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Abstract 

Grid connected electrical energy storage could enable large 

numbers of intermittent renewable generators to be deployed 

in the UK. Many studies investigate the revenue which could 

be achieved through arbitrage assuming perfect foresight of 

electricity prices. In practice, storage operators will not have 

perfect foresight and will have to devise operational strategies 

using price forecasts. This paper investigates the impact of 

forecast accuracy on the optimality of storage revenue. The 

optimal revenue available is determined using linear 

programming and historic electricity prices. The results are 

compared to those found using dynamic programming and 

electricity price forecasts with increasing percentage error. A 

small scale lithium ion battery and a large pumped hydro 

energy storage (PHES) device are compared. The results 

show that revenue reduces at an increasing rate with 

increasing forecast error. The PHES device is more sensitive 

to forecast accuracy than the lithium ion battery. For both 

technologies, with a maximum error of 30%, 80% of the 

optimal revenue can be achieved. With increased capacity and 

significantly increased power rating, the lithium ion battery 

becomes more sensitive to price forecast accuracy. 

1 Introduction 

Electrical energy storage provides a potential solution to the 

challenge of integrating large amounts of intermittent 

generation to the grid. It could reduce the requirement for 

investment in expensive peaking plant and avoid curtailment 

of non-dispatchable generators. Additionally, it could reduce 

capital expenditure in transmission and distribution 

infrastructure as well as system operating costs. Strbac et al 

[1] have estimated that by 2050 electrical energy storage 

could provide savings of up to £10bn per year to the British 

electricity system. 

 

With the potential value of electrical energy storage 

recognised, understanding the economic and market drivers 

for widespread storage deployment is a growing area of 

research. Many studies consider the revenue that could be 

achieved through arbitrage, i.e. taking advantage of price 

differentials in the wholesale electricity market. Arbitrage 

alone is not expected to provide sufficient revenue to storage 

operators. However, combined with additional services, such 

as delivery of ancillary services, it is likely to be an essential 

revenue stream. 

 

It is common practice to assume perfect foresight of 

electricity prices to assess the revenue that can be achieved 

through arbitrage [2]. Grunewald [3] investigated the gain in 

revenue an operator could receive with foresight over an 

increasing time horizon. He showed that by increasing 

foresight from 1 hour to 4 hours, revenue improvements of up 

to 22% could be achieved. Foresight beyond 12 hours was of 

no additional value, as storage devices typically follow a daily 

cycle in line with electricity prices. 

 

In practice, operators will not have perfect foresight and so 

alternative approximate optimisation methods must be used 

with price forecasts. Various approaches have been taken to 

address this. Walawalkar et al [4] assumed a fixed daily 

storage cycle: the device was charged overnight and 

discharged during the same pre-defined peak hours each day. 

Sioshansi et al [5] determined an optimal charging strategy 

using prices from the preceding two week period and applied 

this to the current two week period. Using this approach, 

approximately 85% of the optimal revenue was achieved. 

 

Lund et al [6] and Connolly et al [7] compared different 

practical strategies – without foresight of electricity prices – 

to an optimal strategy – with perfect foresight – for 

compressed air energy storage (CAES) and PHES 

respectively. With the practical strategies implemented, 

CAES could achieve 80-90% of its optimum revenue. For 

PHES, the operator required “very accurate price predictions” 

to avoid a significant loss in profit. The accuracy required 

was not, however, quantified. 

 

In this paper, the impact of price forecast accuracy on the 

optimality of storage revenue is investigated. Typical 

characteristics of a lithium ion battery are used as a base case. 

An upper bound on the revenue available through arbitrage is 

calculated using linear programming. This optimal solution is 

compared to results found using dynamic programming with 

notional price forecasts with increasing percentage error. The 

results are compared to characteristics of a large scale PHES 

system. The storage power capacity and energy rating are 
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varied to investigate the sensitivity of storage size to forecast 

accuracy. 

