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Abstract
We describe our submission for task 1B of the BioCreAtIvE competition which is concerned with grounding gene mentions with respect
to databases of organism gene identifiers. Several approaches to gene identification, lookup, and disambiguation are presented. Results
are presented with two possible baseline systems and a discussion of the source of precision and recall errors as well as an estimate of
precision and recall for an organism-specific tagger bootstrapped from gene synonym lists and the task 1B training data.

1. Introduction

We describe our submission for task 1B of the BioCre-
AtIvE competition.1 Task 1B was concerned with ground-
ing gene entities. Provided an organism database contain-
ing unique gene identifiers with lists of synonyms and an
abstract, the system creates a list of unique gene identi-
fiers for genes that are mentioned in the abstract, including
explicit mentions as well as those implicit in mentions of
gene mutants, alleles, and products. The task was evaluated
for three target organisms: fly (Drosophila melanogaster),
yeast (Saccharomyces cerevisiae), and mouse (Mus mus-
culus). The unique identifier returned must come from the
appropriate organism.

Consider the following abstract snippet from the fly
evaluation data (the gene entities are highlighted in bold):

SinceDpp andGbb levels are not detectably higher in
the early phases of cross vein development, other fac-
tors apparently account for this localized activity. Our
evidence suggests that the product of thecrossvein-
less 2 geneis a novel member of the BMP-like signal-
ing pathway required to potentiateGbb of Dpp signal-
ing in the cross veins.crossveinless 2is expressed at
higher levels in the developing cross veins and is nec-
essary for local BMP-like activity.

The system output should singly list the unique identifiers
for theDpp, Gbb, andcrossveinless 2genes:

FBgn0000395 crossveinless 2
FBgn0000490 Dpp
FBgn0024234 Gbb

A synonym database was available for each of the tar-
get organisms. These list a number of synonyms for each
unique gene identifier. Consider the following fly exam-
ples:

1http://www.mitre.org/public/biocreative/

ID SYNONYMS

FBgn0000395 CG15671, CT35855,crossveinless 2, cv 2, cv-2
FBgn0000490 CG9885, DPP, DPP C, DPP-C,Dpp, Haplo insuffi-

cient, Haplo-insufficient, Hin d: Haplo insufficient, Hin-
d: Haplo-insufficient, M(2)23AB, M(2)LS1, Tegula, Tg:
Tegula, blink, blk: blink, decapentaplegic, dpp, heldout,
ho, ho: heldout, l(2)10638, l(2)22Fa, l(2)k17036, short-
vein, shv

FBgn0001105 CG10545, G beta, G betab, G protein &bgr; subunit, G
protein &bgr;-subunit 13F, G protein beta 13F, G pro-
tein beta subunit, G protein beta subunit 13F, G pro-
tein beta-subunit 13F, G&bgr;, G&bgr;13F, G-&bgr;b, G-
beta, G-betab, G-protein &bgr; 13F, G-protein beta 13F,
G¡down¿&bgr;¡/down¿ brain, Gb13F,Gbb, Gbeta, Gbeta
brain, Gbeta13F, anon EST:Liang 1.22, anon-EST:Liang-
1.22, clone 1.22, dg&bgr;, dgbeta

FBgn0017531 Spal\crossveinless 2, Spal\crossveinless-2,crossvein-
less 2, crossveinless-2

FBgn0018552 Dpse\cv2, crossveinless,crossveinless 2, crossveinless-2,
cv

FBgn0024200 CG9936 Pap/Trap, Scad78, Suppressor of constitutively
activatedDpp signaling 78, TRAP240, bli, blind spot,
bls, dTRAP240, flytrap, l(3)L7062, l(3)rK760, pap,
pap/dTRAP240, poils aux pattes

