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PROCESS CONSTRUCTORS AND INTERPRETATIONS

Robin MILNER

Department of Computer Science, University of Edinburgh
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.

t. INTRODUCTION

In recent years it has become clear that sequ-
ential models of computation, though strikingly
successful in explaining the working of a
single {sequential) computer program and the
way in which such programs may be composed of
parts - e.g. procedures - while maintaining a
single locus of control, are seriously defic-
ient in explaining how a heterarchic assembly
of computing agents behave together. The
pioneer in breaking clear from such sequential
models was Carl Petri. It is a tribute to the
insight shown in his Net Theory that, although
many different models of concurrency have
emerged in the last ten or fifteen years, they
do not supersede his basic ideas - which are
more than twenty years old - but only extend
them.

However, the aim of this paper is to examine
certain basic concepts of communication which
are not prominent in Net Theory; this is be-
cause they are primarily to do with the way in
which we build bigger systems from smaller ones
which interact. A large part of computing
science is bound up with the study and use of
such primitive constructions, both because of
their importance and because of the difficulty
in choosing them. Their importance probably
needs no further comment, but it is worth a
moment to ask why they are so difficult to
choose. One reason is obvious: it is hard to
choose primitive concepts because, by defin-
ition, there is nothing from which to build
them - there are merely criteria for determin-
ing whether their choice is successful. And
this leads naturally to a second reason: the
criteria for measuring their success are often
in conflict. It is illuminating to take prim-
itive-recursive computation as an example.
Using the criterion of theoretical understand-
ing, the smallest set of primitive construct-
ions (composition, selection and the primitive-
recursion schema) is the best to choose, and
has been as successful as one can imagine.

But using the criterion of practical utility -
and this example is not erudite because most
programs do indeed compute primitive-recursive
functions over a variety of data types - one
would never choose just these constructions as
the basis for a programming language. We can-
not necessarily expect to find a set of con-
structions which form a useful practical tool
(and we would like to consider calculi and
specification languages as tools, as well as
programming languages) by simply defining some
composite constructions from the "theoretical"
primitives. In the case of primitive-recurs-
ive computation, a practical tool-kit compris-
ing assignment statements, conditional state-
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ments and for statements presents a seriously
different model, and the translation to the
theoretical model is both non-trivial and illum-
inating.

The growth of understanding of interacting sys-
tems seems to be inseparable from the activity
of proposing primitives, assessing them by both
theoretical and pragmatic criteria, and attempt-
ing to translate between different sets of prim—
itives. When two sets of primitives are incom-
parable (neither can be translated to the other)
then either we must assume that the two models
are incompatible -~ they model essentially diff-
erent things - or, more positively, we succeed
in finding a more elementary (but not larger!)
set to which both may be reduced. The follow-
ing section is an exercise in this type of in-
vestigation; we set up principles which guide
the choice of primitive constructors, and arrive
at two alternative sets which promise to be
sufficiently rich in expression. In the third
section, we compare and contrast some inter-
pretations of process constructions. The Petri
Net interpretation offers a good chance of
answering the question "What is a process?",
thus clarifying what we should mean above by the
phrase "sufficiently rich" (namely: sufficient
to express all processes); on the other hand,
other interpretations offer at present more
tractable mathematical theories.

2. PROCESS CONSTRUCTIONS

In building a model, or in choosing a set of
primitive concepts, one must adopt some ideas
and principles without prior justification
(other than intelligibility), to limit the space
of investigation. Just to say that we are try-
ing to model communication is too vague. We
shall begin by using the ideas of process and
event without definition, and formulate some
principles which will guide us to a model at

the same time as articulating the meaning of
these two terms.

Principle 1 An interaction among processes
consists in their participation in a single
atomic event.

