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13
Semantic Ideas in Computing

Robin Milner

13.1 Introduction

Are there distinct principles and concepts which underlie computing, so
that we are justified in calling it an independent science? Or is com-
puting a resource or commodity - like water - which is perfectly well
understood in terms of existing science, for which we merely have to find
more and better uses?

In this essay I argue that a rich conceptual development is in progress,
to which we cannot predict limits, and whose outcome will be a distinct
science. This development has all the excitement and unpredictability
of any science. We cannot predict how the conceptual landscape will lie
in a decade's time; the subject is still young and has many surprises in
store, and there is no sure way to extrapolate from the concepts which
we now understand to those which will emerge. I therefore support
my argument by explaining in outline some semantic ideas which have
emerged in the last two or three decades, and some which are just now
emerging.

I try to present the ideas here in a way which is accessible to some-
one with an understanding of programming and a little mathematical
background. This volume aims to give a balanced picture of computer
science; to achieve this, those parts which are mathematical must be
presented as such. The essence of foundational work is to give precise
meaning to formulations of processes and information; clearly, we should
employ mathematics in this work whenever it strengthens our analytical
power. Thus, rather than avoiding equations, I try to surround them
with helpful narrative.

It is a somewhat arbitrary matter to decide when a scientific discipline
is mature and stands significantly on its own. Important criteria are that
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Semantic Ideas in Computing 247

its ideas have distinctive character compared with those of other disci-
plines, that these ideas have a well-knit structure, and that they have
some breadth of application. As far as distinctive character is concerned,
many of the notions discussed here are new; moreover a unifying theme
pervades them which we may call information flow - not only the vol-
ume or quantity of the flow, but the structure of the items which flow
and the structure and control of the flow itself. As for breadth of appli-
cation, there are clear signs that the field of computing spans a wider
range than many would have predicted thirty years ago. At that time,
the main concern was to prescribe the behaviour of single computers or
their single programs. Now that computers form just parts of larger sys-
tems, there is increasing concern to describe the flow of information and
the interaction among the components of those larger systems. Another
paper in this volume (Gurd & Jones) draws attention to this trend at
the level of system engineering and human organizations, while Newman
argues that interactive computing should be installed in the mainstream
of computing as an engineering discipline. At the fundamental level,
the concepts of computing can increasingly be seen as abstractions from
the phenomena of information flow and interaction. One may even claim
that computing is becoming a science to the extent that it seeks to study
information flow in full generality.

In section 13.2, I distinguish between two sources of ideas for com-
puting. One source is the theoretical core of mathematical logic, whose
long development (most intense in the last hundred years) makes it a
firm basis for our subject. The other source is computing practice itself,
as made possible by the digital computer; I claim that this practice is
not merely the application of already established science, but also an
activity from which scientific concepts are distilled. The remainder of
the essay indicates how this occurs, with specific examples; I try to show
that software engineering not only exposes the need for a scientific basis,
but even provides the germs of the ideas of that science.

In section 13.3, I consider the practical business of making sure that
a computing system meets its specification. I pay particular attention
to the problem of software maintenance, since the difficulties are most
acute there. We see that this activity, and more generally the software
design and development process, demand the use of formal descriptions
and specifications, and formal methods of analysis and design.

While this need has gained a degree of acceptance in software engi-
neering, I argue in section 13.4 that formalism is not the most important
part of the story. Consider the specification of a complete computer sys-
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248 Robin Milner

tern S] it is formal because we need rigour, but every formal expression
has a meaning, and this meaning has conceptual content. This content
will vary from the mundane to the esoteric. The specification of the com-
plete system S will express its intended behaviour in terms of concepts
drawn from its field of application (e.g. money if the field is banking;
geometry and mechanics if the field is robotics); on the other hand the
specification of a component deeply situated within S will employ con-
cepts which are inherently computational, and pertain to information
flow in general.

Section 13.5 is devoted to identifying some of the concepts which have
emerged from the challenge to understand conventional programming
languages, which provide the raw material for software engineering.
Many of these ideas are now stable, and form a considerable part of
the foundation of computing. Despite their fundamental character, they
have emerged through application experience which has only been pos-
sible since the programmed computer was invented. Thus computing is
a science which not only informs an engineering discipline, but uses that
very discipline as its laboratory for experiment.

Section 13.6 deals with some concepts which are currently emerging,
and less stable. Due to the shift of emphasis which I mentioned above
from prescribing computer behaviour to describing system behaviour,
these emerging concepts are more and more concerned with the interac-
tion of system components, with the flow of information among them,
and with the dynamic reconfiguration of the systems to which they be-
long. Despite the more tentative status of these ideas, they appear to
belong to the same large conceptual development as the more stable
ideas in section 13.5, and I try to present this continuity of progress.

13.2 The Nature of Computation Theory

At the outset, we should recall that computation has for long had a hard
theoretical core closely linked with mathematical logic. Around 1900,
the famous mathematician David Hilbert mounted a programme, or is-
sued a challenge, to show that every mathematical truth is deducible
- i.e. mechanically derivable - from a set of axioms; the challenge was
to find those axioms. This programme was overthrown by the work
of Godel, Kleene, Church and Turing. It was found that any reason-
ably expressive axiomatic system will inescapably be either inconsistent,
meaning that one can deduce some proposition and its negation, or in-
complete, meaning that there are some propositions P for which one
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Semantic Ideas in Computing 249

can deduce neither P nor the negation of P. This even occurs in cases
where we intuitively regard P as true. In other words, there will always
be truths which are not deducible; and this amounts (via the work of
these pioneers) to saying that certain mathematical functions cannot be
computed by any computer program.

It may appear that this has nothing to do with computing, except to
show that it has limitations. But this hard core of computation theory
soon ramified into a classification of what is computable; that is, there
are degrees of computability. The ramification began with recursion
theory, where it is shown that certain things are essentially harder to
compute than others. Within computer science, the theory known as
computational complexity carries on this programme; it is reviewed by
Atkinson in this volume. We now know that a lot of useful things can
be computed in linear time, others take non-linear but polynomial time,
still others almost certainly take exponential time and some definitely do.
Tasks are also classified in terms of the memory space they require, and
in terms of the extent to which parallelism can speed their computation.

Some people, even computer scientists, regard this difficult and unfin-
ished study as essentially the mainstream of computation theory. Ac-
cording to this view, the rest of computer science consists largely of
engineering, either of hardware or of software. It is understood that
physical science will continue to develop new and more powerful kinds
of hardware; on the other hand, software is seen as a resource or com-
modity whose scientific basis is already established, like water; our task
is not to probe further into its nature, but to exploit it by pouring it into
everything. It is admitted that this development, or pouring, amounts
to a new and intricate engineering discipline; it is hardly allowed that
new scientific concepts are needed to underpin the development.

This negative view is at best unproven, as long as we admit that sci-
ence is concerned with the rigorous understanding of the world about us.
There is no doubt that large computer systems exist in the world about
us; they are orders of magnitude more complex than anything made
before, probably as complex as many natural systems (e.g. ecologies),
and their complexity is steadily increasing. Further, there are new kinds
of system, containing parts which are not computers and may even be
human, which exist only because of the computers they contain; a mod-
ern banking system is a good example. In the light of this growth, the
negative view seems not only unproven but shortsighted. The surge of
interest in object-oriented programming shows that new ideas are enter-
ing the very nature of software, though they are imperfectly understood.
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250 Robin Milner

Further, as computing is extended to include communication and infor-
mation flow in distributed and heterogeneous systems, we are faced with
the need to understand a newly identified group of phenomena which are
indeed pervasive.

In the following sections I argue that this understanding will have
broad application; I also show that it employs a well knit body of con-
cepts, some developed in the last few decades in studying programming
languages, others newly emerging and more concerned with interaction.
Thus the criteria for a significant scientific discipline which I mentioned
earlier are met, and the negative view which I have described is refuted.
To the extent that the phenomena of computing and communication
are man-made, we have a substantial new 'science of the artificial', as
Herbert Simon (1980) has recognised.

How do we arrive at these new concepts? In the natural sciences,
observation plays a central role. A large part of computer science is
about man-made phenomena, and we therefore expect engineering prac-
tice to play a large part in suggesting new ideas. Computer science is not
unique in this; it is hard to imagine that engineering practice (building
things) did not play a strong part in the development of 'natural phi-
losophy', i.e. mechanics, including Newton's laws of motion. What is
surely unprecedented in computer science is the enormous rate at which
we have acquired engineering experience over a few decades. This expe-
rience or experiment (in French the word is the same!) is our means of
observation.