FBgn0024234 60A, CG5562, Gbb, Gbb 60A, Gbb-60A, SixtyA,
TGF&bgr;-60A, TGFbeta 60A, TGFbeta-60A, Tgf&bgr;-
60A, Tgfb 60, Tgfb-60, Tgfbeta 60A, Tgfbeta-60A, Trans-
forming growth factor &bgr; at 60A, Transforming growth
factor beta at 60A, gbb, gbb 60A, gbb-60A, gcn, gcn: go-
nial cell neoplasm, gcn: gonial-cell-neoplasm, glass bot-
tom boat, glass bottom boat 60A, glass bottom boat-60A,
l(2)60A J, l(2)60A-J, tgfb 60A, tgfb-60A, vgr/60A

FBgn0044017 Scad67, Suppressor of constitutively activatedDpp signal-
ing 67

One way of approaching the task is through the synonym
lists. In this case a look-up or pattern matching method is
used to see if any of the synonyms occur in an abstract.
The difficulty here lies in distinguishing between matches
that actually correspond to gene entities from false posi-
tives. This is particularly problematic with mouse and fly
gene entities whose synonyms include such common En-
glish words aswith , at, andyellow.

We focused on an alternative approach where the task is
viewed as a named entity recognition problem. Named en-
tity recognition (NER) can be viewed as consisting of three
main steps. First, the boundaries of the entities within a
text are determined. Second, the identified entities are clas-
sified. (This is not relevant as gene is the only entity type
we are concerned with.) The first and second steps are ad-
dressed in task 1A (Finkel et al., 2004). Third, the entities
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are grounded with respect to its denotation in the world (or
model of the world). This is the focus of task 1B.

The remainder of the paper describes our approaches
and results. Section 2. presents the high-level architecture
of our system and different ways to approach the sub-tasks.
Section 3. contains results and analysis. Finally, we briefly
discuss related work in Section 4.

2. System Description
We approached task 1B as consisting of three primary

sub-problems: identifying gene text in an abstract, match-
ing the tagged gene text against the synonym list, and
choosing a single unique identifier for ambiguous syn-
onyms. In experiments with a variety of methods, we found
different configurations for different organisms to be better
than a unified approach. The following subsections discuss
different approaches to the three sub-problems.

2.1. Gene Text Identification

Gene text fragments were extracted from the abstracts
using the same Conditional Markov Model tagger devel-
oped for task 1A (Finkel et al., 2004). A tagger was trained
for each organism using the organism-specific training data
available in task 1B. Gene text fragments in the training ab-
stracts were labeled automatically by identifying potential
genes using regular expression fuzzy matching (described
below), and filtering out matches that did not correspond to
gene IDs listed in the gold standard gene ID list.

Since we only resolve gene text fragments which match
phrases in the synonym lists, to improve the precision of
the gene taggers, we mark the known gene text fragments
explicitly by setting gazette features (whether the phrase
containing the current word appeared in the synonym list).
The tagger can then immediately reject any word that does
not appear inside a known synonym, and then use other fea-
tures to distinguish between valid and erroneous genes.

Starting with the current word and gazette, we at-
tempted to add other features to improve performance. We
obtained the best F1 performance on the development set
using only the current word, gazette , and POS tag sequence
features (t−1,t,t+1; t−1,t; t,t+1). In general, the word fea-
tures seemed to be the strongest indicators that a gene text
fragment was relevant. Expanding the feature set beyond
these simple features degraded recall, most likely because
the other features were present in both relevant and irrele-
vant fragments, tending to prefer the more frequent irrele-
vant hypothesis. To further improve recall, we lowered the
threshold for classifying a word as a gene by a fixed amount
determined empirically (since resolving an entity with an
organism gene list filters output in a way that enhances pre-
cision).

2.2. Synonym List Lookup

We identified two main approaches to improving recall
for matching tagged text against synonym entries: adding
synonym resources and fuzzy matching. A preliminary
search for additional synonym resources gave the impres-
sion that the synonym lists provided contain a large propor-
tion of the edited and formalised material that is available.
While an attempt could be made to expand synonym lists

by mining MEDLINE abstracts, we focused our attention
on improving recall through fuzzy matching through three
main appraches.