Though inevitably using the imprecise terms
"process" and "event", this principle already
excludes some possibilities. For example, the
principle denies that a communication via
shared memory, as in say Concurrent Pascal, con-
stitutes a single interaction. It also pre-
vents our taking the constructions of Ada as a
model, since the Ada rendez-vous primitive in-
volves more than one event in a communication.
Further, the principle denies that communic-
ation via a buffer or some other medium is an
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interaction (again, more than one event is in-
volved) . Perhaps these examples also indicate
the possibility, which must also be our inten-
tion, that many forms of communication will be
reducible to the notion of interaction when it
is made more precise. The principle does not
require all events to be atomic, but for the
present paper we shall use "event" to mean
"atomic event", where "atomic" means "indivisible
in time". Importantly, the principle does not
limit the number of processes which may partic-
ipate in an interaction; thus, although CSP(6]
and CCS[9] (as they were originally proposed)
represent Principle 1 faithfully, they impose a
restriction in allowing only two participants.

Our second principle gives a strong character
on our model, since it attributes primary import-
ance to interaction:

Principle 2 Every event is an interaction among
processes.,

This implies, first, that a computational event
such as writing a value into a register must be
an interaction, and hence that registers and
other media must be treated as processes on a
par with the active processes which use them;
the effect is to impose a strong homogeneity
upon the model. Further, it implies that the
observable behaviour of a system (a composite
process) consists entirely in its interaction
with its environment; the environment may be a
human observer who - being also a process - may
only inspect or ohserve the system by inter-
acting with it.

It is now convenient to introduce a set Act =
{a,b,...} of actions; an action identifies the
external aspect of a process part in an event,
while the internal aspect is a state~transition
by the process. Further, we shall use P,Q,...
to stand for_processes, where we use the term
"process" as equivalent to "process-in-a-state".
Then we may write

P 325 p!
to mean that the process (in the state) P may
perform the action "a", and simultaneously be~
come the process (in the state) P', Thus, in
view of Principle 2, once the transition relat-

ions -&> are known over processes, we know all
about the behaviour of every process.

But our theory is, up to this point, embarrass-
ingly poor! The reason is that we have given
no structure either to the actions or to the
processes, and (since structure is essential
for understanding systems) we are far from hav-
ing a useful model. Structure will follow
shortly, but an important point must be made -
and stands out all the more clearly before we
become preoccupied with structure, If a proc-
ess P has the following transitions
a b
P—>P1——>P2
b a
P——~>P3—>P4
then - without knowing the structure of P - can
we determine whether the actions "a" and "b" are
causally independent (= "concurrent" in Net
Theory) or not, since they can occur in either

order? If we cannot, then causal independence
among actions is not an attribute of P's behav-
ijour, i.e. it is intensional, not extensional.
This will be so even if the structure of Act
admits a composite action "(ab)", meaning "a"
and "b" simultaneously; the presence of another

transition
p (2 5

might simply represent a third alternative for
P, and these three alternatives taken together
do not necessarily add up to the causal indep-
endence of "a" and "b". Though this argument
is not conclusive, the view that observation is
interaction appears to commit us also to the
view that causality is not an attribute of be-
haviour (not observable), but - however useful
in analysis - is rather a property of the
structure of processes. We may express this
another way: the behaviour of a process does
not reveal its composition, and thus a simple
sequential process may exhibit the same behav-
iour as a complex process with many independent
parts. In a recent paper [12] Wolfgang Reisig
has examined the relationship between transition
systems and concurrency.

Now that we have begun to consider structure,
we look for constructors over Proc which yield
complex processes from simple ones. For the
remainder of this paper we shall use the term
"constructor" to mean a basic operation for
building processes, and the term "construction"
to mean a possibly complex operation which is a
composition of constructors,

Principle 3 Every n-ary Process constructor f

must be such that the behaviour of f(Pi,...,P )
depends only upon the behaviours of Pl,...,Pn?

We must admit that "behaviour" is still an im-
precise notion, except that we have taken it
(following Principle 2) to depend only upon ac-
tions, the external aspect of transitions.