All experiment is done against an already accepted scientific back-
ground, an established body of concepts. In computer science, mathe-
matical logic has always figured largely in this background. (For Turing,
the Turing machine and the Ace computer were conceptually close.) This
reflects the distinctive part which computer systems play in our envi-
ronment; they act as extensions of our mental power, in other words
as prosthetic devices of the mind. Any prosthetic device is controlled
somehow, and in the case of computers the means of control is formal
language. Mathematical logic is concerned with the structure and mean-
ing of formal languages, and thus provides essential background to our
experiment; it underlies not only deductive languages (logics as com-
monly understood), but also imperative or effective languages such as
programming languages. In studying the way we control systems, or
interact with them, we are therefore broadening the field of mathemat-
ical logic; we may expect computer science and logic to grow intimately
together.
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Semantic Ideas in Computing 251

In the next section we shall look at a particular example of systems
engineering experience, namely software maintenance. The problems
encountered there, and our progress in dealing with them, rather clearly
illustrate the need for - and the difficulty in arriving at - concepts which
help to understand computer systems.

13.3 Understanding a Software System

One of the most important reasons for understanding a software system
is to change it. There are two reasons why one may wish to change it; it
may be wrong, or it may be required to work in a changed environment.
Both of these reasons apply in many cases! But they are not the only
reasons for needing to understand software; even if a system is perfect
and working in a perfectly unchanging environment, we shall want to
build other systems, for different but similar tasks, without starting
again - and we can at least hope to use a lot of its pieces unchanged.

What kind of understanding helps in making this sort of adaptive
change? This is the problem of software maintenance, an activity which
is claimed to absorb 80-90% of software effort. Even for experienced
computer scientists a simple everyday analogy may be useful in answer-
ing this question.

Suppose that you want to adapt your bicycle, when you leave the city
to live in the country, so that it will cope with hill paths. How do you
know what to change? Your first idea might be to fit fatter tyres which
grip the surface better, so you try to find out how to do this. A bicycle
is largely open; you can see a lot of the 'code' of a bicycle. Imagine
that you've never really looked at any wheeled vehicle properly before;
you've only used them. So looking at the bicycle for the first time is
like looking at the raw code of a software system. It's all there, but you
cannot see all its joins; for example, you can't see whether or how the
tyre comes off the wheel - it might be riveted on. In fact you don't even
know that there is a separable thing called the 'tyre', a component of a
thing called 'wheel'; this structure is not completely manifest.

This problem is met again and again in software engineering, because
big systems exist without any, or without enough, structural description.
The reason can be completely mundane; perhaps it was written five years
ago, by someone who has now left, and written in such a hurry that there
was no time to describe it. The only way to solve the problem, if you have
not enough time to start again, is what is known as 'reverse engineering'
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252 Robin Milner

(Walters & Chikofsky, 1994). At its crudest level this consists in poring
over the code for days, weeks or months in order to intuit its structure.

Reverse engineering is important, and it is a serious professional ac-
tivity. Much has been written on it, and this is not the place to describe
it in detail. Because systems engineers are repeatedly confronted with
the problem of adapting large inscrutable software systems, it would be
pointless to criticize them for using reverse engineering. But we must re-
sist the inference that software engineering will always involve makeshift
activity, which - in its crude form - reverse engineering undoubtedly is.
More positively, we should try to arrive at means by which this activity
will be found unnecessary.

To get an idea of how to avoid reverse engineering, it is useful to take
the bicycle analogy two steps further. First, the situation is not usually
so bad as suggested above; instead of poring over unstructured low-level
code, the reverse engineer will often pore over code written in a high-
level language such as Ada or Pascal. This makes the job a lot easier;
the modular structure of the system is manifest in the code because
these languages are designed to express precisely the interfaces between
system components. This is like not only having the bike to look at, but
also having the exploded assembly diagram of the bike, showing how the
tyre fits on the wheel, and the wheel on the bike.

With this knowledge, perhaps you fit tougher tyres and take the bike
on a hill-path. It then collapses; the wheels buckle and the spokes break.
Why? The reason cannot be found in the exploded assembly diagram
(i.e. the high-level program text). What is missing is any information
about the bike in action; for example, about the stress which can be
transmitted from the road through the tyre (now tough enough) to the
wheel. In software terms, the high-level code - though it may be beauti-
fully structured - tells you nothing about how a new user interface (for
a tougher environment) can place extra demand on an inner software
component which it wasn't made to bear.

A good reverse engineer will, all the same, avoid many of these traps.
Mostly this will be because he or she has a good feel for the behaviour
of software modules and for their interaction; it may also be because the
original Ada code was well adorned with useful comments. Equally, the
man in the bike shop was not trained in the strength of materials, or
in dynamics, but he too could have told you that new tyres would not
be enough for hill riding; you would certainly need new wheels and he
might even wonder about the frame.

But we must not be reassured by this sort of horse sense. Software is
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unboundedly complex; new situations will always arise in which know-
how from previous experience is little help. What is needed is a theory of
software dynamics, and a conception of the strength of software material.
So this is the second step in the development of our analogy.

What kind of thing is the 'strength' of a piece of software? One way
of expressing the strength of a piece of steel is

If you apply a force of no more than 100 newtons to it, and let it go, it will
spring back.

For a piece of program we may say analogously

If you give it a quadratic equation with coefficients no bigger than 15000, and
let it go, it will compute the roots.

Such a statement - call it S - is usually known as a specification. It is
precise, and it is not a program; many different programs P may satisfy
S. A specification S may be called a contract between the designer of
P and the designer of the system environment which will use P. The
designer of a complete system has a contract to meet with his or her
customer; he must not only ensure that his design meets the contract
but he must present an argument that it does so, in a way which others
can follow. This second requirement more or less forces him to design
in a modular way. Then his argument can be modular too; at each level
it will show that if a module can rely upon its parts Pi meeting their
subspecifications Si then the module composed of those parts in turn
meets its specification.

The point is that reverse engineering just isn't necessary if good
enough specifications are available for each module in a software sys-
tem, because the specification represents just the knowledge that the
reverse engineer is trying to recover. If his customer contract changes,
this may mean that the subcontract S for P has to be strengthened -
replacing the bound 15000 by 20000 say; this in turn means that P itself
may have to be reprogrammed.

I do not wish to imply that this is easy. Specifications can be ex-
tremely complex and subtle. But academics are working alongside the
software industry to bring about this sea-change in methodology. An
early success is VDM (Vienna Development Method) (Jones, 1986), a
logic-based methodology which originated in IBM's laboratory in Vi-
enna a quarter of a century ago; another notable example is Oxford
University's collaboration with IBM, using the medium of the specifica-
tion language Z (Spivey, 1992). Every effort must be made to develop
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254 Robin Milner

the applied mathematics of specifications, because without it software
design - and in particular software maintenance - will remain a black
art, full of black holes into which human effort and financial resource
are inexorably drawn.

13.4 Underlying Concepts

The previous section amounts to a case for the use of formal methods
in system engineering. The argument is particularly important for the
upgrading of reverse engineering into a more rigorous and less chancy
exercise; it will be familiar to many readers. In recent years there has
been a fairly widespread acceptance that, at least in principle, specifica-
tions should be expressed in a formal language and the reasoning about
them conducted with computer assistance where possible.

The problem we now confront, which is central to this essay, is: What
do these formalisms express? Most people will reject the extreme for-
malist view that a formalism expresses nothing! Let us first consider the
formal specification of a complete computing system; that is, a system
which is embedded not in another computing system but in some 'real-
world' environment. Then most software engineers (who admit formal
specification at all) will agree that this top-level specification should not
express anything to do with the internal structure of the system, but
should be solely concerned with how the system must behave in its en-
vironment. (This may include how much power it consumes, and how
long it takes, i.e. its costs.) The specification is therefore written in
terms of concepts which pertain to the environment - not to computer
science. So far then, concepts which are peculiar to computer science
won't show up in the specification of a complete computing system, any
more than the concept of a magnetic field shows up in the specification
of an electrically driven food-mixer.

