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‘A device for being able to book P&L’: The organizational embedding of the Gaussian 

copula  
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Abstract 

This paper, the second of two articles on the Gaussian copula family of models, discusses the 

attitude of ‘quants’ (modellers) to these models, showing that, contrary to some accounts, 

those quants were not ‘model dopes’ who uncritically accepted the outputs of the models. 

Although sometimes highly critical of Gaussian copulas – even ‘othering’ them as not really 

being models – they nevertheless nearly all kept using them, an outcome we explain with 

reference to the embedding of these models in inter- and intra-organizational processes: 

communication, risk control and especially the setting of bonuses. The article also examines 

the role of Gaussian copula models in the 2007-08 global crisis and in a 2005 episode known 

as ‘the correlation crisis’. We end with the speculation that all widely-used derivatives 

models (and indeed the evaluation culture in which they are embedded) help to generate 

inter-organizational co-ordination, and all that is special in this respect about the Gaussian 

copula is that its status as ‘other’ makes this role evident. 
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 2 

 

In a companion article (MacKenzie and Spears, 2014) we examine the development of 

Gaussian copula models, used in finance to model Collateralized Debt Obligations or CDOs, 

which are securities based on pools of assets such as corporate bonds. In this article, we 

discuss how Gaussian copula models became embedded in organizational practices in one of 

the two main contexts in which they are used, investment banking. The other main context of 

use, credit rating agencies, is discussed in MacKenzie (2011). Here, we examine the role the 

Gaussian copula played in two financial crises: the little-known 2005 episode that 

participants called ‘the correlation crisis’, and the wider credit crisis that erupted in summer 

2007 and led to the near-collapse of the global banking system in autumn 2008. We end with 

a discussion of the ‘counter-performative’ role of financial models, in which their empirical 

accuracy is undermined through their practical use in market processes.  

 

Our article bears on three themes found in the small but growing literature known as 

the social studies of finance, in which perspectives from disciplines such as anthropology, 

sociology and science and technology studies are applied to financial markets. The first 

theme is the attitude taken by participants to models. In media discussion, market participants 

are often portrayed as unthinkingly accepting the outputs of a model, or as ‘model dopes’, 

following Garfinkel’s (1967) ‘cultural dope’. However, it is far from clear that model dopes 

exist; research in the social studies of finance has failed to find empirical evidence of them. 

Mars (1998; see Svetlova, 2012) shows how securities analysts’ judgements of the value of 

shares are not driven by spreadsheet models; rather, they adjust the inputs into these models 

to fit their ‘feel’ for the ‘story’ about the corporation in question. Svetlova (2009, 2012) finds 

similar flexibility in how models are used; they are ‘creative resources’ rather than rules that 

unambiguously determine action. Beunza and Stark (2012: 413) find the traders they study to 
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be ‘intelligent, creative, thoughtful and independently minded’, fully conscious that the 

models they use could be wrong. Indeed, traders employ models ‘to gain cognitive distance’, 

practising ‘reflexive modelling’, in which they use models to infer others’ beliefs from 

patterns of prices and compare those beliefs with their own (Beunza and Stark, 2012: 411).  

 

 Those we interviewed were also not model dopes. Indeed, even in interviews 

conducted before the credit crisis, we found considerable hostility to Gaussian copula models. 

They were considered to be flawed models, possibly not even worthy of the term ‘model’. 

Such criticism was voiced even by those who had made important technical contributions to 

the development of Gaussian copula models, and who were still using them. This apparent 

paradox – sophisticated, sceptical participants continuing to employ models they disliked, 

even when alternatives were available – was important methodologically to our research, 

because it prompted interviewees to tell us why they felt compelled to act in this way, and in 

so doing provided us with our first clues to the organizational embedding of Gaussian copula 

models in investment banking. 

 

 The second theme in the social studies of finance literature upon which we build 

concerns what Muniesa et al. (2011: 1189) call ‘the description of financial objects’. This is 

‘the problem of constructing robust, flexible, portable, and mutually compatible depictions of 

complex, multisided, and often ambiguous financial objects (products, trades, marketplaces)’ 

(p. 1189). This theme is explored in greater ethnographic depth in Lépinay’s (2011) 

participant-observation study of a leading investment bank. Such banks are complex 

organizations with multiple parts, including prestigious ‘front office’ activities (such as sales, 

trading, and modelling by the ‘front office’ quants who support trading); ‘middle office’ 

functions (including accounting and risk control); and ‘back office’ tasks such as trade 
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processing, clearing and settlement. ‘Quants’ is the vernacular, in the world of finance, for 

modellers. 

 

 As Lépinay (2011) emphasizes, the different parts of an investment bank often 

employ different ‘languages’ to capture the characteristics of financial objects most relevant 

to them. However, complete heterogeneity is not attractive to banks. If nothing else, it might 

require slow, expensive manual recoding of the characteristics of a product or trade at each 

stage of its processing. As we discuss below, the choice of models by a bank’s front-office 

traders and quants is constrained by the models employed by the bank’s accounting and risk 

control divisions. If the front-office quants use a model that diverges too far from that used 

by accountants, they imperil the granting of ‘Day 1 P&L’, in which the present value of the 

anticipated future income of a trade is credited to the trader at the time at which the trade is 

entered into (‘P&L’ is the acronym of profit and loss). At the same time, if the front-office 

traders and quants use a model that diverges too radically from that used by a bank’s risk 

controllers, their capacity to trade is threatened. As noted by Lépinay (2011), and as we 

discuss in our companion article (MacKenzie and Spears, 2014), there is a strong emphasis in 

the derivatives departments of banks on hedging, but whether or not a trade is seen as 

‘properly hedged’ depends on the model used to calculate hedging ratios. If a trader’s hedges 

differ too much from those calculated by risk controllers, then the latter are likely to view the 

trader’s positions as unduly risky.  

 

Intra-organizational matters such as these articulate with inter-organizational issues. A 

model used by multiple organizations – as the Gaussian copula was – has at least three 

advantages. First, the very fact that a model is used widely can make it a good predictor of 

price movements, a point to which we return shortly. Second, a widespread model can be a 
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medium of communication among organizations. Third, those who are not specialists in 

modelling – accountants, for example, often are not – are more likely to regard a widely used 

model favourably as opposed to one that appears idiosyncratic.  

 

 Organizational issues are prominent in the history of the Gaussian copula. While the 

emphasis in our companion article is on culture, this paper focuses, in part, on how 

‘organization’ can trump ‘culture’. It is a tale of models that were widely judged inadequate, 

in particular by the standards of the ‘locally’ hegemonic evaluation culture – no-arbitrage 

modelling (MacKenzie and Spears, 2014). Nevertheless, the models were and still are used, 

because the organizational costs of abandoning them are too high. This does not, however, 

imply that evaluation cultures are unimportant. The costs of abandoning Gaussian copula 

models were and are in good part to do with the patterns of co-ordinated behaviour that had 

arisen around the models. Any meaningful concept of ‘culture’, we posit, must view it as a 

form of and a resource for co-ordinated action,1 and this, we suggest, is the case for 

evaluation cultures in finance; precisely because such cultures cross-cut organizations, they 

facilitate communication and explicit or implicit co-ordination amongst organizations.  

 

 The third theme we develop from the social studies of finance literature pertains to the 

‘performative’ aspect of models, which is understood as the way in which the models’ use 

alters, or even brings into being, the phenomena they model (Callon, 1998). The 

performativity of the Gaussian copula differs from that of the canonical Black-Scholes 

options model (MacKenzie, 2006). For roughly a decade, from the mid 1970s to the 1987 

stock market crash, the practical use of Black-Scholes – especially by traders in performing 

arbitrage, the low risk or riskless exploitation of discrepancies in patterns of prices – had 

strongly performative effects, shifting patterns of prices towards the postulates of the model. 
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In effect, traders using Black-Scholes saw discrepancies between that model and patterns of 

option prices as profit opportunities, and their exploitation of those opportunities caused the 

discrepancies to diminish.  

