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A Calculus of Mobile Processes, II 
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This is the second of two papers in which we present the x-calculus, a calculus 
of mobile processes. We provide a detailed presentation of some of the theory of the 
calculus developed to date, and in particular we establish most of the results stated 
in the companion paper. k? 1992 Academic Press, Inc. 

INTRODUCTION 

This is the second of two papers in which we present the rc-calculus, a 
calculus of mobile processes. The companion paper (Milner, Parrow, and 
Walker, 1989a) contains an introduction to the calculus through a 
sequence of examples, together with statements of many results about it. 
The purpose of the present paper is to provide a detailed presentation of 
some of the theory of the calculus developed to date, and in particular to 
establish most of the results stated in the companion paper. Once the 
motivation and intuition for the n-calculus are understood, with the help 
of the companion paper, the present paper serves as a self-contained 
development of the theory. To achieve this we have found it necessary to 
repeat some material from the companion paper. 

Section 1 contains a description of the syntax of agents and a discursive 
presentation of the transitional semantics. In Section 2 we present and 
motivate the definitions of strong bisimulation and strong bisimilarity, 
strong equivalence, and a useful family of indexed equivalences. Section 3 
contains a series of properties of strong bisimilarity, while properties of 
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42 MILNER,PARROW, AND WALKER 

strong equivalence and indexed equivalences are developed in Section 4. 
A complete axiomatization for finite agents is presented in Section 5. 

There are many points of interest in the detailed development of the 
theory. However, in order to reduce the length of the paper and to avoid 
giving the impression that the theory generally is more complicated or sur- 
prising than it in fact is, we do not include complete proofs of all results. 
Instead, the Appendix contains extracts giving a taste of the techniques 
used. Complete proofs may be found in Milner, Parrow, and Walker 
(1989b). 

1. AGENTS AND THEIR TRANSITIONAL SEMANTICS 

1.1. Agents 

We first recapitulate some of the definitions and the notation from our 
companion paper. Assume an infinite set Jf of names and use x, y, Z, w, 
u, u as metavariables over names. Assume also a set of agent identifiers. 
Each agent identifier A has a nonnegative arity. 

DEFINITION 1. The set of agents is defined as follows (we use P, Q, R 
as metavariables over agents): 

P::=O 

1 Xy.P 

I X(Y).P 
1 t.P 

I (XV 

I Cx=ylP 

IPIQ 
lP+Q 
I A(Y,, . ..> Y,) 

Here 0 is a nullary operator, my., x(y)., 5.) (x), and [x = y] are unary 
operators, I and + are binary operators, and n is the arity of A. 

The order of precedence among the operators is the order listed above. 
For a description of the intended interpretation of agents see Milner, 
Parrow, and Walker (1989a). In that paper we also use a general summa- 
tion operator C; in the present paper we will be satisfied with nullary and 
binary summation (0 and + ) and regard general summation as a derived 
operator. 
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DEFINITION 2. In each agent of one of the forms x(y) .P and (y)P the 
occurrence of y within parentheses is a binding occurrence, and in each case 
the scope of the occurrence is P. An occurrence of y in an agent is said to 
be free if it does not lie within the scope of a binding occurrence of y. The 
set of names occurring free in P is denoted fn(P). We sometimes write 
fn(P, Q, .-, x, Y, . ..) as an abbreviation for fn(P) u fn(Q) u .. . u {x, y, . ..}. 

DEFINITION 3. A defining equation for an agent identifier A of arity n is 
of the form 

A(x 1 ) . ..) x,) Ef P, 

where the xi are pairwise distinct and fn(P) c (x1, . . . . x,}. 

In the following we assume that each agent identifier A has a unique 
defining equation. 

DEFINITION 4. An occurrence of a name in an agent is said to be bound 
if it is not free. We assume that the set of bound names of P, bn(P), is 
defined in such a way that it contains all names which occur bound in P 
and that if A(f) dgf Q then bn(A(Z))= bn(Q), where 2=x,, . . . . x,. We 
write n(P) for the set fn(P) u bn(P) of names of P. 

To avoid pathological technical difficulties we further assume that the 
family of defining equations of agent identifiers is such that for each iden- 
tifier A, bn(A(a)) is finite. 

DEFINITION 5. A substitution is a function CJ from M to M which is 
almost everywhere the identity. If xic = yi for all with i with 1 < i < n (and 
XC = x for all other names x), we sometimes write { y,/x,, . . . . y,/x,} or 
{j/Z} for C. 

DEFINITION 6. Pa denotes the agent obtained from P by simultaneously 
substituting ZCJ for each free occurrence of z in P for each z, with change 
of bound names to avoid captures. In particular the following hold where 
E denotes syntactic identity: 

(x(Y).P)~~x~(Y’).P{Y’/Y}~ where y’#fn((y)P, Pa)andy’o=y’ 

((Yvv = (Y’)p{Y’/Y)a where y’$fn((y)P, Po)andy’a=y’. 

DEFINITION 7. The symbol E, denotes the relation of alpha-conver- 
tibility on agents defined in the standard way. (The subscript a here bears 
no relation to the actions 01 defined below.) 
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1.2. Actions 

Precisely as in CCS (Milner, 1989) a transition in the z-calculus is of the 
form 

PL Q. 

Intuitively, this transition means that P can evolve into Q, and in doing so 
perform the action U. In our calculus there will be four kinds of action a as 
follows: 

1. The silent action r. As in CCS, P-k Q means that P can evolve 
into Q, and in doing so requires no interaction with the environment. Silent 
actions can arise naturally from agents of form t. P, but also from 
communications within an agent. 

2. A free output action Zy. The transition P-% Q implies that P can 
emit the free name y on the port X. Free output actions arise from the 
output prefix form Zy.P. 

3. An input action x(y). Intuitively, P 3 Q means that P can 
receive any name w  on the port x, and then evolve into Q( w/y ). Note that 
this departs slightly from CCS, where an input action contains the actual 
received value. Here, (y) instead represents a reference to the place where 
the received name will go; y is enclosed in brackets in order to stress this 
fact. Input actions arise from the input prefix form x(y). P. 

4. A bound output action X(y). This kind of action has no counter- 
part in CCS. Intuitively, P = Q means that P emits a private name (i.e., 
a name bound in P) on the port X, and (y) is a reference to where this 
private name occurs. As in the input action above, y is enclosed in brackets 
to emphasize that it is a reference and does not represent a free name. 
Bound output actions arise from free output actions which carry names out 
of their scope, as, e.g., in the agent (y)Xy. P. 