Thus it is natural to tighten Principle 3 to
reqguire that the actions of £(P,,...,P ) depend
only upon those of P, ,...,P . Perhapg the
most natural constructor, wﬁich may be called
conjunction (&) may be described as follows:

P & Q has exactly the transitions P&Q 25 pryg Q
for which both P -2»P' and Q %Q'. We shall
write this condition as a rule:

a

p3sp 03 o

P&ao 25 prag

(For each constructor we shall provide one or
more such rules, implying that its transitions
are exactly those which follow from the rules).
The conjunction of two processes exhibits ex-
actly that behaviour which is common to them
both; they are required to synchronise upon
every single action. Moreover, iterated con-
junction P, & P_&...& P_ causes n processes to
synchronisé in this way.

This constructor allows the component processes
no independence of action, and is too crude to
model interesting interactive behaviour. We
need to combine processes in such a way that
they sometimes interact and sometimes act in-
dependently.
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Principle 4 (Conjunction) A construction is
needed which will force each of n processes to
synchronise with all the others upon any of a
designated set of actions, but to perform all
other actions freely.

This construction can be achieved by iterating
a binary constructor & , where A is the desig-
nated set of actions. The rules which define
&A are as follows:

p &p oS0

> (a€n)
P& Q P &0

020
(b €3) ——————(b €3)
P&AQ—>P&AQ

P Eé P’

b
P — P’
&AQ P &&2

Note that Principle 4 implies asynchrony; one
member of a collection of processes may perform
an action (not in the designated set) while
others remain dormant. This possibility is
achieved by the last two rules for & , while
synchronisation is achieved by the férst rule.
Constructors of this kind, which depend upon
explicit designation of the synchronising act-
tions, have been adopted both by Hoare [7] and
Milne [8]; we discuss later the precise form
which they adopt.

The &-cdnstructors still lack something.

Since each action "a" of a component is also

an action of the construction, each interaction
among the components is also observable from
outside. ]

Principle 5 (Encapsulation) A construction is
needed which renders a designated set of act-
ions unobservable.

The simplest way to meet this need is by the
unary hiding constructor -/A, where A C Act is
the designated set. It depends upon a dis-
tinguished member e of Act; e may be thought
of as the perfect event, needing no further
participation (even from an external observer)
for its occurrence.

p 3 pr p 25 p
— (a €A) 5 (b €a)
P/A = pP'/A P/A —> P'/A

Let us henceforwa'rd write P & Q for P&{ }Q,
and P/a for p/{a}. As an exafiple, the '2
construction (P& Q)/a & (R&_ S)/a will en-
force (and encapsulate) fhterdttion between P
and Q on "a", and between R and S, but not be-
tween the two pairs.

Note that the distinctions of e, the perfect
event, is our first commitment to some struc-~
ture over Act, the action set; we find a use
for further structure later.

Are these two families of constructors, & and
-/A enough? They have considerable power, if
we use different designated sets A, Take, for
example, the construction P& (Q& R); it con-
tains an element of disjunction, as well as
conjunction, for it ensures that P interacts
either with Q or with R upon "a", but not with
both simultaneously. But there are richer
possibilities which cannot be realised. Con-

sider a trio (P,Q,R) of processes, where we
require each member to interact with either,
but not both, of the others upon the action "a".
With a little more formality, it is fairly easy
to prove that no construction C(P,Q,R) which
can be built using conjunction and hiding alone
can meet this requirement.

It is quite hard to formulate a principle of
disjunction which is properly general and sub-
sumes the last example as a particular case.
For the present paper we will be content to put
forward the following.

Principle 6 (Disjunction) A construction is
needed which will force each of n processes to
synchronize with any one of the others upon any
of a designated set of actioms.

In view of the above example, to satisfy this
principle we must either add a constructor oxr
replace the existing ones. We consider the
former alternative first, since a further prin-
ciple can be satisfied by a constructor which
also permits the construction demanded bv Prin-
ciple 6, The point of this further principle
is that the names of actions should not be
immutable.