 

In contrast, there always was a systematic discrepancy between the Gaussian copula 

and patterns of market prices, and the main mechanism of the model’s performativity did not 

involve arbitrage. As we discuss in more detail below, the discrepancy, known as the 

‘correlation skew’, was seen as evidence of inadequacy of the Gaussian copula, and not as an 

arbitrage opportunity from which one could reliably profit. Black-Scholes could have a 

performative effect even when only a minority of traders were using it for arbitrage and most 

traders either had not heard of it or disagreed with it. The performative effects of the 

Gaussian copula, in contrast, involved implicit consensus. Because of the correlation skew, 

traders and quants using Gaussian copula models had to adjust them so that they fitted 

patterns of market prices. There was a dominant way of doing this (the ‘base correlation’ 

approach described in our companion article), and those employing it chose similar values for 

the models’ parameters.2 This implicit inter-organizational co-ordination meant that (so long 

as the consensus did not change) those models could be relied upon to continue to be a good 

fit to patterns of market prices, thus reinforcing their canonical role. That process broke down 

during the credit crisis, but how it broke down differed from how Black-Scholes eventually 

broke down; the mechanism of the counter-performativity of the Gaussian copula differed 

from that of Black-Scholes.  

 

Our account of Gaussian copula models employs two main data sources: documents, 

especially the technical literature and specialist trade press, and 114 predominantly oral-

history interviews. Twenty-nine interviews conducted with quants are particularly important. 
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This paper has several sections. First, we examine participants’ criticisms of Gaussian copula 

models, before discussing how such models became organizationally embedded in the 

investment banking. The second section examines the role of Gaussian copula models in 

communication and the third outlines their role in the remuneration of traders and in risk 

control. The fourth and fifth sections explore the models’ role in the correlation crisis and 

credit crisis. We conclude with a sixth section that considers the interplay between the 

organizationally embedded uses of Gaussian copula models, the counter-performativity of 

these and other models, and the economic crisis.   

 

Criticisms of the Gaussian copula 

We did not intend our research to focus on participants’ attitudes to the validity of Gaussian 

copula models. Our initial focus was how ‘correlation’ had come to be reified and rendered 

‘tradable’ in ‘index’ markets (MacKenzie and Spears, 2014). Nevertheless, in five of the 

eight interviews we conducted with quants prior to the credit crisis, interviewees expressed 

their views on the adequacy of Gaussian copula models. Because of the risk of participants 

inflecting their views of Gaussian copula models with hindsight of their role in the economic 

crises, we focus our analysis on the five pre-crisis interviews, discussing the more recent 

interviews more briefly.3 

 

 The closest to an explicit defence of the Gaussian copula was voiced by the most 

junior of the five, a young quant working for a hedge fund. ‘You can’t beat the Gaussian 

distribution in terms of its flexibility … analytical tractability and … computational 

efficiency’, he said, also noting the Gaussian copula’s role, discussed below, in facilitating 

communication between organizations: ‘I think there will always be a place for the Gaussian 

copula.’ Even he, though, acknowledged that ‘[t]he Gaussian copula doesn’t have fat tails’.  
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In other words, it tends to underestimate the frequency of extreme events. He also said that, 

because of the ‘correlation skew’ we discuss below, ‘you run into trouble fitting the market 

[spreads]’. (Market participants normally characterize CDO tranches not by their prices but 

by their ‘spreads’, which are the increments they offer over the interest-rate benchmark, 

LIBOR, London Interbank Offered Rate.) For these reasons, he was also experimenting with 

using a copula function embodying the fatter-tailed t distribution.4 

 

 The four other quants we interviewed all expressed negative views of the Gaussian 

copula. One had developed and was a strong proponent of an alternative model. 

Unsurprisingly, his criticisms of the Gaussian copula were extensive. Asked by us to explain 

his comment that it was ‘unsatisfactory’, he joked: ‘I shall begin; we shall see if we run out of 

tape.’ More surprising were the comments of the three other quants, two of whom had made 

important technical contributions to the Guassian copula family of models, and the third of 

whom was responsible for a lesser but still significant development. They too all expressed 

dissatisfaction, and two of them were just as outspoken in their criticisms as the proponent of 

the alternative model. 

 

One of the common themes that emerged in the criticism of the Gaussian copula model 

was expressed by all of the interviewees, including the junior quant quoted above, as well as in 

the specialist trade press of the period (e.g., Hagger, 2006; Marmery, 2005). This criticism 

concerns what one has to do to get the standard version of the Gaussian copula to ‘fit the market’, 

or, in other words, what one has to do to replicate the spreads offered by the different tranches of 

the same CDO. If the Gaussian copula was correct, one should have been able to use the same 

correlation figure for each tranche, since that particular correlation was an intrinsic feature of the 

pool of assets underlying the CDO. But one never could. In particular, one always had to use a 
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higher correlation for the highest tranche (sometimes called ‘super-senior’) than for the 

intermediate, ‘mezzanine’ tranches. Instead of the ‘flat’ correlation structure that there should 

have been, there always was what participants called a ‘correlation skew’. The perfect fit of the 

standard Gaussian copula base correlation model to the market, referred to in our companion 

article, thus had what was widely seen as an arbitrary aspect; it could be achieved only by doing 

something incompatible with the ‘flat correlation’ ontology of the model. The existence of the 

correlation skew was perfectly explicable,5 but it could be modelled by Gaussian copulas only by 

modifying them in what was generally perceived as an ad hoc fashion. None of our research 

participants viewed the skew as a discrepancy in market prices that they could exploit, and thus 

reduce or eliminate, by arbitrage. Instead, they saw the skew’s existence as evidence of a flawed 

model. Thus arbitrage did not form the basis for any performativity of the model. 

 

The second thread in criticism of the Gaussian copula, which is related to the above point 

about arbitrage, is more private, but forcibly expressed in three of the five pre-crisis interviews. 

As discussed in our companion article, in the culture of no-arbitrage modelling, dominant in the 

derivatives departments of investment banks, there was a clear prescription for how to model a 

derivative. This consisted of finding a ‘replicating portfolio’, which is a portfolio of more basic 

assets that, whatever happened to the price of those assets, would offer the same return as the 

derivative. (The portfolio would need continuous adjustment as those prices moved, but in a no-

arbitrage model the adjustments are self-financing; once the portfolio is created, they can be 

made without further net expenditure.) Such a replicating portfolio could then be used as a recipe 

for hedging the derivative’s risks and, it provided an ‘objective’ price for the derivative. Its price 

must equal the cost of the replicating portfolio, because if it does not there is an opportunity for 

arbitrage, for riskless profit, and that opportunity cannot persist: traders will simply keep buying 
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whichever is cheaper – the derivative or the replicating portfolio – and selling the dearer until the 

price of the derivative is equal to the cost of the replicating portfolio. 

 

The Gaussian copula was not a model of this kind. As discussed in our companion article, 

it was more heterogeneous in its inspiration, and the prices or spreads it generates are not 

imposed ‘objectively’ by arbitrage. As just noted, market participants saw the correlation skew as 

a defect in the model, not an arbitrage opportunity.6 Indeed, one quant interviewed pre-crisis 

denied that the Gaussian copula was worthy of the term ‘model’: ‘It’s fundamentally flawed. 