 

Electricity price processes are characterised by high volatility, 

large spikes, reversion to a daily pattern and seasonality as 

described by Amjady and Keynia [8]. Price forecasting is a 

broad and complex field of research in its own right. 

Electricity markets vary between countries depending on 

geographical and system specific constraints, generator types 

and demand profiles. Forecast accuracies depend on the 

electricity market being examined as well as the forecasting 

method being used. This paper does not attempt to compare 

forecasting techniques, but investigates the impact of varying 

forecast accuracy on the optimality of storage revenue in the 

British electricity market. 

2 Method 

Market index data defines the price, Pt (£/MWh), of electricity 

for each half hour settlement period, t, in the UK. It reflects 

the value of wholesale electricity in the short-term market.  

 

The storage device is defined by the following characteristics: 

 

Smax Storage capacity (MWh) - the total amount of 

electricity that can be stored by the device. 

 

Q
C

 Charging rate (MW) – The maximum rate at which 

the storage device consumes electricity when 

recharging. 

 

Q
D

 Discharging rate (MW) – The maximum rate at 

which the storage device can deliver electricity. 

 

ηc Conversion efficiency (%) – the ratio of energy 

delivered to energy consumed excluding any losses 

due to self-discharge. 

 

ηs Storage efficiency (%)  - the percentage of electricity 

retained in storage over each time period. 

 

The following assumptions are applied: 

 

 The storage device has 100% availability. 

 Storage is a price taker and its operation does not 

affect the market price of electricity. 

 The network is a single bus system and storage is not 

subjected to network constraints. 

 The device characteristics are constant. 

 The conversion efficiency is modelled during 

charging only i.e. the discharge cycle is 100% 

efficient. 

 The ramp rate is negligible compared to the time 

period. 

 The cost of charging and discharging (in addition to 

the cost of electricity) is negligible. 

 The interest rate is negligible over the time period 

considered. 

From the charging and discharging rates, the maximum 

quantity of electricity (MWh) which can be charged, q
C

max, or 

discharged, q
D

max, in a single half hour time period is defined. 

 

The decision variables for the storage operator are how much 

electricity to buy, q
C

t, and sell, q
D

t, during each time period. 

The state of charge of the storage device, St, is defined by 

Equation (1) and subject to the constraints given in Equations 

(2), (3) and (4). 

 

St = ηsSt-1 + ηcq
C

t - q
D

t   (1) 

 

0 ≤ St ≤ Smax    (2) 

 

0 ≤ q
C

t ≤ q
C

max    (3) 

 

0 ≤ q
D

t ≤ q
D

max    (4) 

 

The objective is to maximise the annual revenue, R, which is 

the sum of the price multiplied by the net quantity sold during 

each settlement period. This is defined in Equation (5). 

 

R = 𝛴 Pt(qt
D
 – qt

C
)   (5) 

 

2.1 Linear Programming 

 

Linear programming is used to calculate the upper bound on 

revenue that can be achieved with perfect foresight of 

electricity prices as demonstrated by Byrne and Silva-Monroy 

[9]. R* is defined as –R to formulate the problem as a 

standard minimisation problem with the objective defined by 

Equation (6), subject to the constraints in Equations (7) and 

(8). 

 

Minimise  R* = -f
T
x   (6) 

 

Subject to  Ax ≤ b    (7) 

lb ≤ x ≤ ub   (8) 

 

where x is a vector of decision variables and f a vector of 

prices for each half hour period throughout the year. A is a 

matrix computed from the conversion and storage efficiencies 

and b a vector based on the maximum storage capacity. lb and 

ub are lower bounds and upper bounds; zero and the 

maximum charging/discharging rate respectively. A standard 

linear programming function implemented in MatLab, 

“linprog(f,A,b,[],[],lb,ub)”, is used to solve the objective 

function and define the optimum operation strategy to 

maximise annual revenue. 
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2.2 Dynamic Programming 

 

Dynamic programming is a technique used to solve a broad 

range of optimization problems, and is particularly applicable 

to multi stage stochastic optimization problems. It was 

formalised by Berteksas [10] and has since been used for a 

variety of applications including finance [11] [12].  