Principle 7 (Renaming) A construction is needed
which changes the action-names of a process.

This can be met by introducing the constructor
-[®] for any binary relation ¢ over Act. Its
rule is simple:

p 3 pr

—_— (adDb)
Plo] B> p1[o]

(Note: 1in a precise treatment one should stip-
ulate that the perfect event e is never syn-
chronised, hidden or renamed!). We leave it
as an exercise for the reader to build the con-
struction C(P,Q,R) above, using conjunction and
(many-valued) renaming. As another interesting
exercise, he or she may like to show that the
hiding construction P/A is exactly the same as
the renaming construction P[e/A]l, where "e/A"
replaces each member of A by e, leaving all
other actions unchanged.

We conclude that, together, conjunction &_ and
renaming [®] provide sufficient power of
expression to satisfy Principles 4-7, and are
consistent also with Principles 1-3. Before
looking at alternatives, we state another prin-
ciple which ensures that we may consider our
constructors as a language - whether for pro-
gramming, or describing, or specifying distrib-
uted processes.

Principle 8 Constructions are needed for sequ-
ential control, rich enough to express a wide
range of distributed processes.

This principle compensates for the emphasis
placed upon parallel composition by the preced-
ing principles. It turns out that rather
simple constructors for sequential composition,
alternative action and repetition are suffic-
ient. We may take for example a.P to mean the
prefixing of a single action "a" to P, P +Q to
mean the process which may behave like P or Q
(the choice being determined by the first act-
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ion) and recX.-X- (where X is a process vari-
able) to achieve repetition by recursion.
These constructors have simple rules of action;
see [9],([10],[5].

The reader may wonder why Principle 8 contains
the vague expression "a wide range of distrib-
uted processes”. The reason is uncomfortable;
we have yet no firm idea of what a distributed
process is, in the same way as we know what a
(computaBTé) function is, so we cannot yet know
what it requires to express them all! We shall
return to this point in the next section.

Now let us return to consider alternatives for
conjunction and renaming. These constructors
stand up fairly well to the pragmatic criterion
that it should be convenient to write process
descriptions or specifications. They stand up
less well, perhaps, to the criterion of theor-
etical analysis. One essential property of an
appropriate theory is a simple but powerful rep-
ertoire of equational laws (valid for whatever
notion of equality is adopted for process ex-
pressions), to allow transformations which pres-
erve meaning. Some such laws, for example

P& (Q& R) = (P& Q)& R (associativity of con-
junctioé§ are reaé&ly ébtained. But the alge-
braic theory is complicated by the presence of
an indexed family of binary constuctors, &

For example, what equivalent forms has P &_(Q& R)
for arbitrary A,B € Act? An infinity of binary
operators in an alaébraic theory is likely to
cause serious complication, and this case is no
exception.

o
Hoare [7] and Milne [8] have found one solution
to this problem. They first demand that to
each process P is associated an alphabet

&(P) €Act; then they adopt a single parallel
constructor ("||" for Hoare, "+" for Milne)
which requires its two argument processes to
synchronise on any action common to their alpha-
bets. Its rules of action, in our current
framework, are as follows:

P 3 p 03 o
(a€o(P) Na(Q))
pllo S p'f o ‘
p B p 0B o
(b¥a(Q)) ————— (bZa(P))

b
pllog >p'| g pllo 22 o

(Milne's constructor also allows actions which
consist of several simultaneous "particulate"
actions, similar to an idea which we discuss a
little later.)

This constructor has nice algebraic properties
such as associativity, as Hoare has shown, and
avoids the ocmplications of an infinite family
of constructors. There is one difficulty;
the alphabet of a process P cannot be deduced
only from the expression of P by constructors,
but must be specified independently. For
example, the algebraic law L4A on p67 of [7]

a.P |la.Q = a.(P|| @

(which appears obvious, perhaps) only holds
when the same alphabet is assigned to a.P and P,
and likewise to a.Q and Q.

