
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How ML evlolved

Citation for published version:
Milner, R 1982, 'How ML evlolved' ML/Hope/LCF Newsletter, vol 1, no. 1, pp. 25-34.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
ML/Hope/LCF Newsletter

Publisher Rights Statement:
Copyright © ACM 1982. Reproduced with permission.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/how-ml-evlolved(86317c55-fb0d-4103-aa78-b5a97e93c1c6).html


How ML Evolved

Robin Milner

1982

ML is one among many functional programming languages. But not many
were designed, as ML was, for a more-or-less specific task. The point of
this note is to summarise the process by which we were guided to ML, as
it now is, by the demands of the task. We (at least I) feel that to find a
good metalanguage for machine assisted proof, which was the task, we could
hardly have gone in an essentially different direction; the task seemed to
determine the language—and even made it turn out to be a general purpose
language.

The context in 1974 (when the Edinburgh LCF project began) was our
experience with the Stanford LCF proof assistant, developed there in 1971–
72 by Richard Weyrauch, Malcolm Newey and myself. The development of
ML as a metalanguage for interactive proof was the work of several people;
in chronological order they were (besides me) Malcolm Newey, Lockwood
Morris, Michael Gordon, and Christopher Wadsworth. Other people, who
joined the LCF project after the language was more-or-less fixed, and used
it for proofs, are Avra Cohn, Jacek Leszczylowski, David Schmidt, Larry
Paulson and Brian Monahan. In the following summary of the development
process, the actual logic involved (PPLAMBDA) is rather irrelevant, and it
now seems that the same principles apply to any formal deductive system.

Consider the activity of goal-directed proof. If we have a goal A, a logical
formula to be proved, then it is sound to replace it by subgoals B1, . . . , Bn,
provided we know how to construct, from achievements of all the Bi, an
achievement of A. We may call any subgoaling method a tactic; it is a valid

tactic, then, if it also provides—for each set { Bi } of subgoals produced from
a goal A—a way of extending achievements of the Bi into an achievement
of A, and this “way” we call a validation. Of course, only valid tactics are
useful!

Now, given a fixed repertoire of tactics, a natural proof assistant would
be one which maintains a goal tree, with the user always working at a leaf.
The Stanford LCF system was like this. After some subgoaling, the tree
might look thus:

1



D2D1

C1 C2 C3

B1

B2

A

Here, we suppose that the ringed subgoals have (somehow) been achieved;
the little black boxes sitting at the non-leaf nodes are the validations wait-
ing to be applied to the (achieved) sons to achieve their father. So, after
achieving D2 the proof assistant would collapse the tree to:

B1

A

B2

Clearly, under this rigid discipline of tactical tree walking, the only way
of proving the main goal is to return to the root, and the only doubt that
the theorem has been correctly proved is in the correctness of the built-in
programs for the basic repertoire of tactics and for treewalking.

But in a more flexible system, a user should at least be allowed to com-
pose tactics into more powerful ones. For example, he should be allowed
to compose the three tactics which were applied to goals A, B1 and C3 to

2



produce the tree of our first diagram; this composite tactic applied to goal
A would yield a flatter tree

A

C1 D1 D2 B2
C2

Note that the validation produced by the composite tactic is a particular
combination of those produced by the separate tactics. (Of course, as in our
first diagrams, some of the subgoals may then be somehow achieved; we
have omitted the rings here).

Well, to program this composition the user must be allowed to hold
in his hand as objects (or: be allowed to bind as values to metavariables)
both goals and validations; moreover, to put them together properly already
suggests the need for structure-processing power of the kind found in LISP
and other functional programming languages.

What kind of object is a validation? It is a “way of extending the achieve-
ments of subgoals into an achievement of the goal”. But an achievement is
(in our case) a proof, or the theorem which is the last step of a proof; so the
validation for a tactic which produces subgoals { Bi } from goal A could
perhaps be represented by the theorem ⊢ B1 ⊃ · · · ⊃ Bn ⊃ A, and to
apply the validation is perhaps just to apply Modus Ponens repeatedly to
this theorem and the achievements B1, . . . , Bn to produce A. So perhaps
validations are just theorems, proved somehow at the time that the tactic
is applied?

To see that this is wrong, consider the tactic which converts a goal
formula ∀x. B(x) into a single subgoal formula, B(x) (this is the common
method of proving that something holds for all x by proving that it holds
for arbitrary x). According to the above suggestions then, the validation
should be the theorem ⊢ B(x) ⊃ ∀x. B(x), and there is no such theorem! In
fact the validation should not be a theorem, but a function from theorems

to theorems, i.e. a (primitive or derived) inference rule; in our case, it is the
rule of generalisation

GEN
⊢ B(x)

⊢ ∀x. B(x)

(This is why we called the tactic GENTAC).

3



We immediately see that a tactic is a function producing function; when
applied to a goal it produces, as well as a subgoal list, a function which is
the validation. So our metalanguage must express second order functions.

Further:

(1) when the validation function depends (as it may in general) upon
the properties of the goal attacked, these properties will be bound
into the validation at the time of tactic application, and the natural
way of doing this critically requires the static binding convention, now
normally accepted in preference to the dynamic binding of LISP. (In
Landin’s terms, the validation is a closure, i.e. an expression paired
with an environment).