 

Dynamic programming divides problems into a number of 

sub-problems and solves each sub-problem such that the 

overall solution is optimal to the original problem. In this 

work dynamic programming is used to solve the stochastic 

version of the problem defined in Section 2.1. Instead of 

perfect foresight of future electricity prices, a forecast is 

assumed with fixed maximum error. The objective of the 

dynamic programme is to generate a policy {q*t
D
 – q*t

C
}, 

which is a set of time-dependent optimal decisions, with the 

objective function defined by Equation (9) and with the same 

constraints defined in Equations (7) and (8). 

 

Minimise  E(R*) = E(𝛴tPt(q*t
D
 – q*t

C
))   (9) 

 

E represents the expected value with respect to the probability 

distribution of the electricity prices. Electricity prices are 

modelled as a Markov chain, i.e. the probability distribution 

for the prices at time t+1 depend only on the price observed at 

time t.  

 

The price forecasts are artificially generated by adding a 

random variable with uniform distribution over an interval [-

s, s] to the actual prices, where s is the maximum error of the 

forecast. The average error of the forecast is zero, while the 

absolute average error is s/2.  

 

Further details on the dynamic programming algorithm are 

detailed in [13]. 

 

2.3 Data 

 

Market price data for Great Britain is available online from 

the Elexon Portal [14]. For this study, the annual revenue is 

calculated using data from 2013. Figure 1 shows the half 

hourly electricity prices for the first two weeks in January 

2013. This demonstrates the typical daily cycle of cheap 

electricity prices overnight followed by an increase in the 

morning and a daily peak in the evening. This cyclic pattern 

presents opportunities for arbitrage on a daily basis. 

 

Characteristics for a lithium ion battery are used for this 

analysis. These are based on the battery system demonstrated 

as part of the UK Power Networks Smarter Network Storage 

Project [15]. This is a small scale storage device connected to 

the distribution network. For comparison, results are 

compared to a large scale PHES based on characteristics of 

Dinorwig [16]. 

 

 

 
Figure 1: Electricity prices for the first two weeks in 2013 

 

Characteristic Lithium Ion 

Battery 

PHES 

Smax (MWh) 10 10100 

Q
C
 (MW) 6 1728 

Q
D
 (MW) 6 1728 

ηc (%) 65 0.75 

ηs (%) 99.5 100 

Table 1: Lithium ion battery and PHES characteristics 

 

The storage efficiency of PHES is approximated to 100%. 

There will, in fact, be some losses due to evaporation; 

however, these will be minimal compared to the size of the 

reservoir. 

 

The dynamic programme is run using randomly generated 

forecasts with maximum errors of 1%, 2%, 5%, 10%, 20%, 

30%, 40% and 50%. Ten simulations are run for each level of 

forecast error. The maximum percentage difference between 

simulations for the same error is 3%. 

3 Results and Discussion 

3.1 Increasing Forecast Error 

 

For the lithium ion battery, with perfect foresight using linear 

programming, the optimum revenue which could be achieved 

based on 2013 electricity prices is £47,248. With dynamic 

programming, as the maximum error is increased from zero to 

50%, the revenue reduces to 63.6% of the optimum. The 

results, shown in Figure 2, show that the revenue reduces at 

an increasing rate with increasing forecast error.  