People refer to it as not a model but an elaborate interpolation, and I agree with that: that’s what 

it is.’ Another interviewee who had also contributed to the Gaussian copula model said in 

January 2007 that the Gaussian copula was not like the Black-Scholes option model. With Black-

Scholes, ‘the price is something that is derived from a hedging strategy’. In contrast, the 

Gaussian copula was ‘a pricing model [that] gives everyone a consensus to all sort of use the 

same model, put in roughly the same inputs, and therefore everyone kind of agrees on the same 

price’. The Gaussian copula base correlation model, discussed in our companion article, ‘became 

performative’, said a third interviewee in October 2006, ‘in that the act of me going out and 

saying “This is a great valuation tool” … meant … everyone said “We’ll use [it].” Once 

everyone was using it, you have to use it as well’, because it then becomes a good guide to prices.  

 

The above objections to the Gaussian copula – the arbitrary volatility skew, and the fact 

that it was not a ‘proper’ no-arbitrage model – continued to be voiced by the quants we 

interviewed after the crisis. For instance, one later interviewee, who made important 

contributions to Gaussian copula model, echoed our earlier interviewee’s denial that it counted as 

a model: ‘the nice thing is that it fits the market exactly … The bad thing is it’s not a model … 

[Y]ou’re not computing values of things as expectations under some well-defined measure’ (in 
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the probability-theory sense of ‘measure’; see MacKenzie and Spears, 2014). Said another: 

‘Copulas are generally an early doodling activity in an area …a simple trick … perceived as a 

hack.’ Nevertheless, the fact that criticisms such as these – and others7 – were also expressed 

prior to the credit crisis raises the crucial question: why was a model that was widely seen as 

flawed still used? Until around 2005, part of the answer was the absence of competitors seen as 

adequate for modelling CDOs. As an interviewee put it, ‘the dominant solution [Gaussian copula 

base correlation] … was unsatisfactory for a number of reasons [such as those outlined above] 

fairly well understood by everybody. But at the time there was no viable alternative. … So we 

were on base correlation and grumbling.’8 However, in the latter part of the decade a number of 

alternatives emerged that were more attractive from the viewpoint of the culture of no-arbitrage 

modelling, such as the ‘gamma process’ model developed by the quant Martin Baxter (2007). 

But other than at one bank (a relatively small participant in the CDO market), which employed 

Baxter’s model, Gaussian copula base correlation remained in use. Furthermore, with the 

exception of the ‘tweak’ discussed below, this model remains dominant. Why? The answer, we 

posit, is the embedding of the Gaussian copula in intra- and inter-organizational processes in 

investment banking. 

 

Talking with models 

One form of this embedding was the role of the Gaussian copula as a medium of communication 

between people working for different banks or hedge funds. Like many derivatives, CDOs are 

complex products. Two different CDOs can be hard to compare, and it can be hard to judge 

whether the spreads offered by the tranches of the one are more or less attractive than those 

offered by the tranches of the latter. 
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 Two decades earlier, the options market had faced the same problem of the lack of easy 

comparability of the prices of two different options. In response, market participants gradually 

adopted the practice of ‘talking with models’, especially with the canonical Black-Scholes model. 

It was used not only to price an option, but also to work out the level of volatility of the price of 

the underlying asset consistent with a given option’s price. (Other things being equal, the higher 

the volatility of the underlying asset the higher the price of the option.) ‘Implied volatility’ was 

calculated by running the Black-Scholes model ‘backwards’.9 Doing so allowed two different 

options with different features – for example, an option with a three-month maturity to buy IBM 

stock at $240, and one with a six-month maturity to sell IBM stock at $200 – to be compared on 

a single underlying parameter. ‘Implied volatility’ was invoked frequently when participants in 

options markets talked, even when they negotiated a price. Two traders haggling over the price 

of an option could talk to each other not in dollars but in implied volatilities. For example, if one 

trader was offering to buy an option with an implied volatility of 20 percent, and another was 

offering to sell it at 24 percent, they would perhaps split the difference at 22 percent. Indeed, this 

form of communication became sufficiently widespread that dealers’ quotations in options 

frequently take the form not of dollar prices but of implied volatility levels. 

 

 With many investment-bank participants in the CDO market having experience of trading 

and/or modelling options, it is unsurprising that a similar communicative practice emerged 

around CDOs. Participants ran Gaussian copula models ‘backwards’ to extract ‘implied 

correlation’ (the correlation level consistent with the ‘spread’ offered by a CDO tranche). To do 

so necessitated a considerable simplification; the correlations of all pairs of corporations or other 

debt issuers in the CDO’s ‘pool’ had to be assumed to be identical. Nevertheless, ‘implied 

correlation’ became a standard feature of how participants talked about CDOs, and this practice 

became an important form of the embedding of the Gaussian copula. If two traders from two 
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different banks or hedge funds were to talk successfully using ‘implied correlation’, they both 

had to be using CDO models that were sufficiently similar for the correlations ‘backed out’ from 

each to be comparable. Otherwise, as an interviewee put it, ‘Like two people speaking two 

different languages, they can’t really have a conversation.’ Only the Gaussian copula was used 

widely enough to serve as the necessary Esperanto. Whatever models different traders might 

privately prefer, ‘we communicate using the numbers implied by the Gaussian distribution’, this 

interviewee told us. 

 

This use of the Gaussian copula for communication did not, however, become as deep as 

the equivalent use of the Black-Scholes model in options. The reason lies in the material 

implementation of the two models. Black-Scholes had an analytical solution: a formula for the 

price of an option that was an ordinary, explicit mathematical expression (MacKenzie, 2006: 264, 

equation 2). The Gaussian copula did not have a strictly analytical solution, except in the special 

case found by Vasicek for the large homogeneous pool (see MacKenzie and Spears, 2014). This 

exception aside, the Gaussian copula was at best semi-analytical: its solution involved 

computerized numerical methods, and there were choices to be made in how to implement those 

methods. As one interviewee said: ‘There is your [numerical] integration routine. Do you use a 

trapezium rule? Do you use Gauss[ian] quadrature? There are all sorts of nuances.’ And as 

another interviewee put it: ‘What is a single-factor Gaussian copula? … The implementation is 

absolutely key. All it [the model] says is, integrate under here. How you choose to integrate 

under this function is still open to [different] implementations. So, yeah, everything will be 

slightly different.’ Even the standard Gaussian copula base correlation model was in material 

reality multiple; different implementations of it could yield somewhat different results. 
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 In the case of Black-Scholes, two traders could agree a deal ‘priced’ as a level of implied 

volatility, and both their models would then output effectively the same dollar price. With the 

Gaussian copula, however, two traders could agree on a correlation level, but even if they were 

using what was in abstract ‘the same model’, its different implementations would often produce 

spreads that differed by small but economically consequential amounts, stymieing the 

consummation of the deal. As a quant told us in January 2007: 

 

… everyone has agreed on this model [Gaussian copula base correlation], but … let’s say 

you take two [implementations] built by two different quants. You put in the same 

correlations and you might find your CDO price is quite different. … So if you had 100 

basis points [one percentage point] implied spread on a CDO tranche, you might find that 

two different models would [output] 99 to 101, and [the difference] could even be more 

than that in certain places. So when people were initially quoting correlation, they found 

that it didn’t translate into being tradable, because it still didn’t allow them to pin down 

the price enough. 

 

 In 2004, the J.P. Morgan team who, as described in our companion article, were 

successfully pushing the idea of base correlation also tried to tackle this problem of different 

implementations head on. They sought to persuade others in the market for standardized indexed 

tranches all to use Vasicek’s large homogeneous pool model, with its simple analytical solution, 

as the way to move between correlation levels and prices:  

 

We went out with ... a large-pool model, ‘cos I was hoping it was going to be 

[like] Black-Scholes … my hope was, you could almost have it as a quoting 

mechanism, right, if everyone had the same model and they all agreed on the 
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same model it didn’t matter whether it was a good model or not. ... [W]e could 

give someone the spreadsheet with it [the large-pool model] in. So, here you are, 

there’s no add-ins [additional algorithms such as numerical integration] or stuff, ... 

it’s just standard sums that you can look into, understand how it works and run it 

again and again and again. And we can give that [to market participants].  

