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24S,25-Epoxycholesterol is formed in a shunt of the mevalonate pathway that produces cholesterol. It is
one of the most potent known activators of the liver X receptors and can inhibit sterol regulatory
element-binding protein processing. Until recently analysis of 24S,25-epoxycholesterol at high sensitivity
has been precluded by its thermal lability and lack of a strong chromophore. Here we report on the
analysis of 24S,25-epoxycholesterol in rodent brain where its level was determined to be of the order
of 0.4–1.4 lg/g wet weight in both adult mouse and rat. For comparison the level of 24S-hydroxycholes-
terol in brain of both rodents was of the order of 20 lg/g, while that of cholesterol in mouse was
10–20 mg/g. By exploiting knockout mice for the enzyme oxysterol 7a-hydroxylase (Cyp7b1) we show
that this enzymes is important for the subsequent metabolism of the 24S,25-epoxide.
� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

24S,25-Epoxycholesterol (3b-hydroxycholest-5-en-24S,25-
epoxide) was first discovered by Nelson et al. in 1981 [1]. It was
detected in human liver and found to decrease the activity of
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate
limiting enzyme of the mevalonate pathway leading to cholesterol
(cholest-5-en-3b-ol) synthesis [2]. The expressions of enzymes of
the mevalonate pathway are regulated by the master transcription
factor, sterol regulatory element-binding protein-2 (SREBP-2). In
times of cholesterol depletion SREBP-2, synthesised in the endo-
plasmic reticulum (ER), is escorted by SREBP-cleavage activating
protein (SCAP) to the Golgi where it is proteolysed to its active
form as a transcription factor. Alternatively, in times of cholesterol
wealth, cholesterol binds to SCAP causing a conformational change
and inducing SCAP to bind to the anchor protein INSIG (insulin-
induced gene) and tethering the SCAP–SREBP-2 complex in the
ER, thereby preventing its conversion to an active transcription fac-
tor [3]. 24S,25-Epoxycholesterol, and also side-chain hydroxylated
cholesterol metabolites (collectively known as oxysterols), can
bind to INSIG and similarly tether the SCAP–SREBP-2 complex in
the ER and prevent formation of the active transcription factor
[4]. In this way cholesterol and oxysterols provide feedback control
of cholesterol synthesis. INSIG proteins can also bind to HMG-CoA
reductase with the formation of a HMG-CoA reductase – INSIG
complex which leads to ubiquitination and degradation of HMG-
CoA reductase [3]. Oxysterols induce formation of the HMG-CoA
reductase–INSIG complex but cholesterol has no effect. Based on
studies by Goldstein and Brown’s group it is tempting to speculate
that the oxysterol-bound form of INSIG can form a complex with
HMG-CoA reductase just as it can with SCAP and thereby modulate
cholesterol synthesis [4].

The capacity of oxysterols to inhibit sterol synthesis in cultured
cells lead to the formulation of the oxysterol hypothesis which
asserts that the suppressive effect of cholesterol on its own synthe-
sis is mediated by oxysterols [5]. With the discoveries by Goldstein
and Brown of cholesterol induced effects on SREBP-2 [3], this
hypothesis has been revised to argue that oxysterols play an
http://
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important role in smoothing cholesterol responses in the short
term and providing ‘‘fine-tuning’’ of the acute control of cholesterol
homeostasis [6,7].

Oxysterols are formed enzymatically, mostly in cytochrome
P450 catalysed (CYP in human, Cyp in rodent) reactions, but can
also be formed non-enzymatically [8]. For example, in brain
24S-hydroxycholesterol (cholest-5-en-3b,24S-diol) is abundant as
a consequence of 24S-hydroxylation of cholesterol by CYP46A1,
while 7a-hydroxycholesterol (cholest-5-en-3b,7a-diol) is a prod-
uct of liver specific CYP7A1 hydroxylation of cholesterol [9]. Alter-
natively, 25-hydroxycholesterol (cholest-5-en-3b,25-diol) can be
formed enzymatically by cholesterol 25-hydroxylase, which is
not a CYP, and by autoxidation in air. Unlike the hydroxycholester-
ols above, 24S,25-epoxycholesterol is not a product of cholesterol
but is formed in parallel to it, and despite its potent biological
activity it has been rarely characterised in vivo, and little if any-
thing is known of its metabolism.