Regular expressions.We converted each synonym list
into a regular expression that would match some of the typ-
ical variations used in biomedical nomenclature. Regular
expression rules were created to accommodate: case fold-
ing, optional dashes and other punctuation, optional spaces,
British/American spelling variations (e.g. our/or), and sub-
string matching. Matching was performed by running each
of the regular expressions over the tagged gene text, and
selecting the expression that matched the most text.

Edited lookup tables. Hash tables provide a highly
efficient data structure for lexical lookup. However, hash
tables consisting of only the synonyms as they appear in
the provided lists gives very low recall, especially when us-
ing automatically tagged text as lookup keys. The baseline
look-up table approach discussed in 3.2. yields F-scores of
22.8 to 56.6, 51.7 to 59.1, and50.0 to 64.3 respectively for
fly, mouse and yeast development test sets depending on the
gene named entity recognition used. To try and improve re-
call using an efficient hash lookup, we created a number of
normalising operations (Table 1). Edit operations are ap-
plied when the look-up table is being created and when a
piece of tagged text is being checked against the table. The
organisation of these operations was optimised per organ-
ism. Matches requiring fewer edits are preferred.

EDIT DESCRIPTION EXAMPLE

CAP Capitalisation ZFH-2 7→ zfh-2
EX Extra text zfh-2 gene7→ zfh-2
WR Writing conventions zfh-II 7→ zfh-2
PUNC Punctuation zfh-2 7→ zfh2
TRANS Transformations Zn finger homeodomain 2

7→ Zfh 2

Table 1: Gene text edit operations.

IR indexing and document weighting. Information
retrieval (IR) provides a robust and efficient way to iden-
tify documents based on their content. We can conceive of
lexical lookup as information retrieval for the purposes of
this task by defining a document associated with a unique
identifier to consist of the possible synonyms attributed to
it. Jakarta Lucene2 is an IR engine that implementstf ∗ idf

scoring (i.e. each term in a query is given a weight accord-
ing its term frequency–the number of times it occurs in a
document–offset by its document frequency, which serves
to devalue terms that are common in the overall corpus).
The basic machinery is a reverse look-up table with the
added value of term weighting to order possible documents
matching a query. We created indexes from the synonym
lists provided for the task. Documents were weighted by
the frequency of their identifiers in the training corpus us-
ing add-one smoothing to assign non-zero weights to un-
seen identifiers.

2http://jakarta.apache.org/lucene/docs/index.html.



2.3. Identifier Disambiguation

Identifier disambiguation refers to the process of remov-
ing incorrect identifiers in cases where the lookup methods
identify more than one possible identifier for a piece of text.
While a clever system might attempt to identify cases where
multiple tokens of the same string within a document refer
to different entities, we simplified this sub-problem to the
task of choosing a single identifier from a list of possibili-
ties for a piece of text. We experimented with 3 approaches.

Modelling identifier co-occurrence. Gene identifier
co-occurrence statistics were obtained from the training
data. and the identifier with the maximum summed co-
occurrence with the unambiguous identifiers obtained from
the test document was selected. Ties were broken by back-
ing off to maximum occurrence within the training corpus,
and unresolved ties at this point were discarded.

IR query creation and term weighting. IR queries
against the identifier documents can be used for disam-
biguation by creating a filter to limit the search to docu-
ments associated with pre-determined potential identifiers.
Term weighting helps to distinguish identifiers retrieved by
the IR engine based on the semantic importance of the indi-
vidual tokens within the tagged text from the abstract. The
weighting used (Table 2) is roughly based on the semantic
classification of tokens outlined in (Hanisch et al., 2003).

Tok Class PUNCTUATION INDICI INDICII

Examples -(), gene, family,
allele locus

Weight 0.5 1 10

Tok Class SPECIFIER COMMON GENE

Examples 2,II,β she,from Zfh,clk
Weight 15 NF 20

Table 2: Breakdown of query term weighting. (NF (nor-
malised frequency) for common words is computed by
10 − 9 × TokenFreq

HighestTokenFreq
, giving a normalised weight

between1 and10 where less frequent words are weighted
higher.)