But if we admit that a specification of a system expresses behaviour
using concepts relevant to the system's environment, then this holds
also for incomplete systems - i.e. the modules and submodules within
complete ones. By any reasonable count there are more such modules
than there are complete systems! So most of the time, a system engineer
will be dealing with concepts which refer to the internal working of
computing systems. We then naturally ask whether concepts with which
we are already familiar - from mathematics, logic, or the external world
- will be enough for this purpose. If so, then computer science does not
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really deserve to be called a science in its own right - though computer
systems engineering will still be a distinct branch of engineering.

I believe that an emphasis on formal methods, necessary though it is
for systems engineering, may lead to a false conclusion: that familiar
mathematical notions, such as the calculus of sets and relations, are
enough to specify the behaviour of internal modules of a system, and
that we get all the understanding we need - as well as the rigour - by
wrapping these up in a suitable logic. Therefore, before discussing some
of the new semantic ideas in computer science, I shall give two examples
to support the need for them. Other examples can easily be found.

First, consider a computing system at the heart of a communications
network which allows links between different pairs of sites to be formed,
used and broken. (We need not be concerned whether these are voice
links, or links for textual traffic.) The external specification of the system
will be something like this: The system accepts requests for links to be
formed, forms them, allows interaction across them, takes action if they
break accidentally, etc. All this can be specified in terms of external
behaviour. Now consider a piece of software within the system whose job
is to re-route an existing link (perhaps under certain traffic conditions)
while it exists, without in any way affecting the interaction occurring
on the link. (Two people having a telephone conversation need not be
concerned whether their connection is via one satellite or another, or via
none, nor should they be able to detect changes of route in mid-call.)
How is this piece of software specified? It must be in terms of some
concept of route. What is this concept? It is not only a concrete route
through hardware; it is also mediated by software, so it has abstract
elements too. Whatever it is, it is unlikely to be a concept specific to
this one application, nor a concept familiar to users of the system. One
can only conclude that it is a concept specific to computer science; in
fact, it pertains to the structure of information flow.

As a second example, consider a software-development suite for an
industrially used computer language - say Ada. Part of this suite of
programs is the compiler for the language. The compiler - itself a pro-
gram - translates the Ada language into basic machine code, or perhaps
into some intermediate language close to the machine code, so that the
machine can execute it. What is the specification which this compiler is
to meet? Among other things (e.g. how errors should be reported) the
specification must demand that the translation be correct.

What, precisely, does it mean to say that the translation from one
language to another is correct? First, this assertion presupposes a pre-
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cise (and therefore formal) definition of the behaviour of a program in
each language. Recently, there have been several formal definitions of
programming languages; Ada itself was the subject of a monumental at-
tempt, partly successful, at formal definition. Therefore we are reaching
the situation that the assertion of compiler-correctness is at least about
well defined entities. But this success in formal definition is not the
whole story. For, as I said above, every formalism expresses something;
in this case, the formalism in which the language is defined should ex-
press the behaviour of computer programs. To assert that the compiler
is correct is to say that, in every case, the behaviour of an Ada pro-
gram is equivalent to that of its translation. But computer scientists
are still not agreed upon the nature of these behaviours; a fortiori, it
is not settled what constitutes equivalence among them! This is partly
because Ada tasks run concurrently; the concept of concurrent process
is unsettled, and there are many different candidates for the notion of
equivalence of processes.

Even for languages which have no sophisticated communicational fea-
tures, indeed no concurrency, the study of equivalence of meaning has
generated some of the most striking concepts in computer science, which
are even new to mathematics. These concepts are not only concerned
with programming languages; they are also about the behaviour of com-
puting and communicating systems in general. After all, this is what
our languages are supposed to describe! I shall now go on to discuss
some of the concepts which are emerging from the need to understand
not only the external specification of computing systems, but also what
goes on inside them. I hope that the foregoing discussion has convinced
the reader that a conceptual framework is needed for this understanding,
and that we cannot assume the concepts to be familiar ones.

13.5 Programs and Functions

I earlier alluded to computers as 'prosthetic devices of the mind'. This
may be a fanciful description, but it pinpoints exactly what software is.
Just as we control any tool, we control computation and use it for our
own purposes, and the means of control is just programming. One might
hope for a once-and-for-all discipline of control; but this leaves out of
account the growing variety of the purposes to which we put computing.
Few people would now claim that there can be a universal programming
language, or even a small number of them, though the claim has been
made in the past.
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We may, of course, choose to stay with our current repertoire of half-
understood languages, and inhabit Babel for ever. A (rather weak)
argument for this is that, after all, we are not doing badly; computer
systems do more or less what we intended - and if not, we can adapt
to them. But the situation will not stay still; we need only look at
the current growth of object-oriented languages to see that new, less
understood, languages are emerging - and we have no reason to think
that this growth of language will cease. Babel is not stable!

A more insidious argument for continuing to inhabit Babel is that we
have no choice, for the following reason: The only alternative is to find a
way of understanding languages which does not depend upon language,
and this is literally impossible; all descriptions must be expressed in
some symbolism - and we are back to the impossibility of a universal
language.

This argument ignores the power of mathematical understanding. Cer-
tainly mathematics uses formalism, but its essence lies in its ideas -
expressed using minimal formalism. Thus we seek not a universal lan-
guage, but a universal understanding of languages. Indeed, one of the
greatest advances in computation theory over the past thirty years has
been the development of mathematical theories which explain (i.e. give
meaning to) a very wide range of programming languages, including vir-
tually all those which do not involve parallel or interactive computation.
With such theories we see the variety among languages in its proper
sense - not as prolix symbolism but as variation of methodology within
an understood space.

In this essay I cannot do full justice to the theoretical development.
But in keeping with my main theme, I want to show how it has led not
just to formal or logical definitions, but to a repertoire of concepts which
arise inevitably, from phenomena of programming which are simple and
familiar. So, though we shall end up with a new and significant branch
of mathematics, we shall now begin with the most familiar programming
ideas, and ask what meaning lies behind them.

13.5.1 Computational domains

We shall look at several well-formed pieces of program, in a familiar
kind of programming language. For each one of them, we shall see that
it expresses or denotes an abstract object; for each one we shall ask in
what space of objects it lies.
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Let us begin with a piece of program which declares a procedure for
computing the n t h power of a real number x:

PROCEDURE power(x:REAL, n:INTEGER):REAL
RESULT = x~n

END PROCEDURE

After this declaration, the name power has a meaning which it did not
have before; it denotes a function. But it is not just any function; it is a
function which takes objects in one space, the argument space, and gives
an object in another space, the result space. We call the argument space
REALS X INTEGERS; it contains all pairs consisting of a real number and
an integer. This space is constructed as the product (x) of two simpler
spaces; the real numbers REALS, and the integers INTEGERS. The result
space is just REALS again.

Another way of saying this is that power itself denotes an object in a
space: the function space

REALS X INTEGERS —• REALS ,

where '—•'is another way of constructing new spaces from old. In gen-
eral, for any spaces D and E, D x E is the space containing pairs (one
member from £), one from E), while D —> E is the space of functions
from D to E.

It is important to speak generally, in this way, because then we see
opportunities for generality of usage. For example, we see that the result
space E of the function space D —• E may itself be a function space;
this reflects the fact that in some languages a procedure can deliver a
result which is another procedure.

To introduce a third space-construction, we consider how to model a
realistic situation, namely that an arithmetic operation can cause over-
flow; this may make power raise an exception, i.e. exit abnormally, rather
than return a normal result. To model this we can use summation (+)
of spaces; we say that power denotes an element of the space

REALS X INTEGERS —> REALS + {overflow} ,

meaning that it will return sometimes a real number, and at other times
the special result 'overflow'. (In general, + can be used for richer alter-
atives.)

As we consider further program features, we find phenomena which
determine more precisely the nature of these spaces. Consider first the
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_L

Fig. 13.1. The flat domain of integers

execution of a piece of program which sometimes loops (fails to ter-
minate). We have to give meaning to such programs, even if people
shouldn't write them, since we have to describe bad as well as good
programs. Suppose someone writes

PROCEDURE powerO(x:REAL, n:INTEGER):REAL
IF n>0 THEN . . .
RESULT = x~n

END PROCEDURE

where ' . . . ' is some looping program; then powerO no longer denotes
a total function (one which always gives a result), but a partial one.
Partiality can be represented by allowing domains to contain a spurious
element J_ (pronounced 'bottom'); we write D± for the domain £) + {_!_},
and then we can allow for looping by saying that powerO denotes an
element of the function space

REALS X INTEGERS —> REALS_L,

meaning that when applied it will sometimes 'produce' the result _L -
i.e. it will loop without giving any result.