The central nervous system (CNS) contains about 23% of the
body’s cholesterol in adult human and 15% in adult mouse [10].
The blood brain barrier (BBB) isolates the CNS from the circulation,
and this dictates that after birth essentially all cholesterol is syn-
thesised de novo and in situ. Excess cholesterol is exported from
brain in the form of 24S-hydroxycholesterol, which unlike choles-
terol can traverse the BBB [11]. 24S-Hydroxycholesterol, as dis-
cussed above, can also modulate cholesterol synthesis, at least
in vitro [12]. However, the ability of all cholesterogenic cells to
potentially produce 24S,25-epoxycholesterol raises the possibility
that this molecule may be equally or more important for the mod-
ulation of cholesterol synthesis in brain. Data from Wong et al. [13]
indicates that 24S,25-epoxycholesterol can be produced by pri-
mary neurons and astrocytes, the latter being the more productive,
and that 24S,25-epoxycholesterol synthesised in astrocytes can
have downstream effects on gene regulation by neurons. This then
begs the question, what are the endogenous levels of 24S,25-
epoxycholesterol in brain and how is it metabolised?

24S,25-Epoxycholesterol is difficult to analyse by gas-chroma-
tography (GC)–mass spectrometry (MS) on account of its thermal
lability. As a consequence it is often excluded in sterol profiling
experiments based on GC–MS [14,15]. Alternatively, it can be ana-
lysed by liquid chromatography (LC)–MS based methods using
atmospheric pressure ionisation (API) such as electrospray ionisa-
tion (ESI) or atmospheric pressure chemical ionisation (APCI)
[13,16,17]. However, sensitivity is limited, requiring application
of multiple reaction monitoring (MRM) ‘‘scans’’ to obtain the nec-
essary sensitivity for analysis of biological samples [17]. LC has also
been used with UV detection, where oxysterols with a 3b-hydroxy-
5-ene structure are converted by cholesterol oxidase to their
3-oxo-4-ene analogues and UV detection is performed for this
chromophore at 233 nm (Fig. 1A, Step 1) [18]. Using this LC–UV
method the estimated lower limit of detection of oxysterols
including 24S,25-epoxycholesterol was about 2 ng. This degree of
sensitivity allowed the detection and quantification of 24S,25-
epoxycholesterol in rat liver. For comparison, McDonald et al.
determined the on-column detection limit for 24S,25-epoxycholes-
terol using LC–ESI-MRM to be 20 fmol (8 pg) and was able to iden-
tify this oxysterol in mouse brain [17]. In an effort to improve
sensitivity of oxysterol analysis by LC–API-MS, we and others have
developed methods based on chemical derivatisation to increase
analyte signal [19–21]. We have exploited oxidation of oxysterol
3b-hydroxy-5-ene groups to 3-oxo-4-enes cf. [18], followed by
derivatisation with charge carrying tags i.e., with Girard P (GP)
hydrazine (Fig. 1A), and LC–ESI-MS analysis [20,21]. By performing
analysis on an ion-trap it was possible to perform multiple stages
of fragmentation (MSn) which provides structural information to
compliment molecular weight information of the MS scan. On-
column detection limits for recording full scan MS, MS2 and MS3
Please cite this article in press as: Y. Wang et al., 24S,25-Epoxycholesterol i
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spectra were of the order of 1.5 pg. Here we report on the identifi-
cation and quantification of 24S,25-epoxycholesterol in adult
mouse and rat brain and the determination of its abundance in
comparison to the major brain derived oxysterol, 24S-hydroxycho-
lesterol. We then investigate the metabolism of 24S,25-epoxycho-
lesterol by exploiting the oxysterol 7a-hydroxylase knockout
mouse (Cyp7b1�/�).
2. Methods

2.1. Animals

Rat brain samples were from dissected from 15-week female
Sprague Dawley animals (Harlan UK). Male Cyp7b1�/� mouse brain
was from animals generated at the University of Edinburgh. Male
mice, 13 months and 23 months, homozygous for targeted
disruption of the Cyp7b1 gene congenic on the C57BL/6 genetic
background (>15 generations backcrossed to C57BL/6) and
wild-type (wt) littermate controls were generated from Cyp7b1�/

