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Abstract

Computing system representations based on Harel's notion of hierarchical graph, or

higraph, have become popular since the invention of Statecharts. Such hierarchical

representations support a useful �ltering operation, called \zooming-out", which is

used to manage the level of detail presented to the user designing or reasoning about

a large and complex system. In the framework of (lightweight) category theory, we

develop the mathematics of zooming out for higraphs with loose edges, formalise

the transition semantics of such higraphs and conduct an analysis of the e�ect the

operation of zooming out has on the semantic interpretations, as required for the

soundness of reasoning arguments depending on zoom-out steps.

1 Introduction

Recent years have witnessed a rapid, ongoing popularisation of diagrammatic

notations in the speci�cation, modelling and programming of computing sys-

tems. Most notable among them are Statecharts [3], a notation for modelling

reactive systems, and the Uni�ed Modelling Language (UML) [9,10], a family

of diagrammatic notations for object-based modelling. As the popularity of

diagrammatic languages in computing and software engineering increases, so

does the need of supporting best practice in terms of a sound theory account-

ing for the multitude of syntactic, semantic and pragmatic issues involved.

Key to the e�ectiveness of diagrammatic notations for design, modelling

and reasoning is the wide range of manipulations they often support. In partic-
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ular, the usability of diagrams representing realistic, complex systems crucially

depends on one's ability to perform operations for re-organising, abstracting

and �ltering the information present in diagrams [8].

Both in system design and analysis it is very common that we want to

control the level of detail. Often this is done by \chunking" some subsystem

and representing it as a single object. For example, Figure 1 shows successive

\chunkings" of a graph by hiding detail. Other such \complexity manage-

ment" operations are more akin to \�ltering" by eliminating detail uniformly

throughout part of a diagram by applying some elimination criterion.

Fig. 1. Incremental \chunking" on a graph.

A central issue concerns the semantic import of such complexity manage-

ment manipulations on diagrams. This is because one's purpose in performing

such manipulations is to eliminate from a system's representation some detail

which is deemed irrelevant to the task at hand (which may be a design or

reasoning task), thereby simplifying one's task. It is therefore extremely im-

portant to precisely relate the semantics of the simpli�ed diagram to that of

the original, if completion of the task on the simple representation is to mean

anything about the system represented by the original diagram.

The present paper develops a framework for the syntax and semantics

of such a �ltering operation on higraphs [4,5] extended with loosely attached

edges. Higraphs (short for \hierarchical graphs") are themselves a simple

extension of graphs allowing the containment of nodes inside other nodes,

resulting in a hierarchy of \depth" among nodes and edges. Higraphs underlie

the popular notation of Statecharts and the state diagrams of UML, and are

typically interpreted as compact and economical representations of complex

transition systems. The �ltering operation we study, introduced briey and

motivated by Harel in [4] under the name of zooming out, exploits depth by

eliminating detail below a certain level in the hierarchy.

Section 2 introduces the structure (\statics") of higraphs and their most

common computational interpretation (\dynamics") as state-transition sys-

tems. In Section 3 we review the simplest form of zooming out on higraphs,

studied extensively in [12], and summarise the detailed analysis in [1] pointing

out its inadequacies wrt. the dynamics and the need for loosely attached edges.
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Fig. 2. A simple higraph.

The latter are formally introduced in Section 4, and in Section 5 we de�ne a

more re�ned notion of zooming out in the presence of such edges. Our main

result, extending the work in [12,1], captures zooming out as a rewriting oper-

ation described by a pair of adjoint functors. The dynamics of higraphs with

loosely attached edges is the subject of Section 6, where the notion of run is

extended from ordinary (or \at") transition systems to our higraphs. Finally,

we provide an analysis of the issues arising in establishing a relation between

the dynamics of a higraph-based system to the dynamics of its zoomed-out

representation.