The silent action and free output actions will collectively be called free 
actions, while input actions and bound output actions will be called bound 
actions. Thus, the bound actions carry “references” rather than values; 
these references are in the form of names within brackets. 

The free output and bound output actions will collectively be called 
output actions, or sometimes negative actions (actions of negative polarity). 
Similarly, the input actions will be called positive actions (actions of 
positive polarity). Two actions must be of opposite polarity in order to 
combine into an internal communication. 

In the output and input actions mentioned above, x is the subject and y 
the object or parameter. The object is said to be bound in the bound actions 
and free in the free actions. The set of bound names bn(a) of an action CI 
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is the empty set if CI is a free action; otherwise it contains just the bound 
object of cz. The set offree names fn(cr) of a contains the subject and free 
object (if any) of a, and the names n(a) of a is the union of bn(a) and fn(a). 
Note that n(r) = 0. A summary of these definitions appears in Table 1. 

1.3. Transitions 

We now proceed to define the transition relations % on agents. 

DEFINITION ,8. The transition relations are the smallest relations satisfy- 
ing the rules of action in Table 2. 

This definition has the same structure as the corresponding definition in 
CCS. However, the details differ to a considerable extent. Briefly stated, the 
differences between CCS and the present calculus emanate from the restric- 
tion operator (x), which in the present calculus restricts the scope of both 
action subjects and action objects. It is worth noting that the complication 
over CCS comes from the ability to restrict the scope of action objects, and 
not primarily from the fusion of “port names” with “data values.” We will 
here explain this issue. 

1.3.1. Communicating Free Names 

To begin, consider the usual CCS rules for deriving an internal 
communication. These are 

- P%p’ QZQ’ 

tiv.P”“- P a(x).PZ P{u/x} PlQA P’IQ’ 

Thus, the CCS value variable x is instantiated to a value v when an action 
is inferred from a(x). P; the rule admits an instantiation to any such value, 
and hence the agent a(x). P can combine with any output transition in the 
communication rule. We call this scheme early instantiation, since variables 
are instantiated at the time when the input transition is inferred. 

TABLE 1 

The Actions 

a Kind Free/bound Polarity fn(a) f-Ma) 

T Silent f  0 
fY Free output f  - 

.X(Y) Input b + 
-“s-(Y) Bound output b - 
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TABLE 2 

Rules of Action 

TAU-ACT: - OUTPUT-ACT: - 

s.PL P .fy.P3 P 

- 
INPUT-ACT: 

x(z).P2 P{“‘/Z} 
w4fn((--P) 

PAP PAP 
SUM: MATCH: 

P+Q-e, P’ [x=x]PA P 

*DE: PiNi) -5 P’ A(P) 2 P 

A(j)-l, P 

PAP’ 
PAR: bn(a)nfn(Q)=@ 

f’lQ5 P’IQ 

cohf: 
pzp’ Q%Q, cLosE: p “(“‘! p’ Q XlwJ Q’ 

PIQ~f”IQ’W~i PlQA (wW’lQ’, 

PL P’ P-2 P’ 
RFS: Y4n(Go OPEN: 

Y #XT 

(YIP& (YIP’ 
(y)p2 piw,yj w&fn((.v)p’) 

Note. Rules involving the binary operators + and I additionally have symmetric forms. 

Although rules representing early instantiation can be given for the 
n-calculus we instead adopt a scheme of late instantiation, where the input 
actions contain bound objects which become instantiated only when an 
internal communication is inferred. Our reason is simply that this will 
admit a notion of equivalence for which the algebraic theory appears some- 
what simpler; we defer the treatment of early instantiation to a forthcoming 
paper. The late instantiation scheme in the n-calculus is represented by the 
rules OUTPUT-ACT, INPUT-ACT, and COM in Table 2. We have explored a 
number of alternative rules, but they all seem to be essentially equivalent. 
Notice that scope intrusions resulting from COM if y occurs bound in Q’ are 
properly taken care of since a bound y is renamed in the substitution 
Q’{ y/z} (cf. Definition 6). 

However, bound objects require careful treatment: a bound object is 
essentially a reference to locations within an agent, and it is important that 
such references are maintained in all rules of action. The problematic rule 
in this respect is one of the usual CCS rules for parallel composition, 

PL P' 
(1) 

PlQL P’IQ 
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The corresponding rule in the 7z-alculus is PAR in Table 2; it is different only 
in that it has a side condition bn(cr) n fn(Q) = a. To see that this condition 
is needed consider a transition P -% P’. Here z is a reference to locations 
in P’; the intuition is that in a subsequent communication a name will be 
received and substituted for the z:s in P’. But if z also occur free in Q, then 
in the conclusion of (1) the bound object z will refer to additional locations 
within Q. A subsequent communication will then substitute not only the 
z: s in P’ but also the free z: s in Q. For example, from INPUT-ACT, (I), and 

COM we can derive the obviously incorrect transition 

(x(4.PlQ)l~y.R~ (PlQ,{~~lz}lR. (2) 

This transition is incorrect since the free name z in Q is only accidentally 
the same as the bound name z in .X(Z). P. For this reason we require in PAR 

that (1) can only be applied when a name bound in c1 does not occur free 
in Q. This also explains why INPUT-ACT cannot be simplified to the 
following rule: 

With this simpler rule the side condition in PAR would prevent all input 
transitions from, e.g., x(z). P 1 Zy . Q. The change of bound name in INPUT- 
ACT is harmless since bound names represent references to places within an 
agent. Clearly, if w  does not occur free in P, then w  refers to the same 
places in P{ w/z} as z refers to in P. So we allow any such w  (and also z 
itself) to stand for z. Instead of the incorrect (2) we can now correctly infer 

The side condition in INPUT-ACT ensures that w  = z or w  $ fn(P), and the 
side condition in PAR ensures that w  4 fn( Q). Hence the agent after -L can 
be simplified to 

which is the expected result of the communication. 

1.3.2. Communicating Bound Names 

The rules in the x-calculus must accommodate scope extrusions, as for 
example in 

(v)-f~.Plx(~).Q~ (Y)(PIQ{Y/~I,. (3) 

Note that we expect this transition to be correct only if either 4’ is z or y 
is not free in Q: otherwise the restriction (y) in (y)(PI Q{ y/z}) will bind 
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occurrences of names in Q which are only accidentally related to the extru- 
sion. If this requirement is not fulfilled, we expect an alpha-conversion of 
the bound y in the resulting agent, 

CJ~-WPI~(~).Q~ (u’)(P(y’/y}lQ{y’/~}), 

where y’ is a fresh name. 