+ crosses [22]. Male Cyp27a1�/� mouse (3 months) tissue was
purchased from The Jackson Laboratory (ME, USA) strain B6.129-
Cyp27a1tm1Elt/J [23]. The Cyp27a1�/� colony was backcrossed to
C57BL/6J inbred mice for approximately 12 generations by the
donating investigator [23] prior to sending to The Jackson Labora-
tory Repository. Upon arrival, mice were bred to C57BL/6J inbred
mice for at least one generation to establish the colony. Wild type
animals from the colony were used as controls. Tissue sampling
was performed under the aegis of the UK Scientific Procedures
(Animals) Act, 1986.
2.2. Extraction of oxysterols and analysis

Adult rat or mouse brain (100–200 mg wet weight) was homog-
enised in ethanol and an oxysterol rich fraction isolated from more
non-polar sterols (mostly cholesterol) by solid phase extraction as
described by Karu et al. [20] and by Meljon et al. [21]. The oxysterol
fraction was then oxidised with cholesterol oxidase and deriva-
tised with GP reagent [20,21] (Fig. 1A). The oxidised/derivatised
oxysterols were then analysed by LC–ES-MSn utilising an LTQ-
Orbitrap (Thermo Scientific, Hemel Hempstead, UK) hybrid linear
ion-trap (LIT)–Orbitrap mass spectrometer [20,21]. The instrument
was operated in a data dependent analysis (DDA) mode where MS
scans were recorded in the Orbitrap at 30,000 resolution (full
width at half maximum height definition) and if an ion corre-
sponding to oxidised/derivatised 24S,25-epoxycholesterol (m/z
532.3898 or adducts thereof m/z 550.4003 and 564.4160) or
24S-hydroxycholesterol (m/z 534.4054) was detected, MS2 was
performed in the LIT portion of the instrument (Fig. 1). GP deriva-
tives give a characteristic loss of 79.04 Da and if this was observed
in the MS2 spectrum, MS3 was performed in the LIT on the [M�79]+

ion (Fig. 1A). The LTQ-Orbitrap was operated so that MS2 or MS3

events were performed in the LIT at the same time as the MS scan
was performed in the Orbitrap. The cycle of events was continually
repeated over the course of the LC run [20,21]. Alternatively, the
instrument was operated in a MRM-like mode where the defined
transitions [M]+ ? [M�79]+ ? were monitored in an MS3 event
at the same time as a mass scan was performed in the Orbitrap
[24].

Previous studies have shown that 3b-hydroxy-5-ene sterols
following oxidation and derivatisation with the GP reagent give a
similar response upon LC–ES–MS analysis, this then allows their
relative quantification from chromatographic peak areas [20,25].
The lability of the epoxide group is such that 24S,25-epoxycholes-
terol gives four components following oxidation/derivatisation.
The expected [M]+ ion at m/z 532.3898 corresponding to the
n mouse and rat brain, Biochem. Biophys. Res. Commun. (2014), http://
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oxidised/derivatised epoxide and to its 24-oxo isomer and to
‘‘adduct’’ ions at m/z 550.4003 and m/z 564.4160 (Fig. 1B). These
latter ions correspond to the [M]+ ions of the 24,25-diol and the
24-hydroxy-25-methylether (or 25-hydroxy-24-methylether)
which are products of acid calalysed hydrolysis and methanolysis
of the epoxide, respectively. However, as each component gives a
similar LC–ES-MS response their peak areas can be combined to
provide quantitative information for the parent epoxide.
3. Results

In an initial LC–ESI-MSn study with female rat brain [M]+ ions
corresponding to oxidised/derivatised 24S,25-epoxycholesterol,
its isomer 24-oxocholesterol, and hydrolysis and methanolysis
Please cite this article in press as: Y. Wang et al., 24S,25-Epoxycholesterol i
dx.doi.org/10.1016/j.bbrc.2014.05.012
products were observed. Their identification was confirmed by
MS2, MS3 and by reference to authentic standards. The resultant
concentration of 24S,25-epoxycholesterol was determined to be
0.53 ± 0.46 lg/g (mean ± SD, n = 4) wet weight. More detailed stud-
ies were then performed on male mice. Shown in Fig. 2 are recon-
structed ion chromatograms (RICs) for m/z 532.3898, 550.4003 and
564.4160 corresponding to 24S,25-epoxycholesterol derived [M]+