This element JL is special; intuitively, it is 'less well defined' than every
other element. So a space is not, as we might have thought, just a set
of objects of a certain kind; for its members are ordered according to
how well defined they are. This ordering is written 'E'; in the space
INTEGERS_L for example, we have that _L E n for every integer n, but
we don't have either 1 E 2 or 2 E 1 because no integer is better defined
than any other. We draw INTEGERS_L as in Figure 13.1. It is a very
'flat' space (though it does have _L below everything else), but more
interesting spaces quickly arise. Consider REALS —• REALS_L; this space
contains functions, and we can say that one function is less defined than
( E ) another if it gives a defined result less often. Thus the ordering of
functions is defined in terms of the ordering of REALSj_; writing E to
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stand for 'E or =' , we define / C g to mean that f(x) Q g{x) for every
real number x. The meaning of power0 is below the meaning of power
in this ordering; furthermore we can replace the test n>0 by n>l, n>2
etc., getting functions powerl, power2,... which are better and better
defined:

powerO C powerl IZ power2 C•• • C power .

Thus the meaning of a procedure reflects how ill defined is its result.
But suppose you give the procedure an argument which is ill defined;
is it forced to give an undefined result? The following two simple (and
stupid) procedures indicate that a procedure may or may not be sensitive
to an ill defined argument:

PROCEDURE nought(x:REAL):REAL
RESULT = 0

END PROCEDURE

PROCEDURE zero(x:REAL):REAL
RESULT = x-x

END PROCEDURE

In the space REALS —> REALS_L nought and zero will denote the same
function: that which returns 0 whatever real number you give it as an
argument. So this isn't the right space, if we want to reflect that they
may differ if you apply them to an ill defined argument! They do differ,
in some languages. If you execute the two procedure calls

nought(power0(0,1)) and zero(powerO(0,1))

then one will loop but not the other. The argument to both calls is
powerO(0,l), and this (if executed) will loop. But the first call will
return 0 because the procedure nought doesn't need to execute its ar-
gument, while the second loops (i.e. 'returns' _L) because the procedure
zero does need to work out its argument. We need a space of meanings
to reflect this difference; so we assign each procedure a meaning in the
space REALSj_ —• REALS_L (instead of REALS —> REALS_L), where they
indeed denote different functions.

We now go beyond the cosy world of procedures which only compute
functions, and consider programs which can change the state (value) of
a variable. Suppose that a program consists of a sequence of commands
which are executed one by one. One such command is a procedure
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declaration, such as we have shown above. Another kind of command is
an assignment such as

z := power(y+z, 2)

which changes the value of the variable z to be the square of the sum
of the (current) values of y and z. Commands are executed in a state
in which each name (y, z, power, . . . ) has a value. So a state is just a
function from names to values, and again we can use a space; a state is
a member of the space

STATES = NAMES -> VALUES

where in turn the space VALUES is supposed to contain every kind of
meaning which a name can have:

VALUES = REALS_L + INTEGERSJ_ H — .

Now, since each command has the effect of changing the state - i.e.
creating a new state from the current one - a command takes its meaning
in the space

COMMANDS = STATES -> STATES ;

for example, the meaning of the assignment z := z+1 is a function
which, given any state s € STATES, creates a state sf identical with
s except that sf(z) — s(z) + 1.

Let us return to procedures. They may take as arguments and return
as results all kinds of values, so we may use the larger space VALUES —•
VALUES for their meanings (rather than REALS_L —> REALSj_). But,
since we are now considering state-change, this space is not enough. For
our language may allow assignments such as z := z+1 to appear inside
procedures; then each call of a procedure not only returns a value but
may also change the state. To reflect this, we take the meaning of a
procedure to lie in the more complex space

PROCEDURES = (STATES X VALUES) —> (STATES X VALUES) .

As a final twist, we must remember that a state must record not only the
association between a variable name z and its value, but also the meaning
of every procedure name. This means that the space of procedure-
meanings has to be included in the space of values, so finally we take

VALUES = REALS_L + INTEGERS_L H h PROCEDURES .

We have now explored enough programming features. We have captured
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the character of each feature by associating with it a specific space of
meanings. We have naturally expressed each space in terms of others.
The striking thing is that, without dealing with very complex features,
we arrived at three spaces - STATES, PROCEDURES and VALUES - each
of which depends upon the others; there is a cyclic dependency! Do
we have any right to suppose that spaces - whatever they are - can be
found to satisfy such equations? The answer is not trivial, and the need
for the answer led to the concept of a domain (Gunter & Scott, 1990).

13.5.2 Semantic concepts
The preceding paragraphs read like the first few pages of a textbook
on programming semantics. But this is essentially the way in which,
in 1969, Christopher Strachey identified many of these challenges for a
semantic theory of programming. In that year his fruitful collaboration
with Dana Scott (Scott & Strachey, 1971) inspired Scott's invention of
domain theory. We shall now use the word 'domain' instead of space;
we proceed to identify a handful of key concepts which arise inevitably
from this short exploration.

Solving domain equations From the simple assumption that every
well-formed piece of program should stand for an object in some semantic
domain, we have arrived at equations which such domains should satisfy.
The exercise would be abortive if there were no solution to these simul-
taneous equations; we would have failed to find suitable spaces of mean-
ings. But the equations connecting the domains STATES, PROCEDURES

and VALUES show a cyclic dependency among them; the existence of
solutions is therefore not obvious.

We have to face this fact: If the function domain D —• E contains all
the functions from D to E, then there can be no solution to our equa-
tions! This can be shown by a direct adaptation of Cantor's argument
that the infinity of the real numbers is strictly larger than the infinity of
the integers. For this argument also implies that the size of the function
domain D —» E is strictly larger than that of D (if D and E have more
than one element); using this fact we can trace around our equations to
show that the size of VALUES would be greater than itself!

This paradox is resolved below by making sure that the function
domain D —• E actually does not contain all functions. This is no
contrivance; the omitted functions have no computational significance.
Once this functional domain construction is settled, a theory emerges
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Ax.T

ONE_L: O N E ± -> O N E ± : XX'X

•*- Xx.±

Fig. 13.2. The two-element domain and its function space

which guarantees that any family of equations using suitable domain
constructions has a solution. Such an equation-set arises in the math-
ematical description of any programming language; from our simple il-
lustration above it should be clear that it not only lies at the heart
of a semantic definition of the language, but gives a clear grasp of the
ontology of the language.

Monotonicity From an intuitive understanding of program execution
it is easy to accept that, for any procedure which we can define in a
reasonable language, any increase in the definedness of its arguments
can only lead to an increase (or no change) in the definedness of its
result. Such a statement can, indeed, be formally proven if the rules of
execution of the language are formally given. We therefore require of
the function domain D —• E that it contain not all functions, but only
those functions / which are monotonic, i.e. such that

whenever x C y holds in D, then f(x) C. f(y) holds in E .

Take for example the domain ONE with only one element T, so that
ONE_I_ has two elements. Then ONEJ_ —•> ONE_L will not contain the
function / ? which exchanges _L and T, since this function is not mono-
tonic. The omission of f from the space is justified because any pro-
cedure written to compute f{x) from x would have to loop if and only
if the computation of x doesn't loop, and no procedure could ever be
written to do this. The ordering diagrams are shown in Figure 13.2.
In the diagram we use X-notation for functions; if M is any expression,
then Xx.M means 'the function / given by f(x) = M\

Completeness and continuity An interesting domain is one consist-
ing of streams (sequences) of some kind of value, say integers. A stream
can be finite or infinite. For streams s and s' we define s \z s' if s' is
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a proper extension of s, e.g. (3,2) \z (3,2,4). The domain is actually
given by the equation

STREAMS = (INTEGERS X STREAMS) _L .

If s E s' we say s approximates sf. For example, the infinite stream
evens = (0,2,4,...) is in the domain, and has an ascending sequence of
finite approximants

evens o C evens \ \Z evens 2 C • • •

where evensk = (0,2,4,..., 2k). We naturally think of the 'complete'
stream evens as the limit of this sequence of streams; this notion of
limit is mathematically precise, and we write |J Xi for the limit of an
ascending sequence xo E x\ C x^ • • • in any domain.