 

The effort did not succeed. J.P. Morgan’s advocacy for the large homogeneous pool to be 

used as a convention for price quotation was misunderstood as advocacy for the internal 

use of the model, for example as a means of calculating ‘deltas’ (hedge ratios, as 

discussed in our companion article). The misunderstanding was perhaps wilful, because 

other global banks were seeking to contest J.P. Morgan’s dominant position in the credit 

derivatives market. The effort to achieve communicative consensus around the large-pool 

model ‘was fairly successful in Europe’, said an interviewee, but ‘not very successful in 

the U.S. where basically our, our sort of rival firms spun it as, “J.P. Morgan has got an 

inaccurate model.”’ Because the model assumed complete homogeneity of the assets in a 

CDO’s pool, it implied exactly the same hedging ratio in respect to each asset, and 

plainly that was implausible. As another interviewee put it, ‘[market participants] all said, 

“deltas are rubbish”, so they dropped the model.’ 

 

 Because J.P. Morgan’s effort did not succeed, the use of the Gaussian copula for 

purposes of communication never became as deeply entrenched as the equivalent use of 

the Black-Scholes model in the options market. As an interviewee said, ‘because the 

standardized [large homogeneous pool] model failed, people had to drop correlation as a 

quotable’ in the standard index tranche market. This process of ceasing to quote 

correlations was well underway when we conducted our first interviews in 2006. In the 
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case of more complex deals, however, the practice of agreeing on deals by agreeing on 

correlation levels continued because it provided a point of stability in ad hoc negotiations 

amongst sophisticated participants. For example, a manager of one of the leading hedge 

funds in this area told us:  

 

… you can imagine that if you are having a negotiation with somebody, and you 

get to the end of the day, and you can say, ‘I think we got a deal,’ what is it that 

you have a deal on? … What happens if, when you come in the next morning, 

spreads [on the underlying assets] are fifty basis points wider? … what’s the 

price? How can we agree that at 5 o’clock today we are going to make a fair 

adjustment based on how the market changes for when we get in tomorrow? Well, 

we can say, ‘look, spreads are going to move, dispersion is going to move, let’s 

just agree on what the implied correlation is’. We agree the implied correlation is 

12 percent, you’re done. 

 

 

 

 

Remuneration and risk 

A deeper form of organizational embedding of the Gaussian copula in investment banking 

occurred in the intertwined processes of determining traders’ bonuses and assessing the riskiness 

of their trades. A critical issue was deciding when and how the anticipated future revenues from 

a trade should be ‘booked’ or recognized as profit in accounting terms. Our interviewees reported 

a universal desire among traders for future revenues from a credit derivatives deal (most of 

which last for between five and ten years) to be recognized as soon as the deal was done – as 
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‘Day 1 P&L’ – and so boost that year’s bonus as much as possible. (‘P&L’ is, as noted, profit 

and loss, the crucial determinant of traders’ bonuses.) ‘Let’s say … you sell a deal for … 100 and 

it’s really worth 95 [i.e. 95 percent of the sale price]’, said an interviewee. Another interviewee 

told us that in the early years of the credit derivatives market it was not unusual for traders to sell 

a deal ‘at par’ – 100 cents in the dollar – when their ‘bank[’s] system would have told them that 

this was worth about 70 cents’. A single trade ‘would make [$]20 million of P&L’. Could the 

difference between price and value be booked immediately as Day 1 P&L, or would ‘you have to 

accrue that profit and you can only take, say it’s a ten-year deal, you can [only] take a tenth each 

year’? From the trader’s viewpoint, gradual accrual over five to ten years was deeply 

unattractive; many traders would likely leave the bank in question before five years were up; 

almost all would have done so before ten years. 

  

Being able to ‘book’ the anticipated revenues from a credit derivatives deal as Day 1 

P&L depended upon having a credible estimate of value, of how much the deal was ‘really 

worth’. Banks originally had considerable discretion concerning whether to book future revenues 

as Day 1 P&L, but Enron’s indiscriminate booking of Day 1 P&L from its energy-derivatives 

deals was thrown into the spotlight by its 2001 bankruptcy, and the issue began to attract the 

attention of regulators and auditors. In 2002, the Emerging Issues Task Force of the US Financial 

Accounting Standards Board (FASB) began to examine ‘whether unrealized gains or losses may 

be reported [i.e. recognized as profit] at inception of energy trading contracts’ (Emerging Issues 

Task Force, 2006: 3). With the Securities and Exchange Commission making clear that the 

underlying issue did not affect merely energy derivatives, with concern about the issue growing 

in Europe, and with the collapse in 2002 of Enron’s auditors, Arthur Andersen, which made the 

surviving auditing firms aware of just how big the dangers were, Day 1 P&L moved to centre 

stage.  



 18 

 

The issue had two main aspects. The first was that the prices or mathematical parameters 

used in the calculation of P&L needed to be observable. At the start of the 2000s, it would have 

been hard to claim with credibility that the crucial parameter in Gaussian copula models, 

correlation, was observable; it could, at best, be estimated with difficulty. The method widely 

employed in the late 1990s was to use the easily observed correlation between two corporations’ 

equity prices (share prices) as a proxy for the desired unobservable parameter, which was the 

correlation between the market values of their assets or of their survival times before default. 

Using equity prices, however, was too easily contested as a ‘fudge’. As a textbook put it: ‘There 

is no theoretical equality between equity correlation and default time correlation. … [E]quity 

derived correlations have no theoretical justification’ (Chaplin, 2005: 259-260). The issue was, 

interviewees reported to us, a major spur for the development of the standardized index tranche 

markets discussed in our companion article. Correlations ‘backed out’ from market prices in 

those markets using a Gaussian copula model were, in practice, agreed by auditors as having 

been ‘observed’ from the viewpoint of permitting the booking of revenues as Day 1 P&L, in part 

because that was the market-standard model. As an interviewee told us in May 2007, ‘[w]hen the 

[external] auditors or Finance [internal accountants and auditors] come in to look at our books 

we have to be market-standard.’ Even at the one bank in which we discovered a radically 

different model being used instead of a copula, we were told that ‘[f]inance do look at [Gaussian] 

base correlations … for reference’.  

 

The second aspect of the issue was that future revenues could be treated as Day 1 P&L 

only if accountants and auditors could be persuaded that those revenues were reasonably certain. 

This meant that they had to view a deal as properly hedged, so that adverse price movements 

would not reduce or eliminate these future revenues. Traders and the quants supporting them 
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also needed to keep in mind the attitudes of risk controllers, who could constrain their capacity 

to trade or stop them trading. All derivatives traders in investment banking were, by the period 

discussed here, governed by risk-control procedures intended to disincentivize unhedged 

trading, and the models employed by risk-control departments were the basis by which those 

departments would judge if a trade was properly hedged. Hedging is a model-dependent 

activity. That is, calculation of the necessary hedge ratios requires a model of the movements of 

prices and spreads. Like accountants and auditors, risk controllers almost always used market-

standard Gaussian copula models. If traders used such a model to determine hedge ratios, then 

their trading positions were thus likely to be judged properly hedged, and therefore both 

allowable from the viewpoint of risk control and predictable enough in their profitability to be 

eligible for Day 1 P&L.10  

 

What would happen if you started to trade using a different model? Suppose tomorrow 

you ‘invented a fantastic model for pricing a CDO’ that was better than the Gaussian copula 

and closer to a no-arbitrage model. What could you then do with the new model, a quant asked 

us in November 2007. Could you ‘put on a massive position’ and make a huge profit? No, 

because ‘a really fantastic model … is only going to be proved to be fantastic by the ability to 

go and hedge’ that position’s risks. Because others were still setting prices using the Gaussian 

copula, what were objectively the correct hedges (those implied by the superior new model) 

would appear to be wrong, and you could thus lose money, perhaps for years, and be vindicated 

only when long gone from the bank; ‘that’s what the depressing thing … about being a quant is 

right now’: 

 

[I]f I went to the people here [in his bank] and said, ‘we want to get this new model 

validated and use it in production [pricing and hedging]’ … it would be a simple 
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point of ‘if your model is not fitting the market, sorry’. … So you’ve got to put on 

an irrational hedge; that’s the only way to do it. Or you’ve got to face losing money. 