ions from wt adult mouse brain. Comparison of chromatographic
retention times and MS2 and MS3 spectra to those of authentic
standards confirmed the identification of the relevant peaks
(Fig. 2). In male wt mice the level of 24S,25-epoxycholesterol var-
ied from 0.44 to 1.32 lg/g depending on age and exact genotype
(Table S1). For comparison, the level of 24S-hydroxycholesterol
ranged from 16.82 to 25.96 lg/g in wt mice, while that of choles-
terol varied from 10.60 to 16.90 mg/g.
n mouse and rat brain, Biochem. Biophys. Res. Commun. (2014), http://
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To investigate the route of metabolism of 24S,25-epoxycholes-
terol in brain we utilised two different knockout mouse models,
Cyp27a1�/� and Cyp7b1�/�where the expression of the Cyp enzyme
sterol 27-hydroxylase (Cyp27a1) or oxysterol 7a-hydroxylase
(Cyp7b1) is eliminated respectively. The level of the epoxide in
the Cyp27a1�/� mouse was a little lower than the control wt
(0.92 ± 0.05 lg/g cf. 1.32 ± 0.07 lg/g, n = 3, p < 0.01, Fig. 3A) while
the levels of 24S-hydroxycholesterol (25.92 ± 1.73 lg/g cf.
23.55 ± 0.65 lg/g, Fig. 3B) and of cholesterol (16.98 ± 0.96 mg/g cf.
16.90 ± 0.29 mg/g) were essentially unchanged between the knock-
out and wt control mice. In contrast, the level of 24S,25-epoxycho-
lesterol was greatly elevated in the Cyp7b1�/�mice compared to the
wt (at 13 months 3.62 ± 0.22 lg/g cf. 0.96 ± 0.24 lg/g, n = 3,
p < 0.05; 23 months 2.58 ± 0.15 lg/g cf. 0.44 ± 0.30 lg/g, n = 4,
p < 0.01, Fig. 3C) while again the levels of neither 24S-hydroxycho-
lesterol (at 13 months 18.58 ± 3.73 lg/g cf. 16.82 ± 2.55 lg/g;
23 months 25.34 ± 1.40 lg/g cf. 25.96 ± 3.00 lg/g, Fig. 3D) nor cho-
lesterol (13 months 10.33 ± 2.02 mg/g cf. 10.60 ± 1.43 mg/g;
23 months 16.85 ± 0.59 mg/g cf. 15.81 ± 0.65 mg/g) differed
between the knockout mice and wt controls.
4. Discussion

Until recently suitable methods have not been available for the
analysis of 24S,25-epoxycholesterol in brain. We performed one
previous study in which we measured the quantity of the epoxide
in 15 week old adult female mice and the levels determined were
similar to those measured hear (0.64 lg/g) [24]. Interestingly, in
that study we also analysed the epoxide level in cholesterol
24-hydroxylase knockout mice (Cyp46a1�/�) and found that the
amount of epoxide fell to 0.12 lg/g, while that of cholesterol was
constant (16 mg/g). As expected the amount of 24S-hydroxycholes-
terol in brain of the Cyp46a1�/� mice was at trace levels (0.02 lg/g
cf. 27.91 lg/g in wt). We explained the low levels of 24S,25-epoxy-
cholesterol in the Cyp46a1�/�mice by a reduced synthesis, parallel-
ing that of cholesterol which falls to counteract the effect of the
elimination of its export route via 24S-hydroxylation. Although,
24S-hydroxylation by Cyp46a1 represents the major route for cho-
lesterol removal from brain, a minor amount may be eliminated
through (25R)26-hydroxylation of cholesterol by Cyp27a1, and
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subsequent oxidation to 7a-hydroxy-3-oxocholest-(25R)-4-en-
26-oic acid which crosses the BBB and enters the circulation [26].
Note that according to current nomenclature Cyp27a1 introduces
hydroxylation at C-26 generating R stereochemistry at C-25 [27].
Thus, as the cholesterol and 24S-hydroxycholesterol levels are
unchanged in the wt and Cyp27a1�/�mice, cholesterol homeostasis
is achieved through its reduced synthesis and hence that of the
24S,25-epoxide. The 24S,25-epoxide is formed via a shunt of the
Bloch arm of the mevalonate pathway whose penultimate member
is desmosterol. Studies by others find that desmosterol is reduced
in brain of Cyp27a1�/� mice, but surprisingly sterols of the Kan-
dutsch-Russell arm of the pathway are elevated [28].