One of the aims in choosing constructors for

CCs [9] was also to achieve a single parallel
constructor, without dependence upon the alpha-
bet assigned to its arguments. (Some of the
equational laws of CCS do indeed depend on the
sort of a process, but the sort is an alphabet
which is derivable from the process expression).
However, a different price was paid - as we
shall see below.

To define this constructor, we assume that
e €Act and that there is a bijection (7) over

Act-{e} such that Z=a; the bijection is
called complementation.

Now, the single binary constructor |, process
composition, is defined by the following rules:

P2 pr 0 3o

= (a#e)
Plo = p'|Q’

lm
lm

P Q

plo 3 p'lg rlo 3 o

It can be shown that Principle 6 (Disjunction)
is satisfied by | together with other (unary)
constructors; this is because the rules ensure
that any action "a" (#e) synchronises with its
complement but not with itself.

Further, because | imposes no constraint upon
the independent action of component processes
(since there is no side-condition in its second
and third rules), it needs to be accompanied
not by the hiding constructor -/A (which per-
fects an action by releasing it from the need
for further participation) but by the restrict-
ion constructor -\A (which prevents imperfect
occurrence of any member of A):

p Bé P!
5 (b Zn)
PA\a 2 p'\a

In fact hiding is expressible in terms of com-
position and restriction; for we may assume by
Principle 8 that the process a¥, whose only

action is a® 25 a¥, is expressible, and we can

easily see that
P/a = (P|am)\a

A similar expression exists for the general
form P/A.

However, the constructor |, together with other
(unary) constructors, does not satisfy Prin-
ciple 4 {(Conjunction). The reason is that, by
the first rule of composition, only two proc-
esses may be synchronised; the result of this
synchronisation is the perfect event e, which
is not susceptible to synchronisation with
further processes.

A way out of this difficulty is possible, which
at the same time will satisfy a further prin-
ciple which has wider claim to adoption:

Principle 9 (Simultaneity) The simultaneous
occurrence of two actions is also an action.

This may be supported as follows. At a key-
board, I may be able to interact with a process
P by depressing a key labelled "a"; consider
this as my observation of "a", or as my contrib-
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nzyn

uting "a" to an event. I may also be able to
interact with Q by depressing "b" (contributing
"b") . By linking the two keys, I can be sure
to contribute "a" and "b" simultanepusly (or to
observe "a" and "b" simultaneously, or to in-
teract with P and Q simultaneously). Thus,

my contribution of "(ab)" will be to a perfect
event which is a three-way synchronisation of
P,Q and myself. We can model all this by
introducing a binary operation X (product, or
synchronisation) over Act, and by stipulating
that (Act,x, ,e) is a commutative group. This
step was taken in [2] to yield a synchronous
version of CCS; but in that paper it was not
made sufficiently clear that it provides an
asynchronous process model which stands in its
own right, and which allows all the principles
which we have stated to be satisfied by just a
single binary constructor (an extension of |)
and the indexed family -\A of unary construct-
ors (plus constructors for sequential control).

In fact, the rules for composition reflect a
partial product of actions, defined only be-
tween complementary actions: (ad) =e. (We
shall generally write (ab) in place of axb).
The extension to a total product is therefore
naturally matched by an extension to the first
rule for |; the rules for composition now be-
come

p3p o Bo

plo {2 pi|gr

a

P> p 0> o

v

plo 25 o plg 2> plo
To justify our claims, it is convenient (per-
haps necessary) to assume that Act is the free
commutative group generated by a set Part =
{p,q9,...} of particles, or particulate actions
(see [10]). Thus every action "a" is a unique
product of non-zero powers of distinct part-