Painful. 

 

The force of market-standard Gaussian models could be felt even without discovering 

what would happen if you tried to use a non-standard model for pricing and hedging. An 

important form of this force was via a service called Totem, administered by Markit, the leading 

data provider for credit derivatives. Each month, Totem sends trading desks a set of hypothetical 

CDOs to be priced. A front-office quant does the pricing, returns the result to Totem, and 

receives back the anonymized prices calculated by each trading desk using the service (unless the 

prices she or he has input are too far from the average, which raises suspicions that the quant was 

trying to manipulate the latter, in which case nothing is received back). Each bank’s accountants, 

auditors and risk controllers can thus use Totem results to assess the closeness of its quants’ and 

traders’ pricing to that of the rest of the market (most of the participants in which used and still 

use Gaussian copulas). ‘You do monthly submissions on [Totem], and as long as that is showing 

a happy result [prices close to the average of those submitted by other banks] then Finance will 

be pleased’, said an interviewee. That ‘happy result’ could of course most simply be achieved by 

using the market-standard model with parameter values similar to those others used. 

 

The processes encouraging and on occasion even compelling use of the market-standard 

model had one particularly striking manifestation. J.P. Morgan, whose quants, as described in 

our companion article, developed the ‘base correlation’ version of the Gaussian copula that 

became the market standard, did not initially use it internally. It was only ‘a year later … that 

we finally moved to base correlation as our valuation methodology. And the reason we did that 

is because everyone else did. … [I]t becomes self-fulfilling: that’s what everyone uses, so that’s 
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how people assume [pricing is] going to work.’ As noted above, some participants’ pre-crisis 

awareness of this self-fulfilling aspect of the use of the Gaussian copula caused them disquiet, 

but was also a reason they felt they had to use it. As this interviewee said ‘… you need to know 

where the price is going to be tomorrow’, and to know that one had to use the model everyone 

else was using.  

 

Certainly, their disquiet did not generally stop our interviewees using the Gaussian copula. 

The interviewee who proposed the above thought experiment concerning what would happen if 

he used a non-standard model, and who felt strong disquiet about the Gaussian copula, summed 

up why he had to keep using the latter. The most important role of a model in investment 

banking is as ‘a device for being able to book P&L’, he told us in this January 2007 interview: 

 

[Y]ou can’t say, I have the most fantastic model … I love this model and this 

model tells me I have made this much money so I want to book this much profit 

and pay my traders their bonuses. … You can’t do that, you have … to be able to 

say … I have a hundred-name portfolio which I traded with a client and I’ve got [a] 

Gaussian copula base correlation [model] which is market-standard. I fit the model 

to the market. I then do all these tricks to price my product, and now it [the model] 

tells me that I’ve made x. [That] effectively allows me to do a ten-year trade and 

book P&L today … without that people would be in serious trouble. All their 

traders would leave and go to competitors. 

 

 

 

The crises of the Gaussian copula 
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The background to some of the unease expressed by our earliest interviewees was the May 2005 

‘correlation crisis’ that took place a year or so before our interviews and that was rooted in the 

popularity of synthetic single-tranche mezzanine CDOs. These were investment products (sold 

by investment banks to more minor banks and other institutional investors) that mimicked the 

risks and returns of buying ‘mezzanine’ (next-to-lowest) tranches of CDOs. Such tranches were 

attractive because they combined investment-grade credit ratings with healthy spreads 

(increments over LIBOR). By selling these single-tranche CDOs to their customers, investment 

banks thereby bought lots of ‘protection’ (quasi-insurance against default) on mezzanine tranches, 

which left them with a market exposure they did not want; if the cost of such protection fell 

sharply, they would suffer serious ‘mark-to-market’ losses as their trading positions were 

revalued to take account of price changes. Their desire to reduce this exposure created the 

possibility of what appeared to be a mutually beneficial trade between the investment banks 

(saying to themselves, as one interviewee put it, ‘we can’t have such a concentration of that 

risk’) and hedge funds, looking to make profits; salespeople at banks could say to their contacts 

in hedge funds ‘I could structure a trade like this, it’s great value, look at the [price] history.’11  

 

 The way the trade worked was that investment banks offset the ‘protection’ they had 

bought by selling hedge funds ‘protection’ on the mezzanine tranches of standardized indices 

similar in their composition to single-tranche CDOs. The hedge funds then sold protection on the 

lowest tranches (the ‘equity’ tranches) of those indices, and the income they earned by doing so 

was greater than what they were spending on buying protection on mezzanine tranches from the 

investment banks. By choosing appropriate relative sizes of the mezzanine protection bought and 

equity protection sold, the result was a delta-neutral position (that is, a position hedged against 

improvements or deterioration in the perceived overall creditworthiness of the corporations 

whose debts underpinned the index in question) that would nevertheless make a consistent profit 



 23 

for the hedge fund. Even some banks seem themselves to have been tempted into the trade. 

However, this form of trade exposed the banks to the possibility of correlation levels falling. In 

the terminology of the new field of correlation trading, taking part in such a trade  makes one 

‘long correlation’: you benefit if correlation rises, lose if it falls.. (High levels of correlation 

benefit those who have ‘insured’ – sold protection on – equity tranches because it makes 

outcomes more binary, as in the 0.99 case in figure 2 of our companion article. The chance of 

catastrophe sufficiently serious to hit even the most senior tranches increases, but the chance of 

little or no loss, and therefore an intact or almost intact equity tranche – and thus no claim on the 

insurance, or only a small claim – increases as well.) Put another way, the hedge funds were 

exposed to events that would provoke concern about idiosyncratic risks, or risks that affect just 

one corporation or a very small number of corporations; such risks endanger the sellers of 

protection on equity while leaving the situation of mezzanine tranches almost unchanged. 

(Equity is, as noted, the lowest tranche in a CDO, and thus the first to suffer losses, so the default 

of even a single corporation can affect the holders of the equity tranche. In contrast, several 

defaults need to take place before the mezzanine tranche suffers losses.) 

 

 Idiosyncratic risk was precisely what manifested itself on 5 May 2005, when Standard & 

Poor’s stripped General Motors and Ford of their investment-grade ratings, reducing GM to BB 

and Ford to BB+. It is a noteworthy event when a ratings agency reduces the obligations of the 

great mass-market car companies of the 20th century to ‘junk’. But it took place in generally 

benign economic conditions. It could be interpreted as an increase in a very specific risk. What 

appears then to have happened, interviewees told us, was that a particular large hedge fund (one 

interviewee named it, but it has been impossible to get confirmation of its identity) decided to 

unwind its position, which meant buying protection on equity tranches to cancel out its sales. The 

cost of ‘protection’ on those tranches thus increased, placing pressure on those who had similar 
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positions, who then also tried to unwind, further increasing the cost of protection on equity. In 

contrast, the cost of protection on mezzanine tranches fell (unwinding implied having to sell 

protection on those tranches). When Gaussian copula models were used to ‘back out’ correlation 

levels, that pattern of change in costs suggested that the correlation skew (explained in the 

second section of this article) had steepened sharply, hence the name ‘correlation crisis’.12  

 

 The result, said interviewees, was large losses for a number of hedge funds and some 

banks. The crisis attracted very little reporting, either at the time or subsequently, perhaps 

because of its complicated nature (and the absence of any spectacular bankruptcies). The 

Financial Times reporter Gillian Tett was one of the few to pick up the story, and her informants 

said that it involved undue faith in models: ‘People thought the models were almost infallible – 

the last few days have been a real shock’, one banker told her (Tett, 2005). Certainly, a naïve 

interpretation of the Gaussian copula model might have suggested that a position that was delta-

neutral (as the trades central to the correlation crisis were intended to be) was thereby free of risk. 