2 Higraphs

Higraphs, originally developed by Harel [4,5] as a foundation for Statecharts

[3], are diagrammatic (\visual") objects which extend graphs by permitting

spatial containment among the nodes. Figure 2 illustrates the pictorial repre-

sentation of a simple higraph consisting of six nodes and four edges, with the

nodes labelled B, C and D being spatially contained within the node labelled

A. It is therefore common, and we shall hereafter adhere to convention, to call

the nodes of a higraph blobs, as an indication of their pictorial representation

as non-empty regions of the plane. A blob is called atomic if no other blobs

are contained in it. The feature of spatial containment is often referred to as

depth, leading to an expression of the relationship of higraphs to graphs in

terms of Harel's \equation":

higraphs = graphs + depth 6 .

The main application of higraphs has been in the speci�cation and visual-

isation of complex state-transition systems, manifested mainly in Statecharts

and, more recently, in the state diagrams of UML [9]. In such applications,

depth is used both as a conceptual device, in decomposing the overall system

into meaningful subsystems, and as an economical and e�ective representation

of interrupts. In terms of our example higraph in Figure 2, the edge emanat-

6 Higraph is a term coined-up by Harel as short for hierarchical graph, but often used

quite liberally to include several variants. The view taken here is that depth is the most

distinguishing, de�nitive feature of higraphs. Harel's original de�nition includes an extra

feature which he called orthogonality and which is not treated here. It is our conviction,

supported by preliminary results outside the scope of the present paper, that orthogonality

is, at least mathematically, best regarded as an extension to the basic, \depth-only" higraphs

considered here.

3



Anderson, Power and Tourlas

ing from blob A may be regarded as a higher-level transition interrupting the

operation of the subsystem comprising states (i.e. atomic blobs) B, C and D.

When applied at multiple levels, depth therefore facilitates the concise repre-

sentation of large systems by drastically reducing the number of edges required

to specify the transition relation among states. Thus, for instance, the higraph

b

A
B

C

D
d

a

c

concisely represents the following transition system:

c

B

C

D

a

d

d

a
b

The reader should note that the transition interpretation of higraphs is

more general than that of Statecharts. In Statecharts, a facility exists which, in

terms of our example above, allows one to annotate either B or C as the default

state within A. Such annotation forces the arrow from D to A to be a transi-

tion from D to the default state in A, thereby eliminating non-deterministic

choice. Although such a device may readily be added to higraphs, we have

chosen not to do so in the present paper for reasons of generality and simplicity

of exposition.

Higraphs have also been used in extensions of other modelling notations,

such as the Entity-Relationship (ER) diagrams popular in database analysis

and design [4,5]. In that context, blobs denote sets (or \tables" of records

of some particular type) whereas containment is directly interpreted as set

inclusion.

2.1 Higraphs, formally

Our de�nition of higraph is based on Harel's [4] but uses posets (i.e. partially

ordered sets) to capture the notion of depth and extends it also to the edges:

De�nition 2.1 A higraph is a 5-tuple (B;�B; E;�E; s; t), where B and E

are respectively the sets of blobs and edges, �B is a partial order on B, �E

is a partial order on E, and s; t : E ! B are monotone functions giving, for

each edge e 2 E, its source blob s(e) and target blob t(e). 2

Example 2.2 Figure 2 may be seen as the pictorial representation of a hi-

graph with:

� blobs: fA;B;C;D;E; Fg where B;C;D < A

4
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Fig. 3. Zooming out of a blob in a higraph

� edges: fe1; e2; e3; e4g where e2 < e1

� s(e1) = E, t(e1) = A, s(e2) = E, t(e2) = C, and so on. 2

Essentially, each higraph � is a pair of \parallel" arrows in the category

Poset of partially-ordered sets (posets) and monotone functions, which is

to say, a graph in Poset [11]. Hereafter we shall denote higraphs with �,

�0, �00. . . , and implicitly decompose them as � = (s; t : E ! B), �0 =

(s0; t0 : E 0 ! B0) and so on, unless speci�cally indicated otherwise.

Other notions of \hierarchical graph" in the literature, such as clustered

graphs [2], may be seen as instances of our de�nition of higraph. A (directed)

clustered graph, for instance, is a higraph in which the poset B of blobs is a

rooted tree, the poset E of edges is discrete, and edges may join only leaves of

the tree. Thus, in general, higraphs not only account for clustering, but also

allow one to represent relationships or transitions between clusters by means

of edges.

