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This short note is written to replace the defective proof of Theorem 5.5-(ii) in [1]. The
result remains true without any additional assumptions. For this reason we literally adopt all
the notations, assumptions and equation numbers used in [1]. The error in the mentioned proof
originates in a misapplication of Hölder’s inequality in the estimate of I1 (see page 370 of [1]
two lines after (29)).

Theorem 5.5 Part (ii) in [1]: Under HX1 and HY1, the FBSDE system (1), (2) has a
unique solution (X,Y, Z) ∈ S2p × S∞ ×H2p for all p ≥ 1. Moreover, the following holds true:

(ii) For all p ≥ 1 there exists a constant Cp > 0 such that for any partition π of [0, T ] with N
points and mesh size |π|

N−1∑
i=0

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p]
≤ Cp|π|p.

Proof. Throughout fix p ≥ 1. Theorem 5.3 states that Z ∈ S2p and therefore, using Jensen’s
inequality and Fubini’s theorem we are able to write

E
[( ∫ ti+1

ti

|Zt − Zti |2dt
)p]
≤ |π|p−1

∫ ti+1

ti

E
[
|Zt − Zti |2p

]
dt.

Using Theorem 5.2 and the representation formulas of Theorem 2.9 we can rewrite the difference
inside the expectation as Zt − Zti = J1 + J2 + J3 with J1 = [∇Yt − ∇Yti ](∇Xti)

−1σ(Xti),
J2 = ∇Yt[(∇Xt)

−1−(∇Xti)
−1]σ(Xti) and J3 = ∇Yt(∇Xt)

−1[σ(Xt)−σ(Xti)] (with t ∈ [ti, ti+1]).

Estimates for J2 and J3 are easy to obtain since they rely mainly on the fact that ∇Y ∈ Sq
for all q ≥ 2 and the known estimates for SDEs found for instance in Section 2.5. We give details
for J2 and hints on how to deal with J3, remarking that its treatment is very similar.
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Hölder’s inequality combined with the growth condition of σ produce for t ∈ [ti, ti+1]

E[ |J2|2p] ≤ C‖∇Y ‖2pS6p E
[
|(∇Xt)

−1 − (∇Xti)
−1|6p

] 1
3

(1 + ‖X‖2pS6p) ≤ C|π|3p
1
3 = C|π|p.

Where in the last line we used (4), (8) and ‖∇Y ‖Sq < ∞ for any q ≥ 2. For J3, the method is
similar: instead of (4) and (8) one uses (5) and (7) combined with HX0.

At this point it is fairly easy to see that

N−1∑
i=0

|π|p−1
∫ ti+1

ti

E
[
|J2|2p + |J3|2p

]
ds ≤

N−1∑
i=0

|π|p−1 (ti+1 − ti)C |π|p = C T |π|2p−1.

To handle the term J1 one needs to proceed with more care. Let us start with a simple trick:

E
[
|(∇Yt −∇Yti)(∇Xti)

−1σ(Xti)|2p
]

= E
[
E
[
|∇Yt −∇Yti |2p

∣∣Fti

]
|(∇Xti)

−1σ(Xti)|2p
]
.

Writing the BSDE for the difference ∇Yt − ∇Yti for ti ≤ t ≤ ti+1 we have for some positive
constant C

E
[
|∇Yt −∇Yti |2p

∣∣Fti

]
≤ C E

[ ∣∣ ∫ t

ti

〈
(∇f)

(
r,Θ(r)

)
, (∇Θ)(r)

〉
dr
∣∣2p +

∣∣ ∫ t

ti

∇ZrdWr

∣∣2p ∣∣Fti

]
≤ C E

[ ( ∫ ti+1

ti

|(∇f)(r,Θr)| |∇Θr|dr
)2p

+
(∫ ti+1

ti

|∇Zr|2dr
)p ∣∣Fti

]
.

Here we used the conditional Burkholder-Davis-Gundy inequality and maximized over the time
interval [ti, ti+1]. For convenience of notation we define the sum of the integrals inside the
conditional expectation by Ĵ[ti,ti+1].

Combining these last two inequalities and observing that since ∇Xti and σ(Xti) are Fti-
adapted we can drop the conditional expectation. This way for some positive constant C we
obtain

|π|p−1
N−1∑
i=0

∫ ti+1

ti

E
[
E
[
|∇Yt −∇Yti |2p

∣∣Fti

]
|(∇Xti)

−1σ(Xti)|2p
]
dt

≤ C |π|p−1
N−1∑
i=0

|π|E
[
Ĵ[ti,ti+1] |(∇Xti)

−1σ(Xti)|2p
]

≤ C |π|p E
[

sup
0≤t≤T

|(∇Xt)
−1σ(Xt)|2p

N−1∑
i=0

Ĵ[ti,ti+1]

]
≤ C |π|p E

[
sup

0≤t≤T
|(∇Xt)

−1σ(Xt)|2p
{(∫ T

0
|(∇f)(r,Θr)| |∇Θr|dr

)2p
+
(∫ T

0
|∇Zr|2dr

)p}]
≤ C |π|p.

The last line follows from a combination of inequality (25), assumption HY1 (namely the growth
conditions for the derivatives of f) and the fact that for any q ≥ 2 we have: X,∇X, (∇X)−1 ∈ Sq,
Y,Z,∇Y ∈ Sq ∩Hq and ∇Z ∈ Hq.

Collecting now the estimates on J1, J2 and J3 we obtain the desired result.
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