(4) 

We achieve the desired effect with two additional rules of action, OPEN 
and CLOSE, which have no counterparts in CCS. The scope opening rule 
OPEN transforms a free output action to a bound output action, and 
removes one restriction operator. The fact that y was bound is now 
represented in the action, which contains a reference to the places where 
this bound y occurred. Since the objects of bound output actions represent 
references, they must also obey the side condition in the rule PAR: a bound 
object may not occur free in Q in that rule. Therefore we allow a renaming 
in OPEN just as in the input prefix rule: the particular name representing the 
reference is unimportant as long as it refers to the same locations in P'. 
Note that the side condition ensures that J’ # X, so the subject in the output 
action cannot be the same as the restricted name. 

In the scope closing rule CLOSE, a bound output action combines with an 
input action. Intuitively, the rule means that the bound object is received, 
and then the restriction of this bound name must reappear: that name is 
still private although its scope has grown. Nore that since both INPUT-ACT 
and OPEN allow an almost arbitrary choice of bound names, the two 
premises of CLOSE can use the same bound name without any loss of 
generality. 

As an example of deriving a scope extrusion, consider again (3). We have 
from OPEN that 

(y)Xy.P~P{w/y) 

for all w  such that u’=y or u’$ fn(P). From INPUT-ACT we have that 

x(z).Q- Q{w/z} 

for all w  such that w  = z or w  4 fn(Q). Applying the scope closing rule we 
get 

for all w  satisfying both the side conditions. If additionally y = z or y does 
not occur free in Q, then y itself satisfies the accumulated conditions on w. 
We can then choose y instead of w  in this derivation, so the final agent 
becomes 
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which is precisely the agent in (3). If y # z and y is free in Q, then the side 
condition in the closing rule prevents this derivation, but we can always 
choose a fresh name y’ in place of w  and obtain precisely the transition (4). 

2. STRONG BISIMILARITY AND EQUIVALENCE 

2.1. Strong Bisimilarity 

We present and motivate here the definition of strong bisimilarity in the 
rc-calculus. It is helpful first to recapitulate ordinary CCS, where strong 
equivalence may be defined through simulations: a binary relation Y is a 
simulation if PYQ implies that 

If PAP’ then for some Q’, Q A Q’ and P’YQ’. (5) 

In other words, any transition from P must be simulated by a transition 
from Q, such that the derivatives P’ and Q’ remain in the simulation. 
A binary relation 9’ is a bisimulation if both Y and its inverse are simula- 
tions. Strong equivalence on agents is defined as the largest bisimulation. 

We apply the same idea to the rr-calculus. The main modification is that 
we must take special acount of actions with bound objects. For example, 
if z 4 fn(R, x) we obviously want the agents 

P=x(y).R 

Q- (z)x(y).R 

to be bisimilar, even though P has an input transition * which Q cannot 
simulate exactly. The reason that this difference between P and Q is 
unimportant is that Q (and P) have other transitions 3 which only differ 
in the choice of the bound name w. A bound object is merely a reference 
to locations within an agent, and the particular name used for this 
reference is unimportant- an external observer cannot observe the identity 
of the bound name. So, for the purpose of defining bisimilarity, we consider 
only bound objects which are completely fresh, i.e., do not occur in any of 
the agents to be compared. Recalling the rules of the previous section the 
limitation to use fresh bound objects is harmless: for any transition with a 
bound object there is a corresponding transition where the object is 
suitably fresh (cf. also Lemma 2 in Section 3.1 below). 

Another important point is that in order to simulate an input action, it 
is not sufficient that the derivatives P’ and Q’ continue to simulate. 
Intuitively, an object in an input action is a placeholder for something to 
be received, and can become instantiated to an arbitrary name. We thus 
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require that P’ and Q’ continue to simulate for all instanriutions of the 
object in the input action. These considerations lead to the following 
definition: 

DEFINITION 9. A binary relation Y on agents is a (strong) simulation if 
it satisfies the requirements in Table 3. The relation Y is a (strong) 
bisimulation if both Y and its inverse are simulations. The relation A, 
(strong) bisimilarity, on agents is defined by P L Q if and only if there 
exists a bisimulation Y such that PYQ. 

It is straightforward to verify that A is a bisimulation and hence the 
largest bisimulation. 

Note that requirement (5) applies only to free actions CI (clause l), while 
other requirements are associated with the bound actions. Also, note that 
the clauses for input and bound output actions are different. In order 
to simulate an input transition, clause 2 requires Q to have a similar 
transition such that the derivatives P’ and Q’ continue to simulate for all 
instantiations w  of the bound objects. On the other hand, the bound output 
transition in clause 3 intuitively means that P can emit a private name, and 
(y) refers to the places where this private name used to occur. In order to 
simulate such a transition Q should similarly emit a private name and 
continue to simulate P’. This is sufficient, since the bound object y cannot 
become instantiated through an interaction with the environment. 

As an example consider the following equation, where we abbreviate Xv 
to -U, and y(u) to v, and omit a trailing .O: 

.UII’h. X.y+y.X. (6) 

This equation is true when x # y and u # v, since then any transition by the 
left hand side can be simulated by a transition of the right hand side, and 
vice versa. On the other hand, 

.Ul.u 7t x.x+x.x, (7) 

TABLE 3 

Definition of (Strong) Simulation 

Y is a simulation if P.VQ implies that 

1, If P 5 P’ and a is a free action, 
then for some Q’, Q 5 Q’ and P’YQ’ 

2. IfP”“! P’andy$n(P,Q), 
then for some Q’, Q -% Q’ and for all w, P’( w/y) YQ’{ W/Y} 

3. IfP%P’andy$n(P,Q), 

then for some Q’, Q 2 and P’YQ’ 
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since the left hand side has an additional r-transition. It follows that A is 
not in general preserved by substitutions of names. (This is not surprising; 
in CCS strong equivalence is also not in general preserved by substitution 
of port names, for the same reason.) It also follows that the equation 

(y)“.(.U(y) A (y)iy.(X.y+y..Y) 

is true, since a bound output transition of the left hand side can be 
simulated by a bound output transition of the right hand side, and vice 
versa. Note that the bound objects in these transitions cannot be x, since 
x occurs on both sides of the equation. In contrast, 

z(y).(Xly) ?r. z(y).(.f.y+y..U), 

since clause 2 requires the derivatives of the leading input transitions to be 
similar for UN instances of y, and they are not similar when y is instantiated 
to X. It follows that strong bisimilarity is not preserved by input prefix. 

