
c© British Computer Society 2001

Reply to ‘Comment on
“A Framework for Modelling Trojans
and Computer Virus Infection” ’ by

E. Mäkinen
H. THIMBLEBY1 , S. O. ANDERSON2 AND P. A. CAIRNS1

1School of Computing Science, Middlesex University, Bounds Green Road, London N11 2NQ, UK
2Division of Informatics, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JZ, UK

Email: harold@mdx.ac.uk, soa@dcs.ed.ac.uk, p.cairns@mdx.ac.uk

Computer viruses are a worrying real-world problem, and a challenge to theoretical modelling.
In this issue of the Computer Journal, Erkki Mäkinen proposes universal Turing machines in a
critique of an earlier paper, ‘A framework for modelling Trojans and computer virus infection’
(Thimbleby, H., Anderson, S. O. and Cairns, P. (1998) Comp. J., 41, 444–458). This short paper is a

reply by those authors.

Received 3 March 2001

F. B. Cohen developed computer viruses and an initial
theory [1]. One criterion for judging the adequacy of
a theoretical model of computer viruses is the extent to
which it might help practitioners address some of the
issues that arise in practice. Cohen’s model aided in the
determination of the decidability issues of viruses. However,
early theoretical models failed to aid in the discovery
of mechanisms that inhibit the spread of viruses. This
motivated our own attempt [2] to define a new framework
to explicitly address the wide variety of virus behaviours
and to help in the exploration of antivirus mechanisms and
architectures. In turn our paper has stimulated E. Mäkinen’s
paper [3], ‘Comment on “A framework for modelling
Trojans and computer virus infection” ’, which precedes this
reply.

The explicit starting point of Mäkinen’s paper is that
Turing machines (TMs), and in particular universal Turing
machines (UTMs), can ‘serve as a basis of a model
illustrating the properties of viruses and other malicious
programs.’ Mäkinen defines a virus as a description of a TM
on the tape of a UTM, as sketched out in his Section 3. His
approach is in contrast to ours, which avoided any concrete
constructions on grounds of implementation bias. Mäkinen’s
model is appropriate for basic undecidability results, as
he himself concludes, but his model does not address,
for instance, viruses that replicate in other ways than as
narrowly specified. He claims, without elaborating, that his
universal model can be increased in concreteness, indeed he
claims that ‘there is no reason preventing us to sharpen the
above model based on UTMs to any level of fine granularity.’

Let us take his model, based on [4]—which itself has
been criticized for being too concrete [5]—seriously. A TM

operates on its instantaneous description, which consists of
the tape contents, tape head position, and the internal state.
In the notation used in [3, 4], a TM is a tuple 〈M,w, q〉:
in addition to the machine M itself that Mäkinen defines,
there is a current state, q ∈ Q, and the tape contents
w = α1α2 ∈ (� ∪ {ε})∗, with the tape head assumed to be
positioned on the first cell of α2. Mäkinen assumes a UTM
(call it U) with an encoding of a TM M on its tape. Since
M operates over its tape contents w, the tape of U will be
Mα1qα2.1

By definition, U does not change the representation of M

on its tape, and the simulated TM M cannot change any part
of the tape other than the substrings α1 and α2 since together
they represent the entire tape accessible to M .

Mäkinen considers a virus to be a description on M’s
tape w ‘of a TM whose simulation [. . . by U] causes another
description of a viral TM to appear to the tape of the UTM.’
But U , as defined, simulates no machine other than M ,
moreover there is no way to change the definition of M

(i.e. its representation on U’s tape) without assuming U is
something other than a standard UTM. The representation
M is not and cannot be ‘infected’ but must itself be running
a well-defined program that, if it is to support the operations
Mäkinen supposes, must amongst other things, search for
TM representations in w and change them. Unless M is
also universal, it will not be able to simulate any such
machines, but if M is itself a correct universal machine,
then the arguments apply reductio ad absurdum: defining

1This construction, based on [4], assumes the alphabets (Q, �, . . . )
are disjoint and together form the alphabet of U ’s tape symbols. In fact
〈M, w, q〉 can be represented in many equivalent ways; e.g. U could be a
multitape machine, with M, α1, α2 and q represented on separate tapes.

THE COMPUTER JOURNAL, Vol. 44, No. 4, 2001



REPLY TO COMMENT ON MÄKINEN 325

viruses that actually change the behaviour of a universal
machine or any simulation run by a universal machine is
never achieved. These problems are not insurmountable,
but U somehow has to be an operating system for TMs;
in fact it would have to be bigger in some sense if it is
to model cross-computer virus infection. Ironically, real
viruses typically infect quite ordinary programs, rather than
directly affecting the behaviour of metaprograms such as M

or U . In short, while Mäkinen’s definition of a virus looks
superficially attractive, when it is more fully explored as a
concrete description it raises problematic issues that demand
intricate solutions—and one might suppose that sufficiently
detailed schemes would be hard to relate to real world issues,
where specific representations involving tapes are irrelevant.