 

Hu and Taylor [17] implied that forecast errors of 10% or less 

could be readily realised in the short-term British electricity 

market. If a storage operator could achieve this level of 

forecast accuracy, ~98% of the optimum revenue available 

could be attained. Even if forecast accuracy reduces with a 

larger number of variable generators in the future, a 

significant proportion of the optimal revenue would still be 

available.  
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Figure 2: Loss of revenue with increasing forecast error for 

lithium ion battery 

 

3.2 Large Scale Storage 

 

For the large PHES the optimum revenue which could be 

achieved based on 2013 electricity prices is £50m. The 

optimality is more sensitive to forecast accuracy than the 

smaller scale battery. The results, shown in Figure 3, exhibit a 

similar pattern to those for the lithium ion battery, however, 

the revenue reduces at a faster rate as the forecast error 

increases. As the maximum error is increased from zero to 

50%, the revenue reduces to 56% of the optimum. To 

maintain 98% of the optimum revenue, the forecast error must 

be within 5%. The optimum revenue available to the PHES 

operator is significantly higher than that available to the 

lithium ion battery operator, as a result of the differing scales 

of technology. This may imply that a lower percentage of the 

optimal revenue is more acceptable to the PHES operator; 

however, the costs for the PHES will also be significantly 

higher so this conclusion cannot be made without the cost 

information being considered which is out with the scope of 

this study. 

 
Figure 3: Loss of revenue with increasing forecast error for 

PHES 

3.3 Variation in Storage Capacity and Power Rating 

 

The simulations are repeated using the characteristics for the 

lithium ion battery, with increased storage capacity. The 

results are shown in Figure 4.  

 

The optimal revenue available for storage devices with 

10MWh, 15MWh and 20MWh capacities is £47,248, £57,322 

and £61,503 respectively. The results show that for increased 

storage capacity, but fixed power rating, the device is more 

sensitive to price forecast accuracy. 

 

Figure 4: Loss of revenue with increasing forecast error for 

lithium ion battery with variation in storage capacity 

 

Figure 5: Loss of revenue with increasing forecast error for 

lithium ion battery with variation in power rating 

 

Figure 5 shows the results using the characteristics for the 

lithium ion battery with fixed storage capacity but varying 

power rating. The optimal revenue available for storage 

devices with 6MW, 12MW and 18MW power ratings is 

£47,248, £56,772 and £60,331 respectively. The results 

indicate that the different power ratings have differing 
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sensitivities to the accuracy of the forecast. Doubling the 

power rating leads to a small improvement, however, the 

revenue decreases significantly when tripling the power 

rating. This suggests the presence of an optimal threshold for 

the least sensitive power rating.  

5 Conclusions 

Grid connected electrical energy storage could enable a 

significant number of intermittent renewable generators to be 

connected to the electricity grid. There is a need to understand 

the economic case for energy storage to determine how it may 

be deployed in the future. One way in which storage operators 

can gain revenue is through price arbitrage, or time-shifting of 

energy. Many studies have calculated the expected revenue 

which could be achieved with perfect foresight of electricity 

prices. In practice, storage operators will not have perfect 

foresight and must devise operating strategies based on 

electricity price forecasts. Inevitably, this will lead to a 

reduction in projected revenue. This paper investigates the 

impact of price forecast accuracy on the optimality of storage 

revenue.  

 

The optimal storage revenue is determined using linear 

programming with historical electricity prices to model a 

situation where perfect foresight is available. A practical 

strategy is then implemented, without perfect foresight, using 

dynamic programming and notional price forecasts with 

increasing percentage error. Storage characteristics of a 

lithium ion battery and a large scale PHES device are 

investigated using price data from the British wholesale 

electricity market from 2013. 

 

For the technologies investigated, the optimality of storage 

revenue reduced at an increasing rate as the forecast error 

increased. The PHES device was more sensitive to forecast 

error that the smaller scale lithium ion battery. For both 

technologies, with a maximum error of 30%, 80% of the 

optimal revenue was achieved. These levels of forecast 

accuracy can be readily realised for the short term UK 

market. With increased storage capacity and significantly 

increased power rating, the lithium ion battery was more 

sensitive to forecast error. 
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