However, when the first author suggested to another interviewee in January 2007 that the trade 

had been ‘model-driven’, he disagreed:  

 

the press always wants to talk about these smart traders who were wrong because 

they believed in the models. I mean, no-one is that stupid that you put on a trade 

with a delta which is delta-neutral, I mean, no, you know that it’s only delta-

neutral if nothing else changes.13 

 

Even if not caused by a naïve interpretation of Gaussian copula models, the 2005 

correlation crisis was certainly a temporary crisis for modelling practices. The steepening of the 

correlation skew during the crisis was sufficiently large that on some days market-standard 
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Gaussian copula base correlation models simply failed to calibrate: they could not find 

correlation levels that allowed them to match the spreads at which tranches were trading. An 

interviewee reported that this happened both to a particular model he had developed and more 

generally: 

 

  the [sharply reduced spreads on the] mezzanine tranche actually violated [the] 

lower bound that this stochastic correlation model was imposing. … [The episode] 

was very upsetting to many people because their models simply stopped working. 

They couldn’t match the market any more. 

 

 That calibration failure, however, was only temporary, and the ‘correlation crisis’ did not 

generate any major widespread change in the dominant practices of modelling. Far more 

persistent failures of models to calibrate were experienced in the second of the crises to afflict 

correlation modelling, the credit crisis that erupted in the summer of 2007. As the crisis deepened, 

the cost of protection on the apparently safest, super-senior tranches of the indices (as noted, 

these are widely traded standardized CDOs) rose to unprecedented levels, as fears of systemic 

collapse increased. Again, but much more frequently than in 2005, no correlation value at all 

could be found that enabled the spreads at which super-senior tranches were being quoted to be 

reproduced:  

 

  [Y]ou can derive some bounds on the value of the super-senior tranche [from the 

Gaussian copula model]. And those bounds were violated by the market. Spreads 

were too high for the super-senior tranches. You couldn’t get there. 
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 Hugely disruptive as failures to calibrate such as this are to the day-to-day work of 

pricing and hedging, there is nevertheless a sense in which the market-standard Gaussian copula 

base correlation model has survived even this crisis. It has been ‘tinkered with’, rather than 

discarded. Prior to the 2007-08 crisis, it was conventional to assume simply that if a corporation 

defaulted then the ‘recovery rate’ (the extent to which its creditors would get back what they 

were owed) would always be 40 per cent, a value that was roughly the historic average. More 

recently, however, that assumption has been discarded, and recovery rates have been modelled as 

stochastic. In particular, in the ‘one-factor’ Gaussian copula models discussed in our companion 

article, recovery rates have been made dependent upon the value of an underlying factor that can 

be interpreted as the ‘state of the economy’. It is assumed that in ‘bad’ states of the economy, 

recovery rates will be much lower than in ‘good’ states. Altering standard models in this way has 

made it possible for modelling to ‘work’ (to calibrate) most of the time, even in the very 

turbulent conditions of recent years. ‘Working’ has still not been universal – there have 

reportedly been particular days when even with this alteration standard models fail to calibrate 

(Brigo, Pallavicini and Torresetti, 2010: 104) – but the ‘fix’ has been good enough to keep the 

Gaussian copula dominant. In a situation in which the underlying markets have shrunk markedly, 

it has been judged better to ‘fix’ a model that was already understood by traders, accountants and 

risk-controllers than to suffer the financial, communicative and cognitive costs of moving to a 

radically different model. 

 

‘The formula that killed Wall Street’? 

 
 

What has just been discussed, however, is the (limited) effect of the credit crisis upon the 

Gaussian copula family of models. What, however, of the effect in the other direction? Did 

the Gaussian copula kill Wall Street, as Salmon (2009) suggests? 
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The market participants on which this article has focussed – the users of Gaussian 

copula models in the derivatives departments of investment banks – came under huge strain 

(including the calibration failures discussed in the last section), but their activities did not 

generate losses of sufficient magnitude to threaten the survival of their banks or of the 

financial system. Certainly, there were losses on the credit default swaps, the index tranches, 

and the CDOs (based on pools of corporate debt) with which those actors dealt, but those 

losses – while very big – were not catastrophic. As an interviewee said in July 2010: ‘Losses 

you hear around the place, “I lost a billion dollars” … in normal times would be very notable’. 

A billion dollar loss, however, does not kill a global bank. The level of loss needed to do that 

(of the order of $20-$50 billion) did not come from the world discussed here: ‘the base corr 

guys [users of Gaussian copula base correlation models] are still standing… There were 

definitely bad days for everybody with the markets jerking around, and people felt the swings 

but I am not sure that there was anything in terms of an Armageddon for the models’.  

 

Rather, the critical path by which the Gaussian copula was implicated in the credit 

crisis was via rating agencies, in particular in the rating not of ‘traditional’ CDOs based on 

pools of corporate debt, but of ‘ABS CDOs’, in which the underlying assets are asset-backed 

securities (ABSs), specifically mortgage-backed securities. We have discussed these and their 

role in the credit crisis elsewhere (MacKenzie, 2011). ABS CDOs were introduced somewhat 

later than corporate-debt CDOs, and originally were a small-scale business; only 3 percent of 

the CDOs issued in 1997-1999 were ABS CDOs (Newman et al., 2008: 34, exhibit 1). By the 

time ABS CDOs started to become large-scale (from 2001 onwards), the rating agencies 

already had in place an organizational division of labour. Both CDOs and ABSs fell within 

the remit of their structured finance departments, but those departments had separate groups 

rating CDOs, on the one hand, and ABSs on the other.  
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As discussed in MacKenzie (2011), the new ABS CDOs were therefore evaluated by 

the rating agencies in two temporally and organizationally separate steps. First, the 

underlying mortgage-backed securities or other ABSs were rated by the groups handling 

those securities, and then the overall CDO structure was rated by the CDO groups. Instead of 

considering ABS CDOs as radically different instruments that required an altogether new 

form of evaluation, the CDO groups simply made modest modifications to the techniques 

they already used to analyze CDOs whose pools consisted of corporate debt. From late 2001 

onwards, those techniques increasingly involved the use of models in the Gaussian copula 

family, albeit usually one-period models analogous to CreditMetrics, not fully-fledged 

copulas of the kind introduced by David X. Li (MacKenzie and Spears, 2014). With little 

econometric data to draw upon (empirically estimating the correlation between ABSs is an 

even harder econometric problem that estimating correlations between corporations), the 

CDO groups employed largely judgment-based ABS correlation estimates, which were 

broadly similar in size to those they used for the analysis of corporate CDOs. When, for 

example, Standard & Poor’s introduced its new one-period Gaussian copula system, CDO 

Evaluator, in November 2001 the same correlation (0.3) was used for the correlation between 

ABSs from the same sector (for example, ABSs based on subprime mortgages) as was used 

for the correlation between corporations in the same industry (Bergman, 2001).  