The following fact is (after some thought) intuitive, but needs careful
proof: If a function / from streams to integers can be defined by a
program, and if f (evens) is well defined - say f (evens) = 14 - then there
is some approximant evensk C evens for which also f (evensk) = 14.
(For j < k we may have f(evensj) = _L.) In other words: To get a
finite amount of information about the result of applying a function to
a stream, we only need supply a finite amount of the stream. This is
a general phenomenon of information flow in computations; it is not
confined to functions over streams. It justifies a further constraint upon
the functions / which are included in the domain D —+ E, that they be
continuous', this means that for any ascending sequence I Q E ^ I E " 1

in D, if f(xi) = yi for each i then

This condition is usually accompanied by the completeness condition
that every ascending sequence in a domain has a limit in the domain.
These conditions ensure that the function domain D —• E is small
enough to avoid the Cantor paradox, and thereby also ensure that solu-
tions exist to the equations among domains which we have met.

Types One of the most helpful concepts in the whole of programming
is the notion of type, used to classify the kinds of object which are
manipulated. A significant proportion of programming mistakes are
detected by an implementation which does typechecking before it runs
any program. Types provide a taxonomy which help people to think and
to communicate about programs. Certain type-disciplines have a simple
mathematical theory which guides the algorithms used for typechecking;
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thus even a simple theory (much simpler than that of the underlying
semantics) can lead to good engineering practice.

An elementary example of typechecking is this: by analysing the
procedure body, the implementation can discover that the procedure
power has type (REAL, INTEGER) ->REAL, as its header line suggests;
knowing this, the implementation can disallow the procedure-call
power (2.3,0.5) because 0.5 isn't an integer.

It is no accident that the type of the procedure 'looks like' a domain.
Ignoring the presence of states, the meaning of every procedure lies in
the domain VALUES —* VALUES. The theory of domains provides an el-
egant story of how the domains REALS_L and REALSj_ x INTEGERSj_

'lie inside' the domain VALUES, and then how the function domain
REALS_L x INTEGERS_L —> REALSJL also lies inside VALUES. Thus we
may say that the type-taxonomy of programs is mirrored by a math-
ematical taxonomy of the 'subdomains' of a domain of values. These
remarks only touch upon the rich subject of type-disciplines (Mitchell,
1990), but we have shown that the mathematical framework reflects the
computational intuition of types.

Further concepts We cannot treat properly all the computing notions
reflected in domain theory, but should mention a few more.

First, some programming languages involve non-determinism, either
explicitly by allowing the programmer to choose one of several execution
paths at random, or implicitly, e.g. by leaving undefined the order of
evaluation of certain phrases (when the order may affect the outcome).
There is a domain construction called the powerdomain (Plotkin, 1976)
of D, written V{D), whose elements are sets of elements drawn from D.
If a procedure takes a real argument x and non-deterministically returns
either x or — x, we can think of it returning the set {x, — x}; its meaning
therefore lies in the domain REALS_L —> ^ (REALSJJ .

Second, domains provide an understanding of the flow of informa-
tion in a computation. This is already suggested by our definition of a
continuous function; it turns out that any function which can be pro-
grammed, since it lies in a function domain, only needs a finite amount
of information about its arguments in order to deliver a finite amount
of information about its result. Indeed, to say how much information is
needed in all cases, and when it is needed, is tantamount to defining the
function! In fact a domain can be seen as a partial ordering of amounts
of information, and domain theory can be presented entirely in terms
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of information flow; domains viewed in this way are called information
systems (Winskel, 1993).

Third, there is a more subtle point connected with information flow.
The elements of a domain which represent finite chunks of information
are naturally called finite, so what we have seen is that for a finite
result you need only compute with finite values. (This is obvious if
you are just dealing with numbers, or streams, where the term 'finite'
has a familiar meaning. Its meaning is not so familiar when we deal
with higher domains.) It also seems to be true, for all computations we
can imagine, that even if you are trying to compute an infinite object
you can approach this object as close as you like by a succession of finite
elements. (Again this is obvious for familiar objects like streams, e.g. the
stream of digits in TT, but less obvious for higher computational objects
like functions.) This property of approximability by finite elements is
precisely defined in domain theory, and a domain is said to be algebraic
if every element has the property. It turns out that all the domains of
common interest are algebraic.

Finally, domains have a rich connection with the use of mathematical
logic in explaining programming. A well-known method of defining the
meaning of a programming language is the so-called axiomatic method
(Hoare, 1969); a logic is defined in which one can infer sentences of the
form {P}A{Q}, where P and Q are logical formulae expressing proper-
ties of program variables, while A is a piece of program. The sentence
means 'if A is executed with P initially true, then Q will be true when
and if the execution is complete'. These program logics, as they are
called, have special inference rules, and the soundness of these rules
can be established by domain theory. A second, more intrinsic, role for
logic in domains arises from the information flow discussed above; if the
quanta of information flowing from argument to result (of a function)
are thought of as logical propositions, then the laws of flow can be un-
derstood as logical entailments. This leads to yet another presentation
of domain theory, known as domains in logical form (Abramsky, 1991).

13.5.3 Sequentiality
I shall now discuss an important concept which has been exposed with
the help of domain theory, but which may well go beyond that theory.

The reader may not be surprised to learn that, in general, many of the
elements in a function domain D —• E are not expressible as the 'mean-
ing' of a procedure in any programming language. It is well-known that
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there are just too many (too large an infinity of) functions, if D or E
is infinite. But if D and E are both finite, we may naturally think that
every one of the functions in D —> E can be computed by some proce-
dure. It may seem that the only necessary constraint is monotonicity,
which we have already imposed.

But this is not so! To see why, let BOOLS be the set {t, f}, the truth-
values, and consider the domain BOOLSJ. = {t,f, _L}. Here is a simple
procedure to calculate the 'or' a V b of two truth values:

PROCEDURE or(a:B00L, b:B00L):B00L
IF a THEN RESULT = t rue

ELSE RESULT = b
END PROCEDURE

Because BOOLS_L contains _L, this procedure may express one of several
functions in the domain BoOLSx x BoOLSx —• BOOLS.L, all giving the
usual values when both arguments are defined. Here are three of them,
with their differences underlined:
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The first function, Vi, gives ± if either of its arguments is _L; this is
the one expressed by our procedure, if the rule of evaluation requires
that both arguments of any procedure-call or (•••,•••) must always be
evaluated. But some procedure-call disciplines require an argument to
be evaluated only when needed in the execution of the procedure body;
in that case our procedure expresses the second function V2 because it
needs b only when a = f, not when a = t. Note that V2 is not symmetric.
The third function V3 is symmetric (like Vi), and has been called the
'parallel-or' function.

Thinking in terms of information flow, Vi delivers a quantum of in-
formation only when both arguments deliver one, while V3 delivers the
quantum t if either argument delivers this quantum. How could any
procedure o r (a ,b ) be written to behave in this way? It must somehow
evaluate both its arguments in parallel - hence the nickname 'parallel-
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or' - since it has no means of knowing which argument may provide
a quantum, or of stopping when the first quantum arrives (ignoring or
aborting the possibly looping evaluation of the other argument).

In fact no conventional programming language such as Fortran, Algol,
Cobol, Lisp or C provides control features with this power. This is
not a vague statement; once the evaluation rules of these languages
are formally given (as they can be) then one can prove the foregoing
assertion. Loosely speaking, the evaluation-discipline of these languages
is inherently sequential.

When this was first observed, it seemed that using domain theory
one should be able to define the notion of sequential function mathe-
matically; one could then exclude the non-sequential functions from any
function domain D —• E, and finally claim that domain theory corre-
sponds perfectly to the evaluation mechanisms of a well defined class of
languages - the sequential ones. Large steps have been made in this di-
rection. The so-called stable functions (Berry, 1978) are a restricted class
of the continuous functions which excludes the 'parallel-or' function, but
includes all functions definable by ordinary programs; unfortunately it
also includes some which are intuitively non-sequential! On the other
hand there is an elegant notion of sequential algorithm (Berry & Curien,
1982), more abstract than a program but less abstract than a function.
These ideas apparently converge upon the elusive notion of 'sequential
function', but they have still not isolated it.

Results have recently been obtained which suggest that, to explain
sequentiality properly, one has to deal with ideas not intrinsic to domain
theory. An intuition for this can be expressed as follows. Think of the
result z = f(x,y,...) of a function being computed in 'demand mode';
that is, if the caller demands more information about z, then / will
supply it - if necessary by in turn making demands upon one or more of
its arguments x, y,... . Several kinds of event occur repeatedly, in some
order: The caller may ask / for a quantum of the result z\ f may ask
any of its arguments x, y,. . . for a quantum; / may receive a quantum
from an argument; / may deliver a quantum to the caller. Then we may
say loosely that / is operating sequentially if whenever it has requested
a quantum from some argument, say x, it will remain idle until that
quantum arrives; in particular, it will not request any quantum from
another argument.