21 Zk
icles, a=p eee P . (If k=0 then a=e,_

and for negative powers we take p ? to mean pn).
If "a" and "b" do not contain the same part-
icle, then we write a#b, and if a#b for all

b €A we write a#A. Then we consistently re-
define the rule for -\A as follows:

p 25 pr
(a#a)
a |
P\A — P"Aa

(Note that e#A always holds, so restriction
cannot prevent the perfect event from occurr-
ing!). We may now express conjunction &_ in
terms of composition, restriction and renaming
as follows (we consider only the case that A
contains a single particle p):

~ - - _w
P Q = (plp,/pl| Qlp, /Pl | (2,2,2) )\ 1P, ,p,}

where p, and p, are chosen not to occur in P
or Q. "To see this note that the triple prod-
uct 5 pzp, together with the encapsulation of
p, and P, ensures that the composite process
pérforms the action p P2P1p P = p when, and
only when, both P and™Q per%orm p simultan-
eously.

Finally, the renaming of one particle by an-
other can be defined using only composition

and restriction:

Pla/p] = (P|(pa)“N\p

and more general (even multivalued) renamings
are readily definable.

The relative merits of the various parallel con-
structors can only be assessed by working with
them both theoretically and practically, and we
cannot perform this task here. Hoare points
out, in particular, that & and ” have the ad-
vantage that they preserve the property of det-
erminacy of a process, which | does not. This
is certainly a point in their favour. But
most realistic process constructions will also
use some form of encapsulation - either hiding
or restriction - and it can be easily seen that
the hiding constructor -/A does not preserve
determinacy in general. Thus, because hiding
is the form of encapsulation needed to accom-
pany & or ||, the weight of the advantage is
not too clear.

To summarise this section: we have described
two alternative sets of constructors which - to
the extent that our principles carry weight -
promise to express much of what we intend by
the indistinct notion of "process". By exam-
ining these constructors in greater depth, and
in particular by asking when two compound con-
structions are plausibly equivalent, we may hope
to make the notion more distinct.

Process Interpretations

We now wish to look at different ways of inter-
preting process constructions, We do not hope
to arrive at a best interpretation. Rather,
we point out some striking conceptual differ-
ences among the alternatives.

The interpretation which is probably the most
refined, in that it makes the fullest distinct-
ion which we would like to admit among our con-
structions, is in terms of Petri Nets, where we
shall label the event nodes by actions. We
omit the label e, the perfect event; other
action labels indicate potential events, or - in
our terminology - actions which are imperfect
but may be perfected by interaction. Consider
the following condition/event net, shown with a
natural decomposition into linear nets:

R P
h, (b6

P

Now, using constant O for the process which is
incapable of action, we can naturally express P
as follows:

P=¢P, [P [P\ {p,,pyP,:P, } where P =p .ap..(p,d).0,

P2= pllPZ-P3-OI P3= (Qb).C.p‘l.O

Of course there are many such decompositions of
P, each expressed by a different construction.
It is therefore a challenge - which I believe
has not been met - to find an equational theory
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of processes in which two constructions may be
proved equal exactly when they denote the same
net; this seems difficult even for finite
processes!

The problem is even harder if we wish to equate
nets which only differ in (certain) occurrences
of the perfect event. For example, we may
wish to equate P with the following net P',
gained by omitting two occurrences of the per-
fect event:

Some steps in this direction are surveyed in
[11]; however, even the most refined of these
equivalences (close to observational equival-
ence discussed below) do not respect causal
independence among events.

Indeed, the outstanding advantage of the net
interpretation is that concurrency, or causal
independence, among actions is very clearly
represented. If the concept of concurrency

is taken to be intrinsic in the notion of
process, then Net Theory perhaps offers us the
way to answer the question which was raised in
the previous section: what is a computable
process? A possible answer is that computable
processes are exactly those recursively enumer-
able acyclic nets‘yhich obey certain natural
conditions (for example, that the in-degree

and out-degree of nodes should be finite).

This answer would be strongly reinforced by a
theorem which states that this class is exactly
expressible by one or another set of construct-
ors as proposed in the previous section; the
choice of these constructors would in turn
receive justification.