 

The result of the assumption of only modest correlation was an extremely attractive 

opportunity for market participants to take ABSs of only modest credit quality (for example, 

the mezzanine tranches of subprime mortgage-backed securities with BBB ratings) and 

package them into CDOs with very large AAA tranches. Widespread exploitation of this 

opportunity had catastrophic consequences, both direct and indirect. A substantial proportion 
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of the gigantic losses that directly crippled global financial institutions were incurred on ABS 

CDOs. Citigroup lost $34 billion on ABS CDOs, Merrill Lynch $26 billion, UBS $22 billion 

and AIG $33 billion (see Benmelech and Dlugosz, 2009), and the avid demand of ABS 

CDOs for the mezzanine tranches of subprime mortgage-backed securities also had the 

indirect effect of side-lining the traditional buyers of such securities, who had typically 

scrutinized the underlying pools of mortgages with great care (Adelson and Jacob, 2008). 

ABS CDOs sat at the end of what market participants sometimes call an ‘assembly line’, in 

which subprime mortgages were bundled into ABSs, and then ABSs were bundled into ABS 

CDOs, with a view simply to achieving desirable ratings and with little effective concern for 

risks in the underlying assets that were not captured by those ratings.  

 

In effect, market participants had ‘outsourced’ the analysis of ABS CDOs to the rating 

agencies. It was perfectly possible profitably to construct an ABS CDO without doing any 

correlation analysis of one’s own. All one had to do was to check that an intended structure 

would achieve the desired large AAA tranches, a task that was made easy by the fact that 

market participants could simply download Standard & Poor’s CDO Evaluator and its 

analogues at the other agencies. The first author vividly remembers a February 2009 

interview in which he asked a senior figure at a firm that managed ABS CDOs what 

correlation model the firm had employed, only to be met with a blank stare: no model of its 

own had been used.  

 

The major investment banks conducted some analysis of ABS CDOs beyond simply 

checking desired ratings, but, by the standards of the culture of no-arbitrage modelling, very 

little analysis took place in most cases. ABS CDOs often fell outside the remit of the 

derivatives departments of those banks. They were frequently constructed and analyzed by 
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other groups, such as those specializing in mortgage-backed securities. ‘The guys doing ABS 

had essentially different roles and different attitudes’, reported one interviewee. With the 

partial exception of Goldman Sachs, the modelling of ABS CDOs that was done did not take 

the form of no-arbitrage modelling.14 Rather, it involved either cashflow models of the 

underlying ABSs (with judgment-based estimates of likely mortgage default rates), whose 

outputs were then fed into a cashflow model of the CDO, or inferring the default probabilities 

of the ABSs from their ratings and using those probabilities in a Gaussian copula model of 

the CDO, in much the same way as the rating agencies modelled ABS CDOs. To those whose 

view was that the proper activity of a quant was no-arbitrage modelling, the catastrophic 

losses were thus on products that, in the words of one such quant, ‘were on the whole either 

less quanted or not quanted at all’.  

 

An issue of ontology underlies judgements such as that made by the interviewee just 

quoted. As described in our companion article, no-arbitrage modelling extracts martingale or 

risk-neutral probabilities from patterns of market prices. With the partial exception of 

Goldman, this style of modelling – which is what the interviewee meant by ‘quanting’ – was, 

as far as we can discover, simply not applied to ABS CDOs. Rating agencies did model ABS 

CDOs, but rating agencies generally do not work with martingale probabilities; rather, they 

seek to estimate actual probabilities of default, and to do so they almost always use the 

historical records of defaults, not price patterns. In the case of subprime mortgage-backed 

securities, which dated only from the 1990s, such records encompassed a period of almost 

continuously rising house prices and only one relatively mild recession. Unfortunately, as we 

now know, when those benign conditions changed, such securities, and the mortgage 

borrowers on whom they were based, began to behave quite differently. 
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Conclusion 

As the previous section has outlined, the Gaussian copula family of models was implicated in 

the processes that ‘killed Wall Street’. Salmon (2009), however, is quite wrong to focus on Li, 

the quant who, as discussed in our companion article, first introduced explicit use of copula 

functions. By the time of the crisis, the ratings agencies had moved only partially from the 

early one-period models to full fledged copula models of the kind introduced by Li, and the 

move was not central to the crisis. It was far less consequential than three other factors: the 

way in which, in their organizational structure, the rating agencies separated the analysis of 

ABSs from that of CDOs; the estimation of the probabilities of default on ABSs using data 

from a period of benign economic conditions; and the way in which the CDO groups in the 

agencies analyzed an ABS CDO in almost the same way as a CDO based on corporate debt, 

and in particular assumed that an ABS CDO would involve a level of correlation at most only 

modestly higher than that of a CDO based on corporate debt.  

 

Nor would it be reasonable to blame the Gaussian copula family of models, in itself, 

for the crisis. These models did not have unitary, intrinsic effects. Rather, they had effects in 

combination with the organizational processes in which they were embedded. Gaussian 

copula models as employed by the rating agencies were quite different in their effects from 

Gaussian models employed in the derivatives departments of investment banks. Not only did 

the goals of modelling differ between rating agencies and investment banks, but also, as 

discussed in the previous section, the ontology. Moreover, the surrounding processes differed 

substantially. Governance, understood as risk control and the booking of profit, was certainly 

one aspect of the use of the Gaussian copula in investment banks. Ratings, however, were 

almost entirely about governance; many investment managers were forbidden (either by 

regulation or by organizational mandate) to buy anything other than investment-grade 
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securities, or the amounts of non-investment-grade purchases were strictly limited. In 

consequence, the ratings of such securities dictated the nature of the market for them. 

 

The result of the embedding of Gaussian copula models in governance via ratings was 

the large-scale ‘gaming’ of them and of the other models employed by the ratings agencies. 

The crisis was caused not by ‘model dopes’, but by creative, resourceful, well-informed and 

reflexive actors quite consciously exploiting the role of models in governance. ‘[T]he whole 

market is rating-agency-driven at some level’, one of our earliest interviewees told us, a year 

before the crisis: ‘the game is …to create …tranches which are single-, double- or triple-A 

rated, and yield significantly more than a correspondingly rated [bond]’. This interviewee did 

not directly participate in the ‘game’ himself. His hedge fund profited only indirectly from 

the fact that, as he put it, ‘there are investors who are constrained by ratings.’ But other 

interviewees did. Two told us how they had employed optimization programs to find the 

highest-yielding pools of securities that would still make possible CDOs with sufficiently 

large AAA tranches; although they did not directly say this, the highest-yielding securities are 

those that market participants consider riskiest. Another interviewee described to us how his 

firm had developed, and sold to investment banks, a sophisticated software package designed 

to perform this perilous optimization.  

  

Two dangers, however, attend these findings. First, our emphasis on knowledgeable, 

reflexive actors rather than model dopes could be read as a collapse into simplistic rational-

actor, agency-theoretic explanations of the crisis. This would be quite the opposite of our 

intention. Culture and rationality are not opposed, even if rationality is construed as the 

pursuit of narrow self-interest. Even the most selfishly rational actor needs to calculate what 

is in his or her best interest, and that calculation of necessity partakes in the material cultures 
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of finance. Because such cultures differ, and because there is no a priori way to be entirely 

sure which practices are the most efficacious, even a fully reflexive, rational actor cannot 

stand wholly outside of finance’s cultures of evaluation. Nor does the existence of these 

reflexive, rational actors diminish the co-ordinating role of models or other cultural resources. 

The way in which Gaussian copulas, a class of model that was often disliked, nevertheless 

helped achieve economically crucial outcomes (in particular the achievement of Day 1 P&L) 

shows that cultural resources can co-ordinate action even in the presence of widespread 

scepticism of their worth. One does not need to invoke cultural dopes to understand how 

cultural resources help produce co-ordinated action. 

 

The second danger is that this article’s findings will be read as an endorsement of no-

arbitrage modelling, one of the hegemonic cultures of modern finance. Again, that is 

emphatically not our intention. Rather, we would note that there are multiple mechanisms of 

counter-performativity or, in other words, multiple ways in which the practical use of a model 

can undermine its empirical adequacy. One such mechanism that played a primary role in the 

credit crisis was the ‘gaming’ by market participants of the models (including the Gaussian 

copula) used by rating agencies. In essence, the gaming of models that assumed low default 

probabilities and low correlations helped bring about, in the way sketched in the previous 

section, huge levels of highly-correlated mortgage and ABS default.  