2.2. Strong Equivalence and Distinctions 

Since strong bisimilarity is not preserved by substitution of free names 
we will sometimes refer to it as (strong) ground equioalence; this can be 
thought of as equivalence under the assumption that different names will 
not be identified, i.e., names behave as constants. It is then natural to con- 
sider the liner equivalence obtained as bisimilarity under all substitutions 
of names: 

DEFINITION 10. P and Q are (strongly) equivalent, written P- Q, if 
Pa L Qcr for all substitutions (r. 

Thus (6) does not hold for strong equivalence; instead we have the more 
general 

Xly-x.y+y.x+ [x=y]z. 

In a sense, for the purpose of strong equivalence names behave as variables 
in that equivalence must hold for all instantiations of free names. As 
pointed out in our companion paper there is a spectrum of equivalences 
between L. and - depending on which names may be assumed to be 
distinct: 

DEFINITION 11. A distinction is a symmetric irreflexive relation between 
names. We shall let D range over distinctions. A substitution o respects a 
distinction D if, for all (x, y) E D, X(T # ya. 
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DEFINITION 12. P and Q are strongly D-equivalent, written P-D Q, if 
Pa L Qo for all substitutions B respecting D. 

Note that an immediate consequence of this definition is that if DE D’ 
then P- ,, Q implies PhDi Q. As a simple example, we have 

Here we have used a natural abbreviation, allowing ourselves to write a set 
A c JV when we mean the distinction A x A - Id.,., which keeps all mem- 
bers of A distinct from each other. Clearly, then, we have the two extreme 
cases 

2.3. Late and EarIy Bisimilarity 

We close this section with a discussion of an interesting alternative 
definition of bisimulation obtained by commuting the quantifiers in 
clause 2 in Table 3: 

2’. IfPs P’and y$n(P, Q), 

then for all w, there is Q’ such that Q 3 Q’ and P’{ w/y> 9’Q’(w/y}. 

Write A’ for the ground equivalence obtained with this modification. 
Now A ’ is strictly weaker than ,L (and the corresponding non-ground 
equivalence N ’ is strictly weaker than N ), i.e., more agents are equivalent 
when clause 2’ is adopted. The reason is that clause 2 requires that there 
be one simulating input transition which is equipotent for all instances of 
the object. In contrast, clause 2’ only requires that for each instance of the 
object there exist a simulating transition (and these simulating transitions 
may be different for different instances). Thus, for the purpose of A’ the 
instantiation of the object can be regarded as happening simultaneously 
with (or even before) the input transition, and for L the instantiation may 
be regarded as happening after the transition. For this reason we some- 
times call N’ early bisimilarity and A late bisimilarity. 

As an example consider the following agents: 

P=x(u).R+x(u).O 

Q=P+x(u).[u=z]R. 

It always holds that P A ’ Q, but P A Q is not true in general. To see this 
consider the transition 

Q% [u=z]R. (8) 
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P has no transition which simulates (8) for all instantiations of U. However, 
for each instantiation of u there is a simulating transition: for z it is 

p”‘“!R 

(since ([u=z]R)(z/u} i;.’ R(z/u)) and for all other names it is 

p”‘“Io 

(since ([u = z] R{z’/u} A’ 0 E O{z’/u} for all z’ #z). A similar but slightly 
longer example not involving the matching operator also exists. 

It is interesting to note that with the early instantiation scheme men- 
tioned in Section 1.3.1 the natural concept of bisimilarity would coincide 
with early bisimilarity, while late bisimilarity would be hard to define. Our 
late instantiation scheme has thus the advantage that both versions of 
bisimilarity can easily be treated. Although early bisimilarity is closer to the 
original idea of equivalence as presented in CCS its equational theory is 
more complicated, and we defer a treatment of it to a forthcoming paper. 

3. PROPERTIES OF STRONG BISIMILARITY 

The main contribution in this paper is to develop the properties of 
strong bisimilarity and equivalence. Even though equivalence is perhaps 
the more interesting of the two (since it turns out to be a congruence) it 
is necessary to first derive the properties of bisimilarity. 

3.1. Transitions and Alpha-Conversion 

In this subsection we give a series of fundamental lemmas which under- 
pin many later results. None of the results is unexpected and their proofs 
are mostly straightforward, though they do require careful attention to 
detail. Moreover, care is also required in finding a correct order of presen- 
tation as the proofs of some of the lemmas rely on properties established 
earlier in the series. 

The first lemma describes the relationships among the free names of an 
agent, the names of its possible actions, and the free names of its immediate 
derivatives. 

LEMMA 1. Zf P-% P’ then (i) fn(cc)cfn(P) and (ii) fn(P’)zfn(P)u 
bn(cc). 

Proof By induction on depth of inference. See the Appendix. 1 
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DEFINITION 13. In the following lemmas the phrase 

if PA P’ then equally Q --% Q’ 

means that if P--% P’ may be inferred from the transition rules then so, 
by an inference of no greater depth, may be Q --% Q’. 

The reason for introducing this notion, and for including it in the 
statements of Lemmas 2-5 to follow, is that it facilitates the proof of the 
properties of interest. It is not used anywhere other than in the present 
series of lemmas. 

As discussed in the preceding sections the following lemma, whose con- 
tent may be paraphrased by saying that the object of a bound action may 
be “almost any” name, is of the utmost importance. 

LEMMA 2. Suppose that P% P’, where a = x or a = X and that 
z # n(P). Then equally for some P” -z P’{ z/y}, P 2 P”. 

Proof. By induction on depth of inference. 1 

The following two lemmas are concerned with the relationship between 
action and substitution. First we define the result of applying a substitution 
to an action. 

DEFINITION 14. If cc is an action and r~ a substitution then ag is defined 
as follows: 

TO=T 

(a(y = ady) if a=x or a=%. 

The next lemma asserts that if an agent P may perform an action a and 
thereby evolve into P’, then up to alpha-equivalence Pa may perform ac 
and evolve into P’a. In the case a = a(y), where a = x or a = X, a side con- 
dition is necessary. For in general, PO may not admit actions with y as 
bound object, and y may occur free in P’. 

LEMMA 3. Zf P - P’, bn(a) n fn(P’o) = 0, and (T r bn(a) = id, then 
equally for some PI’ zs P’g, Pa S P”. 

ProoJ By induction on depth of inference. 1 

The full converse of the preceding lemma does not hold. As a simple 
illustration of this point suppose that Pr’Zy.Olw(z).O and o= {W/X}. 
Then Pa --% (010) but P cannot perform a r-action. However, the 
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following partial converse does hold. A more general statement is possible 
but the one below suffices for the present development. 