This is, of course, a very mechanical explanation; the aim of theoretical
research in this area is to find concepts of information flow which underlie
such mechanical disciplines. Recently, it has been observed that this
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sequential discipline is highly significant in game theory, and in terms of
that theory a new approach to understanding sequentiality (Abramsky
et a/., 1994; Hyland & Ong, 1994) has been found. While it is too
early to judge with certainty, a mathematically convincing account of
sequentiality does appear to be emerging.

13.5.4 Summary
My brief survey of semantic ideas for sequential programming is now
complete. I spent some time on the idea of sequentiality itself; it is a
prime example of an idea which is intrinsic to computing, or to infor-
mation flow, and which was analysed nowhere in mathematics or logic
before computers and their languages forced us to study computation in
its own right. The difficulty in isolating sequentiality as a concept has
surprised most people who work in semantics; this leads them to expect
the emergence of further deep insights into the structure of information
flow.

Sequentiality is a pivotal idea, for its understanding will contribute
also to the understanding of parallel computation; it will help us to de-
scribe more clearly what is lacking in sequential programming languages,
preventing them from expressing a whole class of parallel computations
exemplified by the 'parallel-or' function. We now turn to parallel pro-
cesses.

13.6 Interaction and Processes

With the advent of multiprocessing and computer networks, computer
science could no longer comfortably confine itself to the building and un-
derstanding of single computers and single programs. This is a formid-
able activity, but it must be carried on now in the context of the broader
field of computing systems - and indeed systems with non-computer
(even human) components. Terms such as 'computer', 'program', 'algo-
rithm' and 'function' will be less dominant, beside new terms such as
'system', 'information', 'interaction' and 'process'. All the same, it will
be fatal to have one set of concepts for the lower (older) level, and one
for the upper (newer) level; we have to expand our ideas and theories,
not just increase their number.

In this section I shall try to view these levels, at least for the purpose
of discussion, as instances of one kind of structure which I shall call
a communicating system. We call the behaviour of such a system a
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Fig. 13.3. The structural diagram of a system

process, and we shall limit ourselves to discrete processes - those whose
behaviour is made up of atomic (not continuous) changes of state.

When we build or study a communicating system, we often draw a
diagram such as Figure 13.3 to show how it is composed of subsystems
such as C\ and C2. If we know what happens on the arcs of such a
graph, i.e. we know the way in which the components react one with
another, then we can build an understanding of the system from an
understanding of its components (the nodes). Indeed, such a diagram
remains vacuous until we make precise what kind of traffic occurs be-
tween components; the nature of this traffic determines the concepts
which shape our understanding of a whole system.

We shall now explore a variety of computational models which dif-
fer in a fundamental way just because their concepts of traffic between
components differ. We shall begin with the functional model, which has
already been powerfully exploited in understanding programming lan-
guages; this topic was explored in section 13.5. In this way we see that
the functional model, and the languages based upon it, represents an
especially disciplined form of interaction in a hierarchical system. We
may then contrast it with models which pay increasing attention to the
autonomy of the separate components and their concurrent activity.

13.6.1 The functional model

Let us begin by assuming that a computer program starts by reading
in some arguments and finishes by yielding a result, remaining obedi-
ently silent in between. This is the situation which we modelled in the
previous section. Our model was abstract; we represented a program
as a mathematical function, which captures just the external behaviour
of a program but says nothing about how it is constructed, nor how it
behaves during execution.
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Fig. 13.4. Evaluating an expression

N

M
N

Fig. 13.5. The A-calculus evaluation rule: (\x.M[x])@N —> M[N]

But a program does behave in a precise manner, and it serves our pur-
pose to consider it as a communicating system with a certain discipline
for traffic between its components. At its very simplest, a program is like
an automated desk calculator evaluating complex expressions. We think
of the system diagram as a tree, each node as an operator, and the traffic
consists of the passage of values - representing completed evaluations -
along arcs. A step of evaluation is shown in Figure 13.4.

Though it is hardly apparent from this simple example, highly com-
plex programs can be treated as functions evaluated in this way. An im-
portant feature of the functional model - many would call it the essence
of the model - allows the very values computed by components to be
themselves programs, understood as functions. A (still simple) example
is the procedure which, for any argument x, will evaluate the expres-
sion (5.2 + x) x y/x. In A-notation, which we touched upon earlier, the
function computed by this procedure is written Ax. (5.2+ x) x^/x. Now,
using an operator @ which applies a function to an argument, we can
represent procedure-call as an evaluation step as shown in Figure 13.5,
where M[N] means that N is substituted for x in M. This is in fact
a picture of the single evaluation rule of the \-calculus, the calculus of
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functions originated by the logician Alonzo Church (1941). The big box
on the left represents the expression Xx.M 'wrapped up' as a value; the
evaluation unwraps it and makes a tree - so if M = (5.2 + x) x y/x and
N = 3.9 then the result is the tree for (5.2 + 3.9) x ̂ 3.9 and the evalua-
tion continues as in Figure 13.4. In passing, it is worth noting that the
evaluation rule for procedures in ALGOL60, known as the copy rule, is
a special case of A-calculus evaluation.

Just as we saw that any program or procedure (in a conventional lan-
guage) can be represented as a value in a domain, so we can represent the
evaluation of programs and procedures by this hierarchical discipline of
communication among the components of a (tree-like) system. The gen-
erality here is striking; the control features of conventional languages
can all be represented as suitable components (nodes) in these trees.
The power comes largely from the higher-order nature of A-calculus; the
argument x for a function Xx.M may itself be a function, and M may
contain function applications (@) - precisely as procedures in conven-
tional languages may take procedures as arguments, and their bodies
may contain procedure-calls. This challenge to understand program-
ming languages has greatly deepened the study of the A-calculus in the
last two decades (Barendregt, 1984).

The simple hierarchic discipline of interaction which I have described
allows very little autonomy for its components; we now proceed to de-
velop it and to increase the autonomy.

13.6.2 The stream model
It may strike the reader that the components, or operators, in our eval-
uation trees could perform a more interesting role, suggested by the
information flow which we discussed in section 13.5. We may think of
such a tree operating in demand mode; in response to a request for a
quantum from its parent node, eaoh node may respond or may trans-
mit requests to one of more of its children. Though still arranged in a
hierarchy, the components are now interacting more subtly; indeed, the
distinction between sequential and non-sequential computation can be
analysed in terms of the tree structure.

If we relax the hierarchy by allowing arbitrary - even cyclic - con-
nectivity among components, we arrive at the stream model (Kahn,
1974; Broy, 1987). This is a model of the well-known interaction
discipline known as pipelining', each arc in a system diagram has an
orientation, and is interpreted as a pipeline, along which a stream of
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Fig. 13.6. A typical pipeline system
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data (quanta) can flow. Moreover, such systems are truly heterarchic,
or distributed; no single component maintains central control. A typical
system is shown in Figure 13.6. Now let us imagine that a quantum of
information is an integer. The total history of the system's behaviour is
characterized by the stream of quanta which flow along each of its arcs.
But each stream is a finite or infinite sequence of integers, which as we
saw in section 13.5 is just an element of the domain

STREAMS = (INTEGERS X STREAMS) J_ .

A common situation is that each component (node) behaves as a continu-
ous function over STREAMS. In that case, it can be shown that the whole
system also behaves as such a function. To find this function, we first
write down equations which all the streams satisfy; in this case they are

s' = D(S2) •

Eliminating si, 52,53 yields s' = D(B2(so)) where 5o = A(s, C(Bi(so))).
The latter equation expresses so in terms of itself and the given 5. Do-
main theory ensures that this 'recursive' equation has a solution for 5o;
moreover, there is a solution which is least, in terms of the information
ordering C Moreover, this solution agrees exactly with what is expected
from an operational description of stream computations; this agreement
provides another justification of the theory.