The two major routes of oxysterol metabolism are via 7a- and
(25R)26-hydroxylation through Cyp7b1 (Cyp39a1 in the case of
24S-hydroxycholesterol) and Cyp27a1, respectively [9]. As detailed
above knockout of Cyp27a1 results in a small decrease in the level of
24S,25-epoxycholesterol. In contract knockout of Cyp7b1 results in a
significant increase of the epoxide, strongly indicating that it repre-
sents a substrate of this enzyme. When appropriate RICs were gener-
ated for 3b,7a-dihydroxycholest-5-en-24S,25-epoxide we failed to
find any components giving fragmentation spectra compatible with
this structure in any of our mouse brain samples studied, presum-
ably because abundance of the metabolite was below the detection
limit. Unfortunately, the authentic standard of 3b,7a-dihydroxycho-
lest-5-en-24S,25-epoxide is not currently commercially available.

It is also of interest to compare the levels of 24S,25-epoxycho-
lesterol in adult (0.4–1.4 lg/g) to that found in the newborn mouse
(1.12 lg/g) [21] and in developing mouse brain (E11.5, ventral
midbrain, Vm, 0.39 lg/g; cortex, Ctx, 0.33 lg/g) [29,30]. For refer-
ence, the levels of 24S-hydroxycholesterol were measured to be
0.51 lg/g in newborn mouse brain and 0.03 lg/g in Vm and Ctx
of the developing brain. Although the absolute levels of 24S,
25-epoxycholesterol are quite similar in the adult, new born and
developing mouse brain, the ratios of 24S,25-epoxycholesterol to
24S-hydroxycholesterol vary by almost 3 orders of magnitude
(adult �1:60–1:20; newborn �2:1, foetus �10:1). This is a striking
difference, but can be reconciled with the differing routes of forma-
tion of these oxysterols. 24S,25-Epoxycholesterol is formed via a
shunt of the mevalonate pathway in parallel to cholesterol, while
24S-hydroxycholesterol is formed from cholesterol. In mouse
embryonic development the foetal brain becomes the major source
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t’s t-test.
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of its own cholesterol at E10–E11 [31], thus, at E11 the mouse
brain is actively synthesising cholesterol and 24S,25-epoxycholes-
terol. On the other hand, 24S-hydroxycholesterol is a metabolic
product of cholesterol itself, and in developing brain Cyp46a1
expression is low until E18, thereby conserving newly synthesised
cholesterol for utilisation by plasma membranes [31]. In contrast,
in adult mouse brain where Cyp46a1 is fully expressed in neurons,
about half of the newly synthesised cholesterol is converted to
24S-hydroxycholesterol [10], thereby accounting for its apprecia-
ble level in brain.

These results are significant when the role of oxysterols in con-
trolling cholesterol levels is considered. Although 24S-hydroxycho-
lesterol suppresses the processing of SREBP-2 and also acts as a
ligand to the liver X receptors (Lxrs) in vitro [12], its low level in
comparison to 24S,25-epoxycholesterol in developing brain ques-
tions the relative importance of these two oxysterols in foetal
brain. Further, in addition to excreting cholesterol from brain more
slowly, Cyp46a1 knock-out mice synthesise cholesterol via the
mevalonate pathway at a reduced rate [32], this argues against a
role for 24S-hydroxycholesterol as a major regulator of cholesterol
syntheses, but would be consistent with 24S,25-epoxycholesterol
playing a role in ‘‘fine tuning’’ the rate of cholesterol synthesis. It
should be noted that 24S,25-epoxycholesterol has a further role
in the developing midbrain, where through activation of Lxrs it
regulates dopaminergic neurogenesis [30].

In conclusion, here we report the levels of 24S,25-epoxycholes-
terol in rodent brain. Its elevated level in the Cyp7b1�/� mouse
strongly suggests that it is a substrate for the Cyp7b1 enzyme.
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