LEMMA 4. ZfP{ w z / } -5 P’, where w 4 fn(P) and bn(cr) n fn(P, w) = 0, 
then equally for some Q and j3 with Q{ w/z} --1 P’ and J?a = CI, P --% Q. 

Proof By induction on depth of inference. 1 

In stating the preceding three lemmas we have been careful in our use of 
the relation of alpha-convertibility of agents. The content of Theorem 1 
below is that alpha-convertibility is a strong bisimulation and thus 
alpha-convertible agents are strongly bisimilar. To prove it we require the 
following lemma which describes the relationship between the actions of 
alpha-convertible agents. 

LEMMA 5. Suppose that P = 2 Q. 

(a) Zf u is a free action and PL P’ then equally for some Q’ with 
P’ =a Q’, Q -% Q’. 

(b) If P”‘“! P’, where a=x or a=%, and z$n(Q) then equally for 
some Q’ with P’{.z/y} --a Q’, Q% Q’. 

Proof: By induction on depth of inference. [ 

THEOREM 1. --a. is a strong bisimulation. 

ProoJ Straightforward using the preceding lemma. 1 

Having established this theorem, in what follows we shall freely identify 
alpha-convertible agents writing = for = ?. 

3.2. Bisimilarity as an Equivalence 

As we saw in Section 2.1 strong bisimilarity is not, in general, preserved 
by substitution. However, the following important result holds. 

LEMMA 6. UP-Q and w$fn(P, Q), then P{w/z} L Q(w/z}. 

Proof. The relation’ Y = U, < w  Yn is a strong bisimulation, where 

yopo= A 

Y n+l = i(p(wlz), Q{wIz))Ip%Qe, w4fn(p, Q)>. 

See the Appendix. 1 

The next objective is to establish that L is an equivalence relation 
preserved by many of the operators. To prove preservation in the case of 
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the composition and scope restriction operators it is necessary to construct 
a suitable bisimulation. It turns out that this construction is useful in other 
contexts and thus we isolate it in a definition. 

DEFINITION 15. A relation Y is a strong simulation up to restriction iff 
whenever PYQ then 

1. if w  $ fn(P, Q) then P{ w/z} 9’Q{ w/z}, and 

2. (a) if P 3 P’ then for some Q’, Q -% Q’ and P’YQ’, 

(b) if y 4 n(P, Q) and P * P’ then for some Q’, Q “‘lr? Q’ and 
for all u, P’{o/y}YQ’(o/y}, 

(c) if y 4 n(P, Q) and P 2 P’ then for some Q’, Q a Q’ and 
P’YQ’, 

(d) if P ---% P’ then for some Q’, Q L Q’ and either P’YQ’ or 
for some P”, Q” and w, P’ = (w) P”, Q’ E (w)Q” and P”YQ”. 

A relation Y is a strong bisimulation up to restriction iff both 9’ and Y-’ 
are strong simulations up to restriction. 

The import of the next result is that in order to establish that P A Q it 
suffices to find a strong bisimulation up to restriction containing (P, Q). 

LEMMA I. If 9 is a strong bisimulation up to restriction then 9’ E ,L. 

ProoJ: We show that Y* = U, <w Yn is a strong bisimulation where 

Y. = 9 

9 n+~ = WV’, (w)Q)lWQ, WEW. 

See the Appendix. 1 

Combining the preceding results we can now prove the following. 

THEOREM 2. (a) A is an equivalence relation. 

(b) ZfP A Q then 

tx.P A. a.Q, c( a free action 

P+RL Q+R, 

CX=.YIP A CX=YIQ, 

PIR A QIR 

(w)P L (w,Q. 



CALCULUS OF MOBILE PROCESSES, II 51 

(c) If for all oEfn(P, Q, JJ), P{u/y} A Q{u/.Y} then x(y).P A 

x(~1.Q. 
ProoJ For details see the Appendix. The proof ideas are 

(a) Reflexivity and symmetry are obvious but transitivity is not. 
Indeed it is not in general the case that if Y; and 5$ are strong bisimula- 
tions then so is sf Y;. However, it is the case that A L is a strong 
bisimulation. 

(b) The first three assertions are easily verified. The other two are 
proved by showing that {(P 1 R, Q 1 R) 1 P A Q } is a strong bisimulation up 
to restriction, and by observing that by Lemma 6, L is a strong bisimula- 
tion up to restriction. 

(c) This is straightforward using Lemma 6. 1 

This theorem establishes that bisimilarity is almost a congruence; it is 
preserved by all operators but input prefix. Although x(y). P 2 x(y). Q 
does not follow from P A Q (as established in Section 2.1) it follows from 
the stronger assumption that P and Q are bisimilar for all instances ofy. 

3.3. Algebraic Laws for Bisimilarity 

We proceed to investigate further the theory of A by stating and proving 
a collection of algebraic laws. To begin, there are the obvious laws for sum- 
mation from CCS, which establish that 0 is a zero for summation, and that 
summation is idempotent, commutative, and associative: 

THEOREM 3. 

(4 P+OAP 

(b) P+PAP 

(cl P,$P, A P,+P, 

(d) P, + (Pz + P3) A (P, + Pz) + P,. 

Proof: The relations 

YO={(P1+O,P1)IP1agent}uId 

,4V,={(P,+P,,P,)~P,agent}uId 

~={(P,+P,,P,+P,)IP,,P,agents}uId 

~={(P1+(Pz+Ps),(P,+P1)+P~)IP1,PZ,P~agents}uId, 

where Id is the identity on agents, are easily seen to be strong bisimula- 
tions. 
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There are also the following simple laws for agent identifiers and 
matching: 

THEOREM 4. ZfA(.f) EfP then A(J) A P(J/.?}. 

Proof: It is straightforward to show that the relation 

Y= (Mi3, P(jV},} uId 

is a bisimulation. 1 

THEOREM 5. 

(a) [x=y]P h. 0 if x # y 

(b) [x=x] P A P. 

Proof We can prove the following relations to be strong bisimulations: 

%= {(Cx=yIP,, O)IP, agent, xfy} 

Yb= {([x=x]P1, P,)fP, agent}uId. m 

These are the only laws for A which correspond to the “dynamic” laws 
in CCS (of course matching is not present in CCS, but it qualifies as a 
“dynamic operator” since it disappears in the derivative of a transition). 
The “static” laws in CCS are related to the relabelling, restriction, and 
parallel operators. In the rc-calculus there is no relabelling operator. 
Moreover, our restriction operator is perhaps not quite a static operator 
since it may disappear (through an application of the OPEN rule) and 
reappear in a different place (through the CLOSE rule). Nevertheless, it 
satisfies many natural laws: 

THEOREM 6. 