 

There are, however, other mechanisms of counter-performativity. In particular, no-

arbitrage models may be associated with a distinctive mechanism in which the hedging 

practices based on those models have effects on the market for the underlying assets that 

undermine the empirical adequacy of the assumptions about asset-price dynamics embedded 

in those models. The most obvious such case is the event that ended the period in which 
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patterns of option prices mirrored the Black-Scholes model relatively closely, the 1987 stock 

market crash. In this case, portfolio insurance (a form of hedging based on Black-Scholes) 

was at least to some degree implicated in violent price movements that were grotesquely 

unlikely on the geometric Brownian motion model underpinning Black-Scholes (MacKenzie, 

2006). While they are not as well known as the 1987 crash, and seldom reported outside the 

specialist trade press (their details can be fiendishly complicated to outsiders), other examples 

of this mechanism exist.15 In such examples, what was (as far as we can tell) careful, diligent 

hedging based on ‘proper’ no-arbitrage models nevertheless caused substantial market 

disruption and serious losses, albeit closer to or lower than the $1 billion scale of the ‘base 

correlation’ losses than to the $20-$30 billion of the ABS CDO losses.  

 

It could be that here we have the beginnings of a typology of mechanisms of counter-

performativity: models used for governance are undermined by being gamed; models used to 

hedge derivatives are undermined by the effects of that hedging on the market for the 

underlying asset.16 We end, however, with a speculation about the culture on which we have 

focused, no-arbitrage modelling. As this article has shown, the canonical Gaussian copula 

base correlation model played a co-ordinating role within and among investment banks. The 

the use of the model helped to harmonize practices and prices and facilitate communication, 

and it provided a shared yardstick that enabled accountants and auditors to determine whether 

a valuation was correct and risk managers to assess whether a position was properly hedged. 

It therefore made possible Day 1 P&L, the up-front profit that is the essential lubricant of the 

trading of derivatives with maturity dates that stretch beyond traders’ likely working lives in 

their banks. This co-ordinating role of the Gaussian copula was visible to our interviewees – 

and therefore to us – precisely because they did not ‘naturalize’ the model; none believed that 

the Gaussian copula gave a faithful account of the economic world. 
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Perhaps a co-ordinating role is ever-present in shared models in finance, even those 

that are taken as capturing at least some aspects of the way the world is; perhaps this helps 

explain why investment banks – those apparently most capitalist of institutions – quite 

frequently give other market participants, free of charge, models in whose development they 

have invested much time and money. Perhaps the modelling of derivatives in investment 

banking always has an aspect of what one of our interviewees memorably called a ‘ballet’, in 

which highly-paid quants are needed not just to try to capture the way the world is, but also to 

achieve co-ordinated action. And – as Beunza and Stark (2012) have suggested in a different 

context – perhaps the seeds of disaster sometimes lie in that very achievement.  
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1 Note that co-ordination does not necessarily imply harmony or the absence of competition. The most bitterly 

contested football match is still an example of co-ordinated action. 
2 The Black-Scholes model has one free parameter, volatility. The arbitrage that pushed patterns of option prices 

towards the postulates of Black-Scholes was ‘spreading’ (MacKenzie, 2006: 164-166), which did not involve 

the choice of a particular value of the volatility parameter. There was no full equivalent of ‘spreading’ with the 

Gaussian copula. 
3 It is possible that even our earliest interviewees had been affected by the experience of the correlation crisis. 

See below for a brief discussion of this possibility. 
4 On the history of this distribution, see MacKenzie (1981: 111-116). 
5 The levels of correlation that fitted the ‘spreads’ of the lower tranches (the increments over benchmark interest 

rates that they offered) generated a spread on the most senior tranches that was far lower than the spread those 

tranches had to offer if investors were going to buy them. To get the model to generate the latter spread, it was 

necessary to input a higher level of correlation for the more senior tranches. As an interviewee put it to us, ‘Maybe 

the model [with a flat correlation] says the super-senior tranche only pays [a spread of] three basis points [0.03 

percent], but who the hell is going to read through the whole of the prospectus, figure out the risk, hire a lawyer to 

analyze the document, figure out how to book it, get a model approval, da da da, for something that only pays three 

basis points. They’re saying, “Look, I’m really not going to get out bed for anything less than ten [basis] points.” 

There is no science in that, it’s just anything about ten sounds kind of good.’ 
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6 We draw this stark contrast because it underpinned the critiques of the Gaussian copula we heard from our 

interviewees. It is in fact a simplistic contrast; arbitrage is a more complex matter than it suggests. See Beunza, 

Hardie and MacKenzie (2006), and also the discussion in our conclusion of counter-performativity. 
7 For example, another criticism was that the Gaussian copula was essentially static. As an interviewee put it in 

February 2007: ‘it has no [time] dynamics. Copulas are just a way of bolting together marginal distributions.’ 
8 Other models of likely losses in pools of assets were available, notably Credit Suisse’s CreditRisk+ (Credit 

Suisse First Boston, 1997), and were used reasonably widely for modelling banks’ credit risks, but seem to have 

been judged less suitable for modelling CDOs, especially in ‘a trading situation’ (Nelken, 1999: 237). 
9 See Beunza and Stark (2012) for a discussion in a different context of ‘backing out’ a parameter. For more 

detail on the use of ‘implied volatility’ in options markets, see MacKenzie (2006: 168-169). 
10 Participants acknowledge that the ‘perfect’ hedges of no-arbitrage modelling are not to be found in reality 

(apart from ‘in Japanese gardens’, as the traders’ joke has it), and various ‘reserves’ are deducted from Day 1 

P&L to try to take account of this. ‘Reserving’ is thus a crucial process, which unfortunately cannot be 

discussed here for reasons of space. 
11 The interviewee in question was talking more generally rather than about the specific trades discussed here.  
12 See the graphs of tranche spreads and the corresponding base correlation levels in early 2005 in Packer and 

Wooldridge (2005: 6). 
13 Clearly, this assertion could involve hindsight, but it seems plausible, in that by 2005 ‘correlation trading’ was 

well-established. It was predicated on the fact that correlation levels change, and if they do so a delta-neutral 

position can still suffer losses. 
14 Goldman’s modelling of ABS CDOs used estimates of default probabilities and correlations based on patterns 

of market prices, not, for example, the historical records of mortgage defaults used by other banks and by the 

rating agencies. Our hypothesis is that this may in part account for Goldman’s decision to exit the subprime 

market (and indeed to ‘short’ it) as market conditions began to deteriorate late in 2006, a decision that made it 

possible for Goldman to survive the crisis almost unscathed financially. However, the post-crisis lawsuits faced 

by Goldman made it impossible for us to interview those involved.  

 
15 There have been a number of market disruptions involving the hedging of a class of interest-rate derivatives 

known as constant maturity swaps (our attention was first drawn to these by an interviewee, who said one such 

episode in 2008 had caused ‘chunky losses all around the City’). Another episode, in 2012, involved the hedging 

of uridashi, a form of option (heavily sold by investment banks to Japanese retail investors) that is linked to the 

Nikkei stock market index. Risk magazine reports total losses to the banks of up to $500 million in this episode 

(Cameron, 2013). 
16 We thank David Stark for pressing on us the importance of a more systematic understanding of counter-

performativity. A third form (not found in the episodes discussed here) is what might one might call ‘deliberate 

counter-performativity’: the employment of a model that one knows overestimates the probability of ‘bad’ 

events, with a view to reducing the likelihood of those events (for an example, see MacKenzie, 2006: 209-210). 