The stream model not only is mathematically pleasant, but also is
realistic for systems in which communication occurs only via 'pipelines';
as this term suggests, this kind of information flow is by no means re-
stricted to computers. The model has stimulated much study, aiming
at a more general model. For example, if the behaviour of any node
is critically dependent upon which of its input streams supplies quanta
more quickly, then the situation is much more delicate. It is also natural
to examine the case in which the data structure connecting two nodes
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Fig. 13.7. A transition diagram

(i.e. the 'traffic' structure) is other than a sequence. This has given
rise to the study of concrete domains (Kahn & Plotkin, 1993), which
contributed to the growing understanding of sequentiality discussed in
section 13.5.

The stream model and its variants are appropriate whenever systems
are loosely connected, in the sense that an event at one node need never
be synchronized with an event elsewhere.

13.6.3 The reactive model

Let us now contrast the functional and stream disciplines of communi-
cation with a more intimate one, where an arc between two components
represents their contiguity. Contiguity is a physical concept; a wooden
block is contiguous with the table on which it rests, so a movement of
the table is immediately felt by the block. But contiguity makes sense
with respect to information too. If neighbouring components are a hu-
man and a workstation, then the pressing of a key on the keyboard is
simultaneously sensed by the human and by the workstation; one can
say that they change state simultaneously.

One of the earliest ways to model change of state was the basis of
automata theory, developed mainly in the 50s. The theory made use
of state transition diagrams such as in Figure 13.7. In these diagrams
each circle represents a state, and each arc (arrow) represents a possible
transition between states. In the diagram, there are two alternative
transitions from the left-hand state, and the token • indicates that the
left-hand state is the currently holding state.

In the early 60s, Carl-Adam Petri (1962) pointed out that automata
theory (as it was then) cannot represent the synchronized change of
state in two contiguous systems. His idea for repairing this weakness is

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online by IP 91.240.2.62 on Fri Sep 12 13:18:41 BST 2014.

http://dx.doi.org/10.1017/CBO9780511605611.014
Cambridge Books Online © Cambridge University Press, 2014





Semantic Ideas in Computing 275

Component C

Component C2

Fig. 13.8. A Petri net, or diagram of shared transitions

simple but far-reaching; it allows transitions which are shared between
separate components of a system. Suppose that Figure 13.7 represents
the possible transitions for component C\, and we want to indicate that
the lower transition of C\ may not occur independently, but must co-
incide with a certain transition in component C2. This would appear
as in Figure 13.8. The tokens represent the concurrent holding of two
states, one in C\ and one in C2, and transitions are drawn no longer as
arcs but as another kind of node (here a bar); thus a shared transition
typically has more than one ingoing (and more than one outgoing) arc,
representing how it is shared.

This apparently mild development has opened a new and complex
world. In this new interpretation the traffic upon the arc between C\
and C2 is no longer merely the passage of the result of a (functional)
computation by C\ as an argument to C2, as it was in the stream model.
Behaviour can no longer be expressed just in terms of arguments and
results; C\ in its behaviour requires (or suffers) repeated interaction
with its neighbours. The transition shared across the dotted line in the
diagram is just one of these interactions.

The behaviour of such communicating systems has been extensively
analysed in terms of a handful of important concepts. The most obvious
of these is non-determinism, or conflict. This is present already in Fig-
ure 13.7, where either but not both of the two possible transitions takes
place. It is unrealistic to expect rules and details (e.g. priorities, timing)
to be included in a system model which will determine its behaviour
completely.

Allied to non-determinism are other important notions. One such no-
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tion is preemption, of which Figure 13.8 shows an example; if the upper
transition in component C\ occurs (i.e. the upper token traverses the
upper bar) then the lower transition of C\, though previously possible,
is no longer possible. A second important notion is that of concurrency
or causal independence. Two transitions may be called concurrent if
they involve no common states; this means that one cannot preempt the
other. The two transitions at the right of Figure 13.8 (one in C\, °ne in
C2) are concurrent.

The invention of Petri nets and subsequent models represents the slow
distillation of concepts from practical experience. An important step in
this direction was the concept of event structure (Nielsen et a/., 1981).
In a Petri net each pair of transitions is either in conflict, or concur-
rent, or in causal dependence] an event structure consists of a relational
structure in which these three binary relations satisfy certain axioms.
Event structures are somewhat more abstract than Petri nets; the study
of stronger or weaker axioms for event structures has contributed to the
development of the concept of process.

13.6.4 Process constructions

Much analysis of practical systems has been done using the ideas which
we have mentioned. However, when we leave the stream model we are
no longer dealing with mathematical functions. We are dealing with
operational or behavioural properties of computational processes, but
we have no agreed concept of process at the same level of abstraction as
mathematical functions, nor a calculus of processes as canonical as is the
A-calculus for functions. Several steps have been taken in this direction,
but the study is far from complete.

An important step was to notice the striking coincidence between a
(simple) notion of process and the mathematical idea of a non-well-
founded set (Aczel, 1988). In mathematical set theory, sets are tradi-
tionally well-founded; this excludes, for example, a set S which satisfies
a recursive equation such as

S = {a,b,S}.

If S satisfies this equation, then it can be depicted as in Figure 13.9,
where the nodes are elements (which may be sets) and an arrow Si —•
52 means that S± contains S2 as a member - i.e. S2 € S\. This 'set'
might be written S = {a, 6, {a, 6, {a, 6,...}}}; but most of us have been
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Fig. 13.9. A process which is a non-well-founded set.

so thoroughly 'well-founded' by our education that we think it is cheat-
ing to allow it as a solution to the equation, because it has an infinite
containment chain .. . G S G S. Why are we so suspicious? It is per-
haps because we are biassed towards static notions; we think of a set
almost as a box containing its elements - and of course boxes can't nest
infinitely! But think of an arrow representing procession rather than
containment; think of S as proceeding (non-deterministically) either to
the terminal state a, or to the terminal state b, or to a state in which it
has exactly those three alternatives again. We may say that a process
is constructed from its possible futures, exactly as a set is constructed
from its members.

If you object that processes are one thing and sets another, then you
may keep them distinct if you wish; but their mathematics has a lot
in common. The topic of discrete processes is of growing importance;
children in the first decades of the twenty-first century may become
as familiar with the mathematics of processes - complete with infinite
procession! - as we are with sets. In this way computer science even
makes some contribution to the foundations of mathematics.

We shall now look at some other constructions of processes. We may
not know what processes are, abstractly, but we do know ways of com-
bining them. It is typical in mathematics that the objects of study are
nothing by themselves; it is the operations upon them, and the math-
ematical behaviour of those operations, which give them status. This
is the attitude which gave birth to process algebra in the late 70s; if
we can (with the benefit of practical experience) find some small distin-
guished class of operations by which interacting systems are built, then
to agree upon the algebraic properties of these operations is a necessary
step towards the concept of process.

In seeking such operations we may follow the paradigm of the calculus
of functions (the A-calculus), but we must be wary. Consider first the
familiar operation of function application, @; if M and N are functional
objects, then M@N stands for the application of M as a function to the
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Component C\

Component C2

Fig. 13.10. Two components of an interactive system before assembly

argument N. We may look for an analogue of application over processes.
But note that application is non-commutative; M@N is quite different
from N@M.

By contrast, if the arcs of Figure 13.3 are to be interpreted as inter-
action, which is a symmetric concept, then the operation of composing
two systems - by connecting them to allow interaction - must be a com-
mutative one. We find a clue to the nature of process composition if
we first separate out the two components from which Figure 13.8 was
formed, as shown in Figure 13.10. Notice that the separate transitions in
C\ and C2 are labelled. In Hoare's process algebra CSP and other pro-
cess algebras (Hoare, 1985; Milner, 1989; Baeten and Weijland, 1990),
this labelling dictates where the interactions will occur when we com-
bine C\ and C2 by parallel composition, C\ || C2. (This operation is
indeed commutative, and also associative.) The result is not quite the
system of Figure 13.8, because if we further combine with C3, forming
C\ || C2 || C3, then C3 may also be able to take part in the transition
a. If we wish this transition to be shared only between C\ and C2,
we must write (C\ || C2)\a. The unary operation \a, called hiding in
CSP, has this localizing effect; it is really just a local declaration of (the
name of) a transition. (In passing, this is another example of something
distilled from programming practice into a theory: every programmer
knows about local variable declarations.)

These two operations, composition and hiding, give us some idea of
what process algebra is. Through the 80s there has been considerable
progress in using algebra to express and analyse communicating systems,
and considerable theoretical development of the algebra. Full agreement
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on the algebraic operations has not been reached, but enough to indicate
a consensus of understanding.