(2) Since the user is to be allowed to compose tactics (second order func-
tions), his compositions will be third order functions; clearly a metalan-
guage which expresses functions of arbitrarily high order is the only
natural choice.

(3) Since the user is to be allowed to hold validations (and, in general,
any primitive or derived inference rule) in his hand, it is critically
important that he is only allowed to apply them to theorems, not to
other objects (such as formulae) which look so like theorems that in
a moment of misguided inspiration he may mistake one for the other!
So the metalanguage must be rigorously typed, in a way which at least
distinguishes theorems from other things.

(4) For a given tactic T , there are usually goals for which it makes no
sense to apply T (Example: it makes no sense to apply GENTAC
to a goal formula which is not universally quantified). It would be
vastly inconvenient to test a goal by some separate predicate before
applying a tactic, so the tactic itself must assume the task of detecting
inapplicability, and respond in some suitable way. But in a typed
language, every result of applying a tactic must be a goal list paired
with a validation, and it is irksome to have to construct a correctly
typed but spurious ‘result’ when the application makes no sense; so
the only alternative in this case is to have no result at all. Hence it is
natural to have an escape or failure mechanism, under which senseless
applications may avoid producing a result, but instead be detected for
alternative action. In LISP this response could be to return the result
NIL, for example.

(5) In a conversational typed functional language, it soon appeared intol-
erable to have to declare—for example—a new maplist function for
mapping a function over a list, every time a new type of list is to
be treated. Even if the maplist function could possess what Strachey

4



called “parametric polymorphism” in an early paper, it also appeared
intolerable to have to supply an appropriate type explicitly as a para-
meter, for each use of this function. (Perhaps this latter is rendered
more acceptable if types can be suitably abbreviated by names, but
note that even simple list constructors and destructors—CONS, CAR,
CDR or whatever—would need explicit type parameters) so a poly-
morphic type discipline, with rigorous type checking, emerges as the
most natural solution. Note that it emerges as such on purely practical

considerations; it is a gift from the Gods that this discipline happens
to have a simple semantic theory, and that the type checking has an
elegant implementation based upon unification (Robinson). We only
discovered afterwards that the proper lineage for this type checking
is from Curry’s functionality, through Roger Hindley’s principal type
schemes.

This discussion was somewhat simplified w.r.t. LCF (for example, LCF
goals are not simply logical formulae to be proved). But it is, in essence, the
process by which we arrived almost unavoidably at the metalanguage ML
as it now exists. It shows why ML is a higher order functional programming
language with rigorous polymorphic type discipline and an escape mechan-
ism (and, of course, static binding).

Perhaps the development of ML has been made to seem too clean and
trouble-free, from the above discussion. There still remain, however, some
big problems and question marks. It is important to mention some of them;
in doing so, we also place ML in context with other languages—both applic-
ative and imperative.

(1) It is natural to recover, within ML, the simple treewalking proof meth-
odology with which we started. But this global tree is a changing

structure; as such, it cannot really be implemented without strain
in a purely applicative language. (Or so it appears to me; this is a
challenge to applicative language devotees who wish to rule out state
change completely). So ML has an assignment statement!

But this does not sit so easily beside the polymorphic type discip-
line. Recent work by Luis Damas (forthcoming Ph.D.) shows that the
somewhat over-rigid treatment of the types of assignable variable in
ML (viz. that they may not be polymorphic) can be relaxed; but the
purity and obviousness of the discipline is inevitably lost.

(2) Even without assignment, the type discipline forced us to adopt a
restrained form of escape mechanism in ML; it is not allowed to escape
(or fail) with a value of arbitrary type, but only with a token. This
problem has to do with the dynamic nature of the escape-trapping
mechanism; the trap for each escape is not textually determined, and

5



it appeared to us most useful that it should not be so. A clean solution
to this problem—probably easier than that for assignable variables—
would be an important development.

(3) ML does not adopt the clausal form of function definition, which is
found so convenient by users of HOPE and PROLOG. How can we
get a semantically rigorous form of this clausal definition, in which the
constructor-patterns in formal parameters can involve not only prim-
itive constructors, but also the constructors of user-defined abstract
types? The problem is to know that these constructors are construct-
ors, in the sense of being uniquely decomposable (or else to admit non-
determinism into the language). If I understand Rod Burstall right,
this is partly why HOPE is called HOPE; the answer may eventually
become CLEAR.

(4) ML does not use lazy evaluation; it calls by value. This was de-
cided for no other reason than our inability to see the consequences of
lazy evaluation for debugging (remember that we wanted a language
which we could use rather than research into), and the interaction
with the assignment statement, which we kept in the language for
reasons already mentioned. In fact, this sharpens the challenge men-
tioned in (1) above; is there a good language in which lazy evaluation
and controllable state-change sit well side-by-side? John Reynolds has
for a long time worried about such possible incompatabilities between
applicative and imperative languages (cf. his “Syntactic Control of
Interference”, which exposes the problem with great honesty).

Conclusion

I hope this short essay has shown that machine-assisted proof provided a
beautifully appropriate focus for developing functional programming and
demonstrating its importance. It would be very useful for others to use
this newsletter as a medium for reporting other real exercises in functional
programming, so that a balance is kept between the seductive purity of
functional languages and the methodology of their use. The remarks above
tried to point out the considerable tension that exists between these two
aspects of programming, and to show that it is not at all trivial to resolve
the tension.

6