Programs have names and Mäkinen suggests an imple-
mentation involving a bit string embedded in the tape encod-
ings of programs: a malicious program ‘contains the same
bit string falsely naming the program.’ He thus commits to
the idea that the naming process is open to inspection by
programs and (in the absence of any security mechanism)
the details of the coding for names can be tampered with.
Who is to say what ‘falsely’ means; and of two unequal
names, which is which? If the semantics of naming are
mere containment as a substring, there is anyway no relevant
truth value involved. Thus Mäkinen is unwittingly invoking
the environment and observer (who perhaps knows a ‘true’
binding of names)—or some comparable concepts. In
contrast, our framework makes environments and observers
explicit, thus allowing them to be analysed in as much detail
as the conventional part of the model.

Having a notion of ‘true naming’ supposes there is a
feasible way to confirm the names of programs, which is
impossible unless the environment in which programs are
named and executed is restricted (in ways that we showed
can be defined [2]): this is the sort of insight one would
want to start getting from a framework for reasoning about
viruses. Moreover an observer that does not have unlimited
computational resources and so cannot always discover
differences between two supposedly identical environments
(i.e. the correct one and one that contains the virus) is an
important part of our framework. Without this it seems
hard to model the idea that viral development may go
on unnoticed for some time. Further, Mäkinen does not
consider the long-term evolution of programs, where readily
detectable destructive activity is delayed and intermediate
forms of programs may not contain anything resembling a
virus (e.g. because of encryption). His failure to address
infection mechanisms in any detail means it is hard to
explore mechanisms to prevent infection. This was a major
goal of our framework.

For insight into computer viruses, we argued that speed
and space are key concepts. First because real computation
is so constrained, and secondly because by modelling these
concepts we hoped to refine previous work. Furthermore,
concrete models of replication are too narrow: not all real
viruses oblige us by replicating exactly (as in Mäkinen’s
model). Although virus detection is undecidable in a

suitably abstract model, would it be the case that virus
detection is computationally feasible under more realistic
assumptions (given that both the infection and the detection
methods are similarly constrained, and that the virus can
encrypt itself)?

Finally Mäkinen is content to say ‘. . . [such] Turing
machines can be defined, but it is questionable whether
the effects of such viruses are meaningful to measure in
an abstract model.’ Indeed, but unfortunately the effects
of real viruses are meaningful to measure, as many of
us will be only too well aware, and there is no reason
for real viruses to conform to the concrete form that
Mäkinen discusses. Mäkinen’s approach gives only a
very weak characterization of computer viruses and does
not address infection mechanisms. As a consequence, it
is impossible to account for a wide range of virus-like
mechanisms. In particular those that respond more widely to
the environment, evolving as they propagate, are multistage
or multipart. Our own attempt was to provide a framework
adequate to the study of a wide range of viral phenomena.

We avoided simulation on concrete TMs (universal or
otherwise) precisely because reality is more interesting. Our
precise notion of virus and infection has no real parallel in
earlier formal models of viral infection nor in Mäkinen’s
account. We made the key points that (i) metaphorical
models of computer viruses (e.g. as analogous to biological
pathogens) were unreliable; (ii) a proper theoretical
understanding of viruses should accommodate observation
and computational complexity; and (iii) real viruses are not
restricted to replicate themselves in trivial ways (replication
does not have to be literal, nor one virus to one copy). The
supporting arguments were, briefly, that a viral infection can
subvert a system and in particular its abilities to recognize
infection (hence the need for an observer); secondly—
and this is a key point—neither virus nor observer has
unrestricted computational resources with which to operate;
finally, that real virus writers have no compunction to
make theoreticians’ lives easy—they can use encryption,
recombining and any other devious techniques at their
disposal.

Viruses are a complex phenomenon. Neither our paper
nor Mäkinen’s paper are the last word, and we hope both
stimulate further work in this fascinating and important area.

REFERENCES

[1] Cohen, F. B. (1994) A Short Course on Computer Viruses
(2nd edn). John Wiley, New York.

[2] Thimbleby, H., Anderson, S. O. and Cairns, P. (1998)
A framework for modelling Trojans and computer virus
infection, Comp. J., 41, 444–458.

[3] Mäkinen, E. (2001) Comment on ‘A framework for modelling
Trojans and computer virus infection’, Comp. J., 44, 321–323.

[4] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, MA.

[5] Naur, P. (1993) Understanding Turing’s universal machine—
personal style in program description. Comp. J., 36, 351–372.

THE COMPUTER JOURNAL, Vol. 44, No. 4, 2001