It is central to the argument of this essay that process algebra is not
the application of an already known abstract concept to the study of
computation. The real situation is more untidy, and far more exciting.
The algebraic method acts as a guide along the difficult path towards
discovering an abstract notion of process which matches the way we
construct discrete systems, or which helps us to analyse existing systems.
This discovery is occurring incrementally, via definition and experiment,
not all at once.

13.6.5 Mobility

When do we have enough operations for constructing processes? That
is, when can we claim that we truly know what kind of thing a dis-
crete process is, because we know all the operations by which it can
be constructed? This may never occur with certainty; but our algebraic
experiments can give evidence that we lack enough operations, for exam-
ple if they do not allow the construction of systems with some desirable
property. This has indeed occurred with the property of mobility, as
we now show.

If we are content to model the behaviour of a concrete interactive
system, whose processors are linked in a fixed topology, then we expect
the shape of the system graph (Figure 13.3) to remain fixed throughout
time. Many communicating systems - software as well as hardware -
have a fixed connectivity.

We have already seen one model where the connectivity is flexible - the
A-calculus. It also turns out that the various process algebras explored
during the 80s all admit a controlled kind of mobility; they allow that an
agent may divide itself into a collection of subagents which are intercon-
nected, or may destroy itself. These capabilities have made it possible
to build theoretical models for many real concurrent programming lan-
guages, as well as to analyse distributed systems and communication
protocols.

But something is lacking in this degree of mobility; it does not allow
new links to be formed between existing agents. This simple capability
is, in fact, crucial to the way in which we think about many systems of
widely differing kinds. Consider a multiprocessing system supporting a
parallel programming language; if we model the implementation, we have
to consider the mechanism by which procedures of the (parallel) program
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STATION 1 STATION2 STATION 1 STATION2

BEFORE AFTER

Fig. 13.11. A mobile telephone network

are relocated upon different processors, to achieve load balancing. If we
represent both the procedures of the program and the processors of
the machine as agents in the model, then relocation of procedures is
an instance of mobility among agents. As a second example, consider
the resources allocated by an operating system to different jobs; this
allocation varies dynamically, and is naturally modelled by the creation
and destruction of links. Third, consider the cars of a mobile telephone
network; as a car moves about the country it will establish (by change
of frequency) connection with different base stations at different times.
This is shown in Figure 13.11.

These examples suggest that dynamic reconfiguration is a common
feature of communicating systems, both inside and outside the com-
puter. The notion of a link, not as a fixed part of the system but as a
datum which it can manipulate, is essential to the understanding of such
systems. Indeed, we need the notion at the very basic level of program-
ming, when we consider data structures themselves. If a data structure
is mutable (and most realistic programs deal with at least some mutable
data) then we may consider it to be a process with which the program
interacts. This makes particularly good sense if it is a structure which
is shared among subprograms running in parallel. An instance of dy-
namic reconfiguration occurs when one subprogram sends the address of
a mutable data structure to another subprogram.

We then naturally ask: Is there a common notion of link which sub-
sumes pointers, references, channels, variables (in the programming
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Fig. 13.12. The 7r-calculus interaction cx.P[x] || cd.Q —• P[d\ \\ Q

sense), locations, names, addresses, access rights, . . . , and is it pos-

sible to take this notion as basic in a computational model? To put it
another way: What is the mathematics of linkage?

In searching for this, it is quite reasonable to look first for a calculus
which treats linkage and mobility as basic, in much the same way as the
A-calculus treats function application as basic. For the A-calculus was
invented and put to considerable use before it was understood in terms
of abstract functional models such as domain theory. A recent calculus
for mobile processes is the TT-calculus (Milner et al, 1992); it is in some
ways more primitive than the A-calculus (which can indeed be embed-
ded in it), and takes interaction at a link as its only basic action. This
is not the place to give its details, but some idea of it is given by the
diagram in Figure 13.12. To understand the diagram, let us compare its
constructions with those of the A-calculus and its evaluation mechanism,
as shown in Figure 13.5. In the A-calculus, the function \x.M[x] can
receive any argument N and then compute M[N]', in the 7r-calculus, the
process cx.P[x] can receive along the channel c any channel d, and then
proceed as the process P[d]. The 7r-calculus also has the process cd.Q,
which sends the channel d along the channel c and then proceeds as Q.
Finally, in place of the application @ of a function to an argument, the TT-
calculus (like CSP) has parallel composition || of two processes. We may
now compare evaluation in A-calculus with interaction in 7r-calculus; in
Figure 13.5 the agent N is moved into the places held in M by the vari-
able x, while in Figure 13.12 it is not the agent R but a link d to R which
moves; it travels along a link c and occupies the places held by x in P.

This calculus is simple, and it directly models a number of phenomena.
The three examples discussed earlier - including the mobile telephone
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network - yield to it, and it has also been used to model the exchange
of messages in concurrent object-oriented programming. The calculus
thus appears to be sufficiently general; if its technical development is
satisfactory (here the A-calculus provides a valuable paradigm), then it
will provide strong evidence that mobility is an essential part of any
eventual concept of process.

13.6.6 Summary

We have explored different computational models in terms of the idea of
interaction; emphasis is placed upon concurrent processes, since inter-
action presupposes the co-existence of active partners. In the previous
section, we found that the domain model can be understood in terms
of amounts of information, and also that sequential computation corre-
sponds to a special discipline imposed upon the flow of information. In
the present section, we have found that a key to understanding concur-
rent or interactive computation lies in the structure of this information
flow, i.e. in the mode of interaction among system components; this
attains even greater importance in the case of mobile systems where
the linkage does not remain fixed, a case which arises naturally both in
computer systems and in the world at large.

There is no firm agreement yet on the properties which an abstract
concept of concurrent process should possess. I hope to have shown that
we may advance towards the concept by distillation from practice, via
models which are somewhat concrete and formal, but nonetheless math-
ematical. The formalisms of computer science are not only important
as a vehicle for rigorous description and verification of systems; they are
also a means for arriving at a conceptual frame for the subject.

13.7 Conclusion

At the beginning of this essay I argued that the science of computing is
emerging from an interaction between mathematics, especially logic, and
practical experience of system engineering. I discussed the difficulties
experienced in software maintenance, a branch of system engineering
which clearly illustrates the need for formality and conceptual clarity
in software design. I stepped from there into the realm of software
itself, i.e. the programming languages in which software is written; the
remainder of the essay has been devoted to explaining concepts which
underlie software, since these are at the core of the emerging science.
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Before concluding this discussion of concepts, let us put them into
perspective. In July 1994, the British press reported yet another fi-
asco in computer system engineering; a failed design for a system for
the Department of Social Security, which may cost the tax-payer fifty
million pounds. Software engineers are likely to blame the failure on
mis-application of the software development process, the managerial and
technical procedures by which the specification of software is elicited and
its manufacture conducted. They will be wrong to lay the blame wholly
at this door; this would be to presume that software is, like water, a
commodity which certainly demands a high standard of engineering and
management, but which is well understood in itself. I hope to have
shown in the preceding two sections how ill founded this presumption is.
I believe that advances in software science will change the very nature of
software engineering processes; the obsolescence of reverse engineering
(discussed in section 13.3) will be one example.

Throughout the essay I have discussed semantical concepts with some
degree of informality. In some cases, particularly in section 13.6, the
informality is necessary because the concepts themselves have not yet
been fully distilled from practice; this is particularly true of the concept
of process. In other cases there is a well developed theory (e.g. domain
theory), and the informality is possible because the concepts are intu-
itively compelling, in the same way that the notion of force in mechanics
is compelling. It is a test of the scientific maturity of a discipline that
its conceptual framework is robust enough to allow precise but informal
communication of ideas. On this criterion, computer science has made
strong progress, but has much further to go.

In the introduction two other criteria of scientific maturity were men-
tioned: broad application, and a well knit body of ideas. I have shown
that these two criteria are being met, not separately, but by two trends
which are closely linked. First, the field of application of computer sci-
ence has enlarged from the study of single computers and single programs
to the far broader arena of communicating systems; so increasingly the
field is concerned with the flow of information. To match this, we have
seen in sections 13.5 and 13.6 above a progression in the way computa-
tion theories are presented, leading from the notions of value, evaluation
and function towards notions of link, interaction and process. Thus both
applications and theories converge upon the phenomena of information
flow; in my view this indicates a new scientific identity.
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