wish

to rediscover here.

Aside from this, we routinely generalise the discrete case with evident modifications.

First observe that 0 = o-cpos with least elements, being an O-category may be used to

define the semantics of while. We identify 0 with the category of w-cpos and partial

maps. So in order to allow the semantics of while on the deterministic part of our

language to lift to Nondet(Lo), we require that Nondet(0) be an Lo-category and J be

an Gfimctor. Moreover, we want Nondet(Co) and J to restrict to Set as in Section 2,

and we want f L g if and only if f(x) C g(x) for all x E A. So we define a map in

Nondet(0) to be a continuous partial function f : [co, 21 x A - o x B with [o, 21 and o

regarded as discrete, such that if f (s, a) = (n, b) and t agrees with s on 0, 1, . . . , n - 1

then f (&a) = (n,b). Moreover f L g if and only if whenever f (&a) = (n, b), then

g(s,a) = (n,b’) for some b’ with, b C: b’. In terms of trees this means that f C g if and

only if for all x E A, if f stops at a leaf with output y, then g stops at the same leaf

with output greater than or equal to y. This enriches Nondet(O), makes J U-enriched,

and extends the discrete case. Our technique now is to successively strengthen L, i.e.,

to make things more related.

S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 23

Observe that the semantics for while can be given in terms of either fixpoints or

iteration: it is easy to verify that they agree, and we can duly give semantics to all

our language other than print in No&et(@).

Definition 20. An insertion in Nondet(0) consists of, for each A and B in 6, a par-

tial order C on Nondet(Lo)(A,B), which is preserved by pre- and post-composition in

Nondet(0).

Definition 21. An insertion is called extensional when f & g if and only if f(x) &

g(x) for all x E A.

Definition 22. An insertion quotient is the universal tensor-preserving identity on ob-

jects O-functor ()’ : Nondet(0) + Nondet(O)/ 5 that inserts the insertion and pre-

serves V as a family of continuous maps.

This means that an insertion quotient is, in a precise sense, the minimal way to

add the given insertion to the partial order, and recover the structure of an w-cpo

with least element, and keep V well defined. One just freely adds whatever data is

needed to each of the partial orders to ensure that all the conditions are satisfied. It

follows from abstract category theory that the functor giving the quotient has a right

adjoint.

Theorem 23. For any insertion quotient, the O-functor()‘J : 0 + Nondet(O)/L has
a right adjoint given by Nondet(O)/C ((Jl)c, -). Moreover, 6 is representable.

Proof. The first claim is an instance of Corollary 3. The second holds because V is

preserved as a family of continuous maps and by the Yoneda lemma, by the same

argument as in several of the proofs of Section 1. 0

We consider two specific examples of extensional insertions and quotients. First

consider the least extensional congruence generated by adding f C f V f for every f.
This means that f C g if and only if for all x E A, if f stops at a leaf with output y,

then g stops at that leaf or along every path that extends that leaf, each time with a

value at least that of y. We will denote this insertion by &. Then we have

Theorem 24. The insertion quotient of Li gives the binarily generable trees subject
to the equivalence relation making labelied trees only dependent upon their shapes,

the labels of the leaves and the limiting values.

Proof. This is implicit in [7,13]. A binarily generable tree is a binary branching tree

in which each node is labelled by an element of the target o-cpo, with the sequence

of elements increasing along any branch. So each such tree is a limit of a sequence of

our generic trees, the difference being that binarily generalable trees may have a limit

along an infinite branch, whereas our generic trees do not; but adding this insertion

24 S. 0. Anderson, A.J. Power/ Theoretical Computer Science 177 (1997) 3-25

allows such limits. One then factors so that only the limit along each branch is counted,

rather than the specific sequence that leads to the limit. q

Observe that this now allows us to give semantics to print as desired.

Now consider the least extensional insertion generated by making V idempotent,

associative and commutative. Note that this strengthens the above example. Let us

denote the insertion by C,. There are several definitions of convex powerdomain on

o-cpos which agree on SFP domains. For the definition of convex powerdomain as a

free monoid with extra structure, we have

Theorem 25. The insertion quotient of C, determines the convex powerdomain.
Moreover, up to jinite approximation, it is the Egli-Milner order on Nondet(0).