(a) (YIP A p if v4fW) 
(b) (Y)(Z)P A (Z)(Y)P 
(c) (vNP+Q) A (Y)P+(Y)Q 

(d) (y)cr.P L cc.(y)P if y4n(a) 

(4 (y)a.P A. 0 if y is the subject of ct 

Proof. We prove the following relations to be strong bisimulations: 

Z= {((Y)P~, P,)IP, agent, y4fn(P,)) 

%= {((Y)(z)P~~ (z)(~)P,)lp, agent)uId 
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~{KW, +pd, (.JW + (~)p~)Ih p2 agents) uId 
%= {W~.pl~ ~.bVl)Ipl agent, dn(a)) uId 
~={((y)~(.P~,O)IP~agent,ysubjectofcc}. 

We must include Id in 9, since one of the restrictions may disappear 
because of the OPEN rule. 1 

Theorem 6 (a) just says that vacuous restrictions can be removed, and 
Theorem 6 (b) that restrictions commute. Theorem 6 (c) implies that 
restriction distributes over summation, while the last two parts of 
Theorem 6 relate restriction and prefix. It is worth noting that neither 
Theorem 6 (d) nor Theorem 6 (e) is immediately applicable when y is the 
object in CL If y is a bound object, then an alpha-conversion will make an 
application of Theorem 6 (d) possible. But if y is a free object, i.e., CI = Xv, 
then the restriction cannot be propagated through the prefix operator. This 
is in contrast with the situation in CCS, where all restriction operators can 
be eliminated while equivalence is preserved. In the rr-calculus, agents of 
type (y).?~. P (when x # y) contain an irreducible restriction operator; this 
type of agent will be of importance for the completeness proof, so we 
define: 

DEFINITION 16. If x#y, then X(y).P means (y)Xy.P, and the prefix 
X(y) is called a derived prefix. 

Thus, by Theorem 6 (d) and (e), any restriction operator can either be 
propagated through a prefix or form a derived prefix. It will often be useful 
to treat derived prefixes along with ordinary prefixes. In these situations it 
is important that Theorem 6 also holds for derived prefixes: 

THEOREM 7. Theorem 6 is valid also if tl ranges over derived prefixes. 

Proof. Directly from Theorem 6: 

(d) (y)(z)Xz.P A (z)(y)Xz.P k (z)Xz.(y)P if 2, x#y 

(e) (y)(z)jz.P L (z)(y)jz.P A (z)O A 0. 1 

We proceed with some expected laws for parallel composition. 

THEOREM 8. 

(a) PI0 A P 

(b) PAP, L P,IP, 

(cl (Y)Pl I p, t̂ (Y)(Pl I Pz) if y 4 fn(Pd 

(d) (P,If’,)IP, L P,I(P,IPd. 
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Proof: See the Appendix. Note that in order to prove (d) of the 
theorem, we must first establish (c), since a parallel composition may 
generate a restriction operator through the CLOSE rule. To prove (c) and 
(d) we show that certain relations are strong bisimulations up to A, and 
restriction. The concept of a strong bisimulation up to L is the obvious 
analogue of a similar concept from CCS. It differs from a strong bisimula- 
tion in that any transition need be simulated only up to strong bisimilarity. 
To prove (c) and (d) we must combine this idea with that of bisimulation 
up to restriction introduced earlier. 1 

Theorem 8 (a), (b), and (d) assert that 0 is a unit for parallel, and that 
parallel is commutative and associative. Part (c) is the scope extension law: 
it says that a restriction can safely extend its scope to agents which do not 
contain free occurrences of the restricted name. This can be thought of as 
a generalization of Theorem 6 (a), which in fact is an easy consequence of 
Theorem 8 and (y)O A 0: 

(y)P L. (y)(PIO) A PI(y)0 A. PI0 A P if y#fn(P). 

The scope extension law is also related to the CCS law which says that a 
restriction distributes over parallel composition if the components cannot 
interact by means of the restricted port. In our calculus, two agents can 
communicate through a name if one agent has the name in positive subject 
position, and the other agent has the name in negative subject position. In 
the absence of a more relined notion of sort, we can at least say that both 
agents must have the name free, so our formulation of this law is 

THEOREM 9. 

(Y)(Pl I P2) A. (YIP, I (Y)P* if y$fn(P,)nfn(P,). 

Proof. If y 4 fn(P,) n fn(P,), then y cannot be free in both P, and PI. 
Assume that y is not free in P2. Then by Theorems 6 (a) and 8 (c), 

(YNP1 I P2) N (Y)Pl I p, A. (Y)PI I (Y)Pz. 

The situation when y is not free in P, is similar. 1 

Conversely, Theorem 8 (c) is an easy consequence of Theorems 9 and 
6 (a). 

Finally, there is a counterpart to the expansion law in CCS. In our 
calculus the expansion law also covers derived prefixes, so in the following, 
~1, fi will range over ordinary and derived prefixes. 
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THEOREM 10. Let P E Ii a,.P; and Q s cj flj.Qj, where bn(ai) n 
fn(Q)=0f ll or a i, and bn(flj) n fn(P) = @for all j. Then 

PlQ A Cai.(PilQ>+CPj.(PlQj)+ 1 z*R,, 
I i a, cow S, 

where the relation ai camp bj (a, complements /?,) holds in the following four 
cases, which also define R,: 

1. ai is Xu and flj is x(u); then R, is PiI Qj{u/u}. 

2. tli is X(u) and flj is x(u); then R, is (w)(P,{w/u} I Qj{w/v}), where 
w is notfree in (u)P, or in (u)Q,. 

3. cli is x(u) and /I, is Xu; then R, is Pi {u/u> 1 Qj. 

4. ai is x(u) and fl, is X(u); then R, is (w)(P,{w/~}~Q~{w/u>), where 
w is not free in (u)P, or in (n)Qj. 

Proof. Assume the premises of the lemma, and write R for the right 
hand side of the equation. Define the relation 9’ by 

Y={(PlQ,R)}uId. 

We can show that 9 is a bisimulation. 1 

Note that the side conditions bn(cr,) n fn( Q) = 0 and bn(Pj) n fn( P) = 0 
are important, otherwise a bound object in ai (or pi) would bind names in 
Q (or P) on the right hand side but not on the left hand side. 