The above examples of nets are purely causal;
they contain no non-determinism, since in Net
Theory the arbitrary order of occurrence of
causally independent events does not count as
non-determinism. By contrast with Net Theory,
several equivalences have been proposed for
our process constructions which do not preserve
causal independence; rather, they equate
causal independence with arbitrary occurrence
order, on the grounds that an observer or ex-
perimenter cannot detect causality. Such
equivalences are observational equivalence [9].
refusals equivalence [2] and testing equival-
ence [4],[3]. These equivalences differ, but
have one thing in common; the observer is
understood to be capable of observing only a
single action at a time - even if this action
is the simultaneous occurrence of two or more
particulate actions. It can be persuasively
argued that the notion of causality cannot be
based upon such an observer's experience, and
that an observer-based notion of process is
therefore defective. The behaviourist may
reply, also persuasively, that only what is
observable (or extensional) is real, and that
the notion of process should therefore not
represent causality; rather, causality -
though a convenient analytical tool - is best
regarded as an intensional property of a pres-

R. Milner

entation (or expression) of a process. Be
that as it may, the observer-based equivalences
do have a strong advantage; as their proponents
have shown, they all enjoy pleasant equational
theories which are complete at least for finite
processes, and even for larger classes of proc-
ess. Thus we see a real trade-off between
refinement of interpretation on the one hand,
and power of reasoning on the other hand.

We now turn to an example which will serve to
distinguish between some of the equivalences
based upon observation; to be precise, it dis-
tinguishes observational equivalence on the one
hand from refusals or testing equivalence on
the other. The point is not to claim that one
equivalence is correct, but rather to show that
each has a strong intuitive character, and that
the choice of equivalence is therefore a matter
to be determined by what is pragmatically accept-
able (would we be happy to buy a system Q if it
is cheaper than P, and distinguishable from P
by one equivalence but not the other?), and by
the proof techniques available for each equiv-
alence.

Consider a simple operating system 04 which can
be switched on each morning (action "a") and
which will then do your job and my job (actions
"b" and "c") in either order, the order being
determined by a perfect internal event:

We have presented O, as a net, to show that no
concurrency exists. Now compare O, with a
second system O, which may still do your job
and my job in elther order each day, the order
being determined by a perfect internal event
which occurs only on alternate days:

g

The expressions for the two systems in CCS are
as follows, using recursion:

01 = a.(e.b.c.O1 +e.c.b.01)

O2 = a.(e.b.c.a.b.c.02+...+ e.c.b.a.c.b.Oz)
Now 0, and O_ are not observationally equival-
ent, since tgis equivalence demands at least

the following for two processes: if one of

them can execute a sequence s of actions
(ignoring e) in such a way that its set of poss-
ible next actions is A, then the other must

also be able to execute s so that its set of
possible next actions is A, But 0, may exec-
ute s =abca so that its set of possible next
actions is A ={b,c}, while 0_ may only execute

s so that its set of possiblé next actions is
either A ={b} or A ={c}.

The first interesting equivalence to be prop-
osed which was significantly weaker than obser-
vational equivalence was the refusals equival-
ence of Hoare et al [2]. If R is a set of
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actions (e@R), then R is said to be a refusal
of the process P after the action sequence s

if P may, after executing s, be in a state
where no member of R is a possible action.

Now it is easily seen that R is a refusal of
Ol(resp.Oz) after s =abca iff {b,c} g&_R;

once we see this, we can easily prove that 0
and 0, are refusals-equivalent. A consider-
able merit of this equivalence relation is that
it appears to be the weakest which only equates
processes with the same possibility of becoming
deadlocked.