Heuristic approacheswe identified several heuristics
that help distinguish the correct identifier in some cases (Ta-
ble 3). First, we observed that identifiers which have been
unambiguously found elsewhere in the same document
should be preferred (SD). It was also observed that iden-
tifiers in whose synonym list the tagged text occurs more
often (ignoring case and expanding/collapsing acronyms)
are better candidates (Reps). Finally, as a last resort that
proved especially effective for yeast, we observed that the
tagged text is more likely to occur earlier in the synonym
list for the correct identifier (Ord).

3. Results
Several systems were submitted to the BioCreAtIvE

evaluation. The systems have accuracy measures falling
pretty much right on the median among all competitors.
Section 3.1. details the configurations of the our submis-
sions. Section 3.2. presents two baseline systems. And,
Section 3.3. discusses some sources of error.

HEURISTIC DESCRIPTION

SD Prefer identifiers already found unam-
biguously insamedocument.

Reps Prefer identifiers with morerepeats of
tagged text in synonym list.

Ord Prefer identifiers for which the tagged
text occurs earlier in synonym list
order.

Table 3: Heuristic approaches to disambiguation.

3.1. Submissions

Table 4 describes the final configurations for the sub-
mitted systems. The first submission uses only information
retrieval techniques for lookup and disambiguation. The
system treats the gene text identified by the tagger as query
input. Lucene is used to build and search an index of the
synonym lists associated with unique gene identifiers.

The second submission uses the organism-specific tag-
ger discussed in Section 2.1. for mouse and fly. For yeast
a task 1A tagger is used incorporating only word and POS
features. Different combinations of edit operations and dis-
ambiguation approaches are used for each organism. The
third submission followed a unified approach for all three
organisms, using organism-specific taggers, regular expres-
sion lookup, and co-occurrence disambiguation.

3.2. Baseline

We use a simple look-up table approach to produce two
baselines for the grounding task. The first uses a tagger
trained on the task 1A data with only word and POS fea-
tures (Table 5) and the second uses a tagger trained on noisy
data created from the synonym lists provided for the task
(Table 6). The INC columns indicate whether all matches
are included (+) or excluded (-) in cases where the tagged
gene text matches into more than one synonym list.

ORG INC PRECISION RECALL Fα=0.5

fly + 18.4 30.0 22.8

- 77.3 22.9 35.3

mouse + 74.8 42.2 53.9

- 84.8 37.2 51.7

yeast + 92.9 35.2 51.1

- 96.7 33.7 50.0

Table 5: A simple hash look-up with no edit operations us-
ing a tagger trained on task 1A data with word and POS
features.

These scores reflect a couple of properties of the organ-
ism databases. First, polysemy and common words occur
frequently among fly terminology relative to the other task
1B organisms. This is reflected in the dramatic decrease
in precision when all ambiguous matches are included.
Second, the yeast research community has the most well-
defined and strictly followed naming conventions which is
reflected in the relatively high baseline scores and the rel-
atively small change when including or excluding all am-
biguous matches.



SUBMISSION GENE ID LOOKUP DISAMBIGUATION DEVTESTP /R/F EVAL P /R/F

1. fly Org-specific IR IR 60.6 67.7 64.0 59.2 74.8 66.1

mouse Org-specific IR IR 92.2 72.0 61.0 77.0 59.6 67.2

yeast Org-specific IR IR 68.0 55.3 80.9 94.8 72.1 81.9

2. fly Org-specific Edit:Cap SD,IR,Ord 77.3 53.4 63.2 65.9 57.1 61.2

mouse Org-specific Edit:Cap,Ex,Wr,Punc,Trans IR,Ord 75.3 65.6 70.1 81.3 67.3 73.6

yeast W&POS 1A Edit:Cap,Ex,Wr,Punc,Trans SD,Reps,IR,Ord 89.5 81.6 85.4 91.5 79.0 84.8