Proof. The first claim is proved in [7, 131. For the second, modulo finite approxi-

mations, f C, g if and only if for all x E A, for all s there exists a t such that

f(s,x) L g(t,x) and for all t there exists an s such that f(s,x) C g(t,x). 0

The lower and upper powerdomains are recovered by strengthening the insertion

appropriately.

8. Further work

In considering giving semantics for the concurrent execution of f: X --f Y and

g : X’ -+ Y’ we can introduce an operation f 1 g : X 0 X' + Y 0 Y’. The tree for f 1 g
is constructed by considering all interleavings of the trees for f and g. Observe that this

does not give a monoidal structure, or even a premonoidal structure on Nondet(Set)
because f [g is not the composite of (f 11) and (11 g). However, 1 is evidently associative

with an identity and respects sequential composition in Nondet(Set).

For an account of concurrency we need a parallel operation and some means of

pruning unwanted paths in the trees. We believe we can introduce such operations

on Nondet(Set). Such operations would provide the basis for an account of some

features of concurrent systems, in particular synchronisation, and deadlock. Then using

our treatment of equivalences in Section 5 one can acount for various equivalences

arising from concurrent computation.

9. Conclusions

We have reformulated the semantics of nondeterminism, taking sequential composi-

tion and V as primitive, doing so in the presence and with an account of the familiar

program and type constructors. We have also accounted for equivalences and finite

approximation by general, computationally natural constructions and we have indicated

how one may commence a treatment of concurrency based on nondeterminism and

S. 0. Anderson, A.J. Power1 Theoretical Computer Science 177 (1997) 3-25 25

appropriate equivalences. In particular, we have formulated a generic semantics for

nondeterminism and a single general construction to account for equivalences: this

gives a description of all powerdomains, illustrating the three classical powerdomains

as three instances of the same mathematical construction.

[I] K.R. Apt and G.D. Plotkin, A Cook’s tour of countable nondeterminism, in: Proc. 9th ZCALP, Lecture

Notes in Computer Science, Vol. 115 (Springer, Berlin, 1981) 479-494.

[2] M. Barr and C. Wells, Toposes, Triples and Theories (Springer, Berlin, 1985).

[3] A. Carboni, S. Lack and R.F.C. Walters, Introduction to extensive and distributive categories,

J. Pure Appl. Algebra 84 (1993) 145-158.
[4] P. Di Giantonio, F. Honsell and G. Plotkin, Uncountable limits and the i-calculus, Nordic J. Comput.

2 (1995) 126145.
[5] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Sot. Lecture Notes Ser. 64

(Cambridge Univ. Press, Cambridge, 1982).

[6] E. Moggi, Computational lambda-calculus and monads, in: 4th LZCS Conf (1989) 1423.

[7] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (1976) 452486.

[8] G.D. Plotkin, Domains, Edinburgh University Department of Computer Science Postgraduate Theory

Course Notes, 1983.

[9] G.D. Plotkin, Type theory and recursion (extended abstract), in: 8th LZCS Conf: (IEEE Computer

Society Press, 1993) 374.

[lo] A.J. Power and E.P. Robinson, On the categorical semantics of types, draft, 1994.

[ll] A.J. Power and E.P. Robinson, Premonoidal categories and notions of computation, in: LDPL ‘95,
Math. Structures in Computer Science, to appear.

[12] A.K. Simpson, The convex powerdomain in a category of posets realized by cpos, in: Proc. CTCS ‘95,

Lecture Notes in Computer Science, Vol. 953 (Springer, Berlin, 1995) 117-145.

[13] M.B. Smyth, Power Domains, J. Comput. System Sci. 16 (1978) 23-36.
[14] R. Street and R. Walters, Yoneda structures on 2-categories, J. Algebra 50 (1978) 350-379.
[15] G. Winskel, Powerdomains and modality, in: Foundations of Computation Theory, Lecture Notes in

Computer Science, Vol. 158 (Springer, Berlin, 1983) 505-514.