3 Naive zooming out

We base our analysis on the simplest, and most frequently occurring in prac-

tice, instance of a zooming-out operation on higraphs: the selection of a single

blob and the subsequent removal from view of all structure (blobs and edges)

contained in it. An example, in which edges are conveniently shown labelled

for ease of reference, is illustrated in the transition from the left to the right

half of Figure 3. Notice, in particular, how the edges attached to the blobs

contained in A are subsequently �xed to A.

This �ltering operation on higraphs is introduced, albeit briey and infor-

mally, and justi�ed in terms of its practical signi�cance, in [3,4]. In [12] this

operation on higraphs is formalised in a category-theoretic framework, and

subsequently generalised in [11].

Under the usual transition system interpretation of higraphs, the above

simple, almost naive, notion of zooming out can introduce profound inconsis-

tencies between the two views of the represented system. This issue, which is

discussed at length in [1], arises because the speci�ed dynamic behaviour is

inferred from the representing higraph by considering paths:

De�nition 3.1 A path of length n in a higraph (s; t : E ! B) is a sequence

he0; : : : ; en�1i of edges in E such that t(ei) �B s(ei+1) or s(ei+1) �B t(ei). A

5
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path is said to include a blob b if b occurs as either the source or target of at

least one edge in the path. 2

Consider for instance the path consisting of edges e2 and e3 in the right-

hand side of Figure 3. This sequence of transitions starting from E is, however,

impossible in the original higraph (left-hand side). We describe this situa-

tion by saying that not all paths in the zoomed-out version of a higraph are

necessarily reected by paths in the original higraph. The unfortunate con-

sequence is that reasoning about the represented system based on its higher-

level, zoomed-out representation can be greatly complicated and, potentially,

misguided. What one requires as a minimum is the ability to distinguish visu-

ally exactly those paths in a zoom-out of � which are certain, i.e. guaranteed

to be reected by paths in the original higraph �, from those which are not.

4 Higraphs with loosely attached edges

The analysis in [1] supports a solution to this problem which was proposed,

albeit briey and informally, by Harel in [4]. The solution requires a mild

extension to higraphs which permits edges to be \loosely" attached to nodes,

the four possibilities being illustrated in

A

B
E

F

An edge such as the one attached to the contours of A and F is called �rm.

The remaining three are non-�rm.

In Figure 3 we observed that the sequence he2; e3i in the right-hand side

is not reected by a path in the original higraph (left-hand side). In the

context of loose higraphs this de�ciency is recti�ed. In Figure 4 we have the

original higraph and its zoomed version as a loose higraph. The intuition is

that we are no longer certain that the sequence he2; e3i is a connected path in

the transition semantics for the original higraph. By contrast, the sequence

he1; e3i is reected by a path in the original, as e1 implies edges to all the

sub-blobs of blob A. Similarly, he2; e4i is also a certain path (i.e. reected in

the original).

A

B

C D

E

F

e1

e2

e3

e4

e1

e2

e3

e4
A

E

F

Fig. 4. Zooming out with loose edges
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4.1 Formalisation of loosely attached edges

Formally, we cast such an extended higraph with blobs B as an ordinary one

having the same edges but containing two distinct copies h0; bi and h1; bi of

each b 2 B, tagged with 0's and 1's. In the pictorial representation of such

extended higraphs the convention is that blobs tagged with 0 are not shown

at all and that, for instance, an edge with target of the form h0; bi has its

endpoint lying inside the contour picturing b.

In this setting, one stipulates that h0; bi � h1; bi for all b, and moreover

that h1; bi � h0; b0i whenever b < b0, to capture the intuition underlying the

pictorial representation of higraphs with loose edges 7 .

De�nition 4.1 Given a poset (A;�A) de�ne poset A
y to have underlying set

f0; 1g � A, ordered by:

� h0; ai � h1; ai for all a 2 A

� h1; ai < h0; a0i whenever a <A a0. 2

Using this auxiliary poset structure we can now make precise the de�nition

of a higraph with loosely attached edges:

De�nition 4.2 A higraph with loosely attached edges is a higraph � of the

form s; t : E ! By. The poset B will be referred to as the underlying poset of

blobs of �.