4. PROPERTIES OF STRONG (D-) EQUIVALENCE 

4.1. Algebraic Properties of D-equivalence 

Most of the properties established for strong bisimilarity carry over to 
strong D-equivalence for any D: 

THEOREM 11. For any distinction D it holds that 

(4 N n is an equivalence relation. 

(b) ZfP-,Q then 

a.P-, cr.Q, a a free action 

PtR-,Q+R, 

[x=YIP-D CX=YIQ, 

PIR-DQIR 

(w)P-D (w)Q. 
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(c) Zf P -D Q and for all v E fn(P, Q) such that (v, y ) E D it holds that 
p{v/Y> -D Q{dvv> then x(y).P-, x(Y).Q. 

Proof Directly from Definition 6 and Theorem 2. 1 

An immediate consequence is the following: 

THEOREM 12. Strong equivalence is a congruence. 

Proof Put D = @ in Theorem 11. 1 

So in particular P - Q implies x(v). P - x(y). Q. 

THEOREM 13. All theorems in Section 3.3 except Theorems 5 (a) and 10 
also hold for N D for all distinctions D. 

Proof Immediately from Definition 6 and the theorems in Sec- 
tion 3.3. 1 

To see that Theorem 5 (a) is invalid for strong equivalence note that 

(cx=YlpHxlY~ + WY) 

when P 4 0. The failure of the expansion law (Theorem 10) for strong 
equivalence was demonstrated in Section 2.2. Instead of these two theorems 
we have the following two: 

THEOREM 14. 

cx=Ylp-{.qLq 0. 

Proof Immediately from Definition 12 and Theorem 5 (a). 1 

THEOREM 15. Let P=xci tci. Pi and Q =xjfij.Qj, where no C(~ (resp. fi,) 
binds a name free in Q (resp. P); then 

PlQ-Cai.(P,lQ)+CBj.(PlQj)+ C Cx,=.Yjl~.R~, I i 1, OPP 8, 

where the relation ai opp 8, (~1, opposes 8,) holds in four cases: 

I Qj {w/u> 1, where 
1. c(~ is Fju and 8, is y,(v); then R, is PilQj{u/u}. 

2. ~1, is X,(u) and fl, is y,(v); then R, is (w)(P,{w/u} 
w is not free in (u)P, or in (v)Q,. 

3. LX; is xi(v) and /I?, is YJu; then R, is Pi{u/o} 1 Q,. 

4. a, is xi(v) and /?, is Y,(u); then R, is (w)(Pj{w/v} 
w is not free in (u)P, or in (u)Q,. 

I Qj { 4~ } ), where 
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ProoJ It is straightforward to check (using Theorems 5 (a) and 10) that 
applying a substitution g to both sides of the equation yields strongly 
bisimilar agents. 1 

The last two theorems can be combined into expansion laws for 
D-equivalence for arbitrary D; we believe that these will be useful working 
laws. The following laws additionally relate D-equivalences for different Ds 
and throw light on the two forms of name binding in the calculus. We first 
define two operations on distinctions: 

DEFINITION 17. 

D\x= D-((x) x,&‘uMx Ix}). 

This removes any constraint in D upon the substitution for x. 

DEFINITION 18. For any set A G ,V of names, 
def 

D rA = Dn(AxA). 

THEOREM 16. (a) ZfPhD Q then (x)P-,,, (x)Q. 

(b) IfPmD,, Q then JJ(x).P-~ y(x).Q. 

(c) IfP~,QandA=fn(P,Q)then PwDraQ. 

Proof For (a), if P N D Q and d respects D\x, then for some 
x’$fn((x)P, (x)Q, Pa, Qc) with x’G=x’, ((x)P)a=(x’)Po’ and 
((x)Q)a E (x’)Qa’, where r~’ = {x//x} 6. Since g’ repects D, PO’ A Qa’ and 
hence (x’) PO’ A, (x’)Qu’, i.e., ((x)P)o ,L ((x)Q)a. Hence (x)P-,,, (x)Q. 

For (b), suppose that P-,,, Q and CJ respects D. Then for some 
x’$fn((x)P, (x)Q, Pa, QG) with x’G=x’, (y(x).P)o-ya(x’).P{x’/x}a, 
and (~(x).Q)~=y~(x’).Q{x’/x}a. Then for any w~fn(P(x’/x}a, 
Q{x’/x} 0, x), since {x//x} g{ w/x’} respects D\x, P{x’/x} CT(W/X’} L 
Q(x’/x)u(w/x’}. Hence (y(x).P)o A (y(.x).Q)a. So y(x).PwD y(x).Q. 

For (c), note that if r~ respects D r A then there is r~’ respecting D such 
that 0 rA=a’ PA. 1 

4.2. Strong Equivalence and Recursion 

We record here the properties which we would expect of recursive 
definitions, by analogy with CCS (Milner, 1989). First, if we transform the 
right-hand sides of definitions, respecting -, then the agent defined is the 
same up to -. Second, if two agents satisfy the same (recursive) equation, 
then they are the same up to -, provided the equation satisfies a standard 
condition. Both these properties hold for strong equivalence but fail for 
strong bisimilarity. 

643/100/l-5 
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In order to state these results, we need a few preliminaries. We assume 
a set of schematic identifiers, each having a nonnegative arity. In the 
following, X and X, will range over schematic identifiers. An agent 
expression is like an agent but may contain schematic identifiers in the 
same way as identifiers; we use E, F to range over agent expressions. 

DEFINITION 19. Let X have arity n, let I = xi, . . . . x, be distinct names, 
and assume that fn(P) c {x1, . . . . x ,,). The replacement of X(Z) by P in E, 
written E{X(Z) := P}, means the result of replacing each subterm X(j) in 
E by P{ j/Z}. This extends in the obvious way to simultaneous replacement 
of several schematic identifiers, E{X,(.C,) := P,, . . . . X,(2-,) := P,}. 

As an example, 

(Xy.X(x, x) + (y)X(x, y)){X(u, w) := uw.0) cxy.xx.o+ (y)Xy.O. 

In what follows, we assume the indexing set 1 to be either (1, . . . . m} for 
some m, or else w. We write 2 for a sequence X,, Xz, . . . indexed by I; 
similarly P, etc. We use i, j to range over I. When a sequence 2 of 
schematic identifiers is implied by context, each with an associated name 
sequence Ii, then it is convenient to write E{X, (2,) := P,, . . . . X, (2,) := P,} 
simply as E(P,, . . . . P,) or as E(p). If each Pi is Ai( we also write 
E(A,, . . . . A,) or E(A). 