We can see the character of refusals equival-
ence much more dramatically if we observe that
both 0, and 0, are equivalent to a third oper-
ating System 6 which, at its very outset,
makes a sweeping choice {(without participation
from its user or environment) which determines
for every day in the future whether it will
perform your job or my job first on that day.
In other words, we are led to think of a non-
deterministic process as just as a set of
deterministic processes. This is Hoare's in-
tention, as he explains in his recent book [7];
we are to regard a non-deterministic process P
as a specification, which may be realised by
any deterministic process which is a member of
P, or perhaps by a less non-deterministic proc-
ess which is a subset of P. In fact the more
ardent adherents of this model are inclined to
regard the model of observatiocnal equivalence
(in which each process is interpreted as its
equivalence class under the relation) as pres-
enting too much of a description of each proc-
ess - revealing its ingension, or inner behav~
ior; they argue that it makes distinctions
which could not be detected by a natural exper-
imental procedure. One can reply, just as a
supporter the Petri Net model might reply,

that working with intensional descriptions is
valuable in analysis. However, what is inten-
sional and what is extensional is very depend-
ent on what is regarded as an experimental
procedure; in a recent paper, Abramsky [1]

has shown convincingly that there is a natural
hierarchy among experimental procedures, and
has even given strong evidence that observat-
ional equivalence corresponds exactly to the
strongest of all experimental procedures.

The third most notable equivalence of processes
is the testing equivalence of De Nicola and
Hennessy [4]. This corresponds to a natural
experimental procedure; the experimenter be-
haves as a testing process T, and in each app-
lication of test T to an object process P, P
may either pass or fail. Then P and Q are
said to be testing equivalent exactly when

(1) P sometimes passes T iff Q sometimes
passes T.
(2) P always passes T iff Q always passes T.

As an example, to compare the operating sys-
tems 03 and 0y we may apply the linear test

T = a.b.c.a.b.0; then (assuming that to pass
T is just to allow T to be fully executed) we
find that both 0, and 02 sometimes pass T but
do not always pass T; further analysis shows
that 0, and 0, are indeed testing equivalent.
De Nicola [3] shows that not all processes
need be used as tests; a class of simple fin-
ite tests achieves full power of testing,

The difference between refusals and testing
equivalence is rather subtle, and in fact not
essential; with only minor adjustment (see [3])
they become identical, and this coincidence
suggests that a robust notion has been discover-
ed. In fact, though we have no space to dis-
cuss it, observational equivalence has also a
satisfying alternative characterisation in terms
of modal logic [5], besides its more recent
experimental characterisation by Abramsky [1].

This discussion of interpretations has been
incomplete, and it is certain that other inter-
pretations which we have not mentioned will be
useful. But by concentrating upon a few, we
have been able to focus attention on some diff-
icult and important issues. One issue, that
of complete expressive power, deserves a little
more comment. We suggested earlier that an
important theorem would state that all comput-
able processes are expressible by one or another
constructor set. This is not the only kind of
complete expression to lecok for. Recently
Simone [13] has formulated another kind, and
proved that the MEIJE calculus (and also a form
of CCS) possesses it. More precisely, he
shows that any constructor which can be defined
by the form of operational rules adopted in the
first part of this paper can be expressed - up
to a very strong equivalence relation - by the
four basic constructors of the calculus. This
kind of theorem, asserting complete expressive-
ness for process constructions rather than proc-
esses, should be sought for every calculus.

4. CONCLUSION

We have examined various possible constructions
by which complex processes may be built from
simpler ones, and by setting up some principles
for what should be expressed by these construc-
tions we hope to have given evidence that cert-
ain elementary constructors are sufficient to
serve as a basis for a theory. We then dis-
cussed the interpretation of these constructions,
and found that several interpretations have
strong claims to consideration. The discuss-
ion has certainly omitted some troublesome
questions - for example, how divergence (infin-
ite sequences of perfect events) should be
treated - and we must admit that many of these
questions remain to be properly resolved.
Nevertheless, we hope to have shown that a well-
knit theory of distributed processes is evolving,
in which the different equivalence relations
find their place in a hierarchy.
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