3. fly Org-specific Regular expression Co-occurrence 73.8 52.9 61.6 69.3 53.1 60.2

mouse Org-specific Regular expression Co-occurrence 71.8 47.7 57.32 80.1 50.4 61.9

yeast Org-specific Regular expression Co-occurrence 90.7 78.9 84.39 96.9 75.4 84.8

Table 4: Configuation and scores for final submissions. Best scores for development and evaluation testing (highlightedin
bold) illustrates variation of best approaches for different organisms.

ORG INC PRECISION RECALL Fα=0.5

fly + 16.1 77.6 26.6

- 78.0 44.4 56.6

mouse + 71.6 50.3 59.1

- 81.3 44.9 57.9

yeast + 92.1 49.4 64.3

- 94.7 47.9 63.6

Table 6: A simple look-up table approach with no edit op-
erations using the organism-specific tagger with word, POS
and gazetteer features.

3.3. Discussion

Types of errors. There are three main sources of error
corresponding to the main sub-tasks (Section 1.), the first
two primarily causing low recall problems and the third pri-
marily affecting precision.

First, the tagger is not specific as to what it is identi-
fying. Both the task 1A tagger and the organism-specific
tagger are trained on gene names and some protein names.
They are not trained to recognise all alleles or products, for
instance, that may constitute an implicit gene mention. Nor
do they recognise protein complexes that constitute an im-
plicit mention of multiple genes.

Second, the synonym lists are not exhaustive and so we
have cases where correctly tagged gene text does not match
any synonyms. Even with the fuzzy matching approaches,
we still miss some variations on gene terminology. (With
respect to the organism-specific taggers, however, as the
NER system should only identify text fragments contained
within the synonym lists.)

Third, we have disambiguation errors where the tagged
text matches more than one synonym list. This is illustrated
in the dramatic difference between precision scores for fly,
which has very loose naming conventions, and yeast, which
has very strict naming conventions.

Estimating tagger performance. Returning all gene
identifiers corresponding toall text fragments matching
known synonyms shows an upper bound on recall from us-
ing only the provided synonym lists. Returning all gene ids
for text fragments returned by the organism-specific taggers
reveal a loss in recall of6.7% for fly, 10.1% for mouse,
and0.8% for yeast from using more precise named-entity
recognition (Table 7).

ORGANISM REGEXP TAGGER LOSS

fly 90.1 83.4 6.7

mouse 78.9 68.8 10.1

yeast 81.6 80.8 0.8

Table 7: Recall of Organism-Specific Taggers

We also determined what percentage of the text frag-
ments were valid synonyms (correspond to a gene ID in the
gold standard answers) to get an estimation of the precision
of theNER system (Table 8). This is the upper bound on the
precision attainable by the disambiguation system at max-
imum recall. At the cost of recall, the precision of the dis-
ambiguation systems was often higher than this bound from
the exclusion of matches that could not be disambiguated.
The precision of the organism-specific taggers compares
favorably with the baseline (all gene text fragments were
returned with results filtered by POS tags), justifying the
relatively small loss in recall.

ORGANISM BASELINE TAGGER GAIN

fly 30.2 70.2 40.0

mouse 31.8 68.3 36.5

yeast 91.6 93.5 1.9

Table 8: Precision of Organism-Specific Taggers

Although there is room for improvement in the precision
and recall of theNER component, there is a considerable
loss in recall during the grounding process, indicating that
the disambiguation methods are not optimal either. For
the development set, the best performing systems on fly,
mouse, and yeast (using the organism-specific taggers) had
recalls of67.7, 65.6, and78.9 respectively, corresponding
to losses of15.7, 3.2, and1.9 percent respectively.