It is natural to define strong equivalence between agent expressions as 
equivalence under all replacements of schematic identifiers by agents: 

DEFINITION 20. Let E and F be two agent expressions containing only 
the schematic identifiers Xi, . . . . X,,,, with associated name sequences 

m x, ) . ..) x, . Then E-F means that 

E(P) ‘v F(‘(B) 

for all p such that fn(Pi) c Ii for each i. 

We can now state our first result, that recursive definition preserves 
strong equivalence: 

THEOREM 17. Assume that .!? and Fare agent expressions containing only 
the schematic identifiers Xi, each with associated name sequence Zi. Assume 
that A” and B are identifiers such that for each i the arities of Ai, Bi, and Xi 
are equal. Assume that for all i 

Ei-F; 

Ai ‘%E,(A”) 

Bi(&) E’F,(B). 
Then Ai - Bi(Zi) for afl i. 
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Proof: See the Appendix. 1 

DEFINITION 21. A term or identifier is weakly guarded in P if it lies 
within some subterm LX.Q of P. 

If A is weakly guarded in E then intuitively, from the definition A gf E, 
we can unfold the behaviour of A uniquely. The next result makes this 
precise in the general case: 

THEOREM 18. Assume that ,? are agent expressions containing only the 
schematic ident$iers Xi, each with associated name sequence Ri, and that 
each Xi is weakly guarded in each Ej. Assume that P and & are agents such 
that fn(Pi) G 5Zi and fn(QJ G Zifor each i. Assume that for all i 

Pi - Ei(p) 

Qi w Ei(Q). 

Then Pi - Qi for all i. 

Proof The proof follows the lines of the proof of Proposition 14 (2) in 
Milner (1989). It uses the idea of bisimulation up to A as defined in the 
Appendix (Definition 25) below. We omit the details. B 

5. ALGEBRAIC THEORY 

In this section we establish an axiomatization of strong ground 
equivalence, and show how this axiomatization can easily be extended to 
non-ground equivalence and D-equivalences. These theories are complete 
over finite agents (i.e., agents not containing any agent identifiers), but 
incomplete over all agents (necessarily since A is not recursively 
enumerable). 

We state the rules using the standard equality symbol =. We omit the 
usual rules for an equivalence relation. Note that = is not assumed to 
stand for a congruence relation (since A is not a congruence); the 
substitutive properties of = are therefore explicitly mentioned. 

DEFINITION 22. The theory SGE (for strong ground equivalence) 
consists of the following axioms and inference rules: 

Alpha-conversion. 

A From P - Q infer P = Q. 
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Congruence. 

co From P = Q infer 

T.P=T.Q 2~. P = .fy . Q 

P+R=Q+R PjR=QJR 

(x)P= (x)Q [x=y]P= [x=y]Q. 

Cl From .P{z/y} = Q{z/y >, for all names z E fn(P, Q, y), infer 

x(y).P=x(y).Q. 

Summation. 

so P+O=P 

Sl P+P=P 

S2 P+Q=Q+P 

S3 P+(Q+R)=(P+Q)+R. 

Restriction. 

RO (x)P=P if x#fn(P) 

R1 (xNy)P= (Y)(x)P 

R2 (.x)(P+ Q) = (x)P+ (x)Q 

R3 (x)cc.P=a.(x)P if .x is not in n(cl) 

R4 (x)cr.P=O if x is the subject of CL 

Match. 

MO [x=y]P=O if xfy 

Ml [x=,u]P=P. 

Expansion. 

E Assume P G xi C(~. Pi and Q z cj /?,. Q,, where no tli (resp. bj) binds 
a name free in Q (resp. P); then infer 

PlQ=C~i.(Pil Q)+CPj.(PlQ.j)+ C r.R, 
i i % ComP 8, 

where the relation u, camp fij (cxi complements 8,) holds in four cases: 

1. LX; is Xu and fli is x(u); then R, is Pi(Qj{u/v). 
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2. ai is X(U) and /Ii is X(U); then R, is (W)(Pi{M;/U} IQj(w/~}), 
where w  is not free in (u)P, or in (u)Q,. 

3. ai is x(u) and /Ii is XU; then R, is P,{u/u} I Qj* 

4. oli is x(v) and /I, is X(U); then R, is (w)(P,{w/u}lQ~{w/~}), 
where w  is not free in (u)P, or in (u) Qj. 

Identifier. 

I From A(.?) 2’ P infer A(J) = P{ y//a}. 

This completes the definition of SGE. 

If P = Q can be proved in SGE we write 

SGE tP=Q 

orjust kP=Q. 

THEOREM 19 (Soundness). If SGE t-P= Q then P L Q. 

ProoJ: The soundness of all laws in SGE has been established in 
Section 3. 1 

We prove next that SGE admits a natural head normal form, and that 
it is complete for finite agents. 

DEFINITION 23. The agent identifier A is weakly-guardedly defined 
if every agent identifier is weakly guarded in the right-hand side of the 
definition of A. 

DEFINITION 24. An agent P is in head normal form if it is a sum of 
prefixes: 

The following shows the importance of head normal form: 

LEMMA 8. Zf every agent identifier is weakly-guardedly defined then, for 
any agent P, there is a head normal form H such that 

SGEkP=H. 

ProoJ By the assumption that every agent identifier is weakly-guar- 
dedly defined, we may work by induction on the structure of P. The case 
when P is an agent identifier follows from I above, while if P is a prefix 
form then P is in head normal form. If Pr P, + P, and H,, H, are head 
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normal forms such that t- P, = H, and t P, = H,, then k P = H, where 
HEH,+H,.IfP-[x=~,]Qandt-Q=H,thensinceeither l--P=Qor 
kP=O, theresultfollows. IfP=(y)Qand )-Q=Hthen kP=(y)H,so 
since using R2-R4, k (y)H = H’ for some head normal form H’, the result 
follows. If P = P, I P, and t P, = H, and /- P2 = H, then k P = H, 1 Hz, so 
since using E, k H, 1 H, = H for some head normal form H, the result 
follows. u 

From this, it is not hard to show that SGE is complete for strong ground 
equivalence of finite agents. 

THEOREM 20 (Completeness for finite agents). For al/ finite agents P 
andQ,ifPkQthenSGEEP=Q. 

Proof By the preceding two results it suffices to establish the claim 
when both P and Q are in head normal form. If R = CF=, a,. Ri is in head 
normal form then the depth