For brevity we shall hereafter abuse terminology and refer to higraphs with

loosely attached edges as loose higraphs.

5 Zooming-out on loose higraphs

To capture the notion of selecting a blob in a loose higraph we introduce the

following:

De�nition 5.1 A pointed loose higraph �? consists of a loose higraph �,

say with underlying poset of blobs B, together with a distinguished element

h0; pi 2 By, called the point of �?. (This also selects an element p of B which

may also be called the point, when no confusion arises.) 2

De�nition 5.2 A morphism from a pointed higraph s; t : E ! By with point

h0; pi, to a pointed higraph s0; t0 : E 0 ! B0y with point h0; p0i consists of three

monotone functions mE : E ! E 0, mB : B ! B0 and my : By ! B0y such

that

� my Æ s = s0 ÆmE and my Æ t = t0 ÆmE (i.e. the pair hmE; m
yi is a morphism

of ordinary higraphs [12]);

7 A similar de�nition in [1] uses a simpler partial order on the tagged blobs. The more

sophisticated order used here seems to better capture subtle aspects of the pictorial intuition

which are salient to zooming.

7
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� mB Æ �1 = �0

1 Æm
y, where �1 : B

y ! B is the monotone function mapping

each hi; bi 2 By to b 2 B, and similarly for �0

1; and

� my(h0; pi) = h0; p0i, i.e. points are preserved. 2

Morphisms of pointed, loose higraphs compose component-wise and have

obvious identities. Thus one has a category LH? of pointed loose higraphs.

With LH?;min we shall denote the (full) subcategory of LH? consisting of

all pointed loose higraphs in which the point is minimal wrt. the partial order

on By. Now, the operation of zooming out may be viewed as a function Z

from the objects LH? to those of LH?;min since, in essence, it reduces the

point (selected blob) of �? to a minimal point in Z(�?):

De�nition 5.3 Let �? be a pointed loose higraph with � = s; t : E ! By

and point h0; pi 2 By. Formally, Z(�?) is determined by the following data:

� underlying poset of blobs: B0 def= B nfb j b < pg, partially ordered according

to the following rules:

� b01 � b02 whenever b
0

1 �B b02
� p � b0 whenever there is b0 2 B such that b0 �B p and b0 �B b0.

� edges: E, with the source and target functions being q Æ s and q Æ t re-

spectively, where q : By ! B0y is the monotone function mapping each

hi; bi 6< h1; pi to hi; bi and each hi; bi < h1; pi to h0; pi;

� point: h0; pi 2 B0y. 2

Our main result on zooming-out in the presence of loosely attached edges

parallels the result in [12] for ordinary higraphs. It is formulated in terms of

an adjunction [7], the universal property of which means intuitively that the

essence of Z is to turn the point of �? to a minimal point, and it does so \least

descriptively" wrt. the structure of �?.

Theorem 5.4 The function Z extends to a functor from LH? to LH?;min

which is left adjoint to the inclusion functor I : LH?;min ! LH?.

Proof. (Sketch) Consider �? where � = s; t : E ! By
and has point h0; pi.

The unit ��? : �? ! I(Z(�?)) of the adjunction has the following components:

� on edges, the identity idE : E ! E

� on blobs, the (monotone) function mapping each b 6< p to b and each b < p

to p; and

� q : By ! B0y
, where q is exactly as in De�nition 5.3.

It is not hard to show that each ��? is indeed a morphism in LH?. Given any

other morphism m : �? ! I(�00

?) in the same category, consider the morphism

m̂ : Z(�?)! �00

? with components

� m̂E = mE

� m̂B mapping each b 2 B0
to mB(b); and

� m̂y
given by hi; bi 7! my(hi; bi)

8
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Calculation now reveals that m̂ is the unique one such that I(m̂) Æ ��? = m.2

6 Dynamics of loose higraphs

In this section we make precise the \dynamics", i.e. transition semantics, of

loose higraphs by introducing a notion of run akin to similar notions in use

with ordinary (\at") transition systems. A run is essentially a sequence of

transitions together with the states through which the system is taken by

performing the transitions. In ordinary transition systems, the sequence of

states traversed is implicit in the notion of path (i.e. connected sequence of

transitions). In higraphs, where higher-level edges are taken to imply lower-

level ones, the notion of path no longer provides adequate state information,

hence the need for a notion of \run".