4. Related work
There has been considerable interest in the automatic

processing of biomedical documents recently due to the
vast amounts of new information being published in the
field. Recent workshops on the topic such as the Special
Session on Language Processing and Biological Data at
the 2002 Human Language Technology Workshop and the
2002 and 2003 Workshops on Natural Language Processing



in the Biomedical Domain3 reflect this trend.

BioCreAtIvE is not the first evaluation event to be held
in field of biomedical text mining. The 2002 KDD Cup at
the International Conference on Knowledge Discovery and
Data Mining included two tasks that involved data mining
in molecular biology domains.4 And the 2003 Text RE-
trieval Conference (TREC) included a Genomics Track5

whose purpose is to study retrieval tasks involving ge-
nomics data. This task will also feature at TREC 2004.

Although similar, this work differs from the above men-
tioned tasks in several ways. Whereas the KDD Cup task
provided a set of papers and a list of gene mentions, and
asked the system to determine “whether the paper meets
the Flybase gene-expression curation criteria, and for each
gene, indicate whether the full paper has experimental evi-
dence for gene products (RNA and/or protein)”, this work
is concerned with prerequisite step of identifying and nor-
malizing those gene mentions. The information extrac-
tion component of the TREC 2003 task concerns automat-
ically reproducing GeneRIF annotations providing topic
summaries for MEDLINE records, and not the extraction
of the gene mentions in the documents per se.

The issue of different textual realisations of gene ter-
minology has been addressed in recent work. Yu and
Agichtein (2003), for example, discuss methods for auto-
matic extraction of gene and protein synonyms from text,
a problem which involves a grounding task to determine
which identified genes and proteins are synonyms of each
other. Osborne et al. (2003) discuss methods for automatic
generation of gene synonym variants as a means to expand
queries for a document retrieval task. Hanisch et al. (2003)
present a semi-automatic methodology for building curated
gene dictionaries for named entity recognition.

There has also been recent work concerning grounding
of biological named entities. Leidner et al. (2003) com-
pare research in grounding spatial named entities (e.g with
respect to world atlases and gazetteers) to grounding of
biomedical spatial named entities (e.g with respect to brain
or body atlases).

Most relevant is work by Hirschman et al. (2002), which
discusses a problem very similar to BioCreAtIvE task 1B.
The main thrust of the paper is gene entity recognition,
however, as they are performing it in a domain without a
gold standard, they treat the grounding task as a means to
perform an extrinsic evaluation of named entity recogni-
tion. They present a grounding system similar to our base-
line which illustrates the same precision/recall tradeofffor
fly when including/excluding ambiguous matches.

Finally, Morgan et al. (2003) present a methodology for
bootstrapping a gene named entity tagger using lists of cu-
rated genes for FlyBase to generate noisy training data that
is similar to the process we used to create our organism-
specific taggers.

3http://www.ccs.neu.edu/home/futrelle/bionlp/acl02/BIO/,
http://www-tsujii.is.s.u-tokyo.ac.jp/ACL03/bionlp.htm

4http://www.biostat.wisc.edu/ craven/kddcup/
5http://trec.nist.gov/

5. Conclusion and Future Work
We have presented an evaluation of several approaches

to grounding gene mentions with respect to gene database
identifiers for fly, mouse, and yeast. The approaches ad-
dress explicit gene mentions but fall short of fully address-
ing implicit mentions. The systems presented have ac-
curacy measures falling pretty much right on the median
among all BioCreAtIvE task 1B submissions.

Some initial error analysis has helped to tease apart tag-
ging and grounding errors and differences among organism
naming conventions. Precision and recall estimates were
obtained for organism-specific gene named entity taggers
bootstrapped from gene synonym lists and task 1B training
materials. Ongoing analysis is looking into more specific
grounding errors, including division of errors into the three
categories mentioned in Section 3.3. A question that re-
quires further exploration is why different tagging, lookup
and disambiguation approaches worked better for different
organisms, especially with respect to system 2 (Table 4).

Future system develeopment should account for gene
mentions implicit in mentions of gene mutants, alleles, and
products, which are a significant source of low recall in our
current system.
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