At a glance, a run through a loose higraph with blobs B and edges E is a

sequence of the form

hi0; b0i
e1
�! hi1; b1i

e2
�! : : :

en
�! hin; bni

subject to conditions. Here, the bj's are blobs (i.e. states of the system), the

ek's are edges and each ij is either 0 or 1. Each pair hij; bji may be called a

con�guration of the system 8 , whose intuitive meaning is to specify the current

state of the system at two di�erent levels of precision:

� a con�guration h1; bi means that all substates of the state b (including b

itself) are candidates for being the current state of the system, but we lack

precise information as to which substate is actually current.

� a con�guration h0; bi means that only one of the proper substates of b

(i.e. excluding b itself) is the current state, and that we lack any precise

information as to exactly which that substate is.

This interpretation is captured in the following partial order on con�gura-

tions:

� h0; bi v h1; bi for all b; and

� h1; bi v h1; b0i whenever b � b0 in B.

Notice that this \information ordering" on con�gurations is di�erent from

the order on By above, reecting intuition regarding the dynamics rather than

static spatial containment in a picture.

We are now in position to present the full de�nition of a run:

De�nition 6.1 A run through a pointed, loose higraph �?, where � = s; t : E !

By, is a sequence of the form

hi0; b0i
e1
�! hi1; b1i

e2
�! : : :

en
�! hin; bni

8 Readers should not confuse our use of the term \con�guration" with its use in the liter-

ature on Statecharts, as e.g. in [6].
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subject to the following conditions:

(i) for all 1 � j � n, hij; bji v t(ej) and hij�1; bj�1i v s(ej); and

(ii) �0(t(ej)) = 1 or �0(s(ej+1)) = 1 for all 1 � j < n, where �0 is the

projection mapping each hi; bi 2 By to i. 2

As an example, consider the right-hand side of Figure 4. While h1; Ei
e1
�!

h1; Ai
e4
�! h1; F i is a run, the sequence h1; Ei

e1
�! h1; Ai

e3
�! h1; Ei isn't

because it violates the �rst condition. However h1; Ei
e1
�! h0; Ai

e3
�! h1; Ei is

a run, as is h1; Ei
e1
�! h0; Ai

e4
�! h1; F i. But h1; Ei

e2
�! h0; Ai

e3
�! h1; Ei is

not, as it violates the second condition.

6.1 On relating the runs of �? and Z(�?)

In order to support reasoning about higraph-based systems in the presence of

zooming, one needs to relate the runs of a pointed loose higraph �? to those

of its zoom-out Z(�?). In particular, one is interested in knowing which of the

runs through the latter may be associated with runs through the former.

To see that there may be runs in Z(�?) which are not reected by runs in

�?, consider for instance �? to be the following loose higraph

A

C D
B

FE
e’ e

in which the point is A. Its zoom-out, according to De�nition 5.3, is the loose

higraph

B
FE eAe’

Now one observes that while h1; F i
e

�! h0; Ai
e0

�! h1; Ei is a run through the

latter, it is not a run through the original higraph.

Thus one may

� seek constraints on the form of �? which guarantee that every run through

its zoom-out maps to a run in �?. For instance, the undesirable situation

in the preceding example arises because the point, blob A, has a non trivial

intersection (blob C) with another blob (B). The class of higraphs which do

not feature such non-trivial intersections is an important one, as they occur

commonly in practice, particularly in Statechart applications.

� investigate alternative de�nitions of zooming which agree with the one pre-

sented here when �? does not feature non-trivial intersections. For instance,

one may consider

10
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A

D
B

FE
e’ e

to be an alternative zoom-out of our example above.

We are currently investigating both directions of research, together with a

re�nement of our notion of run into \certain" or \must be reected" runs and

\may be reected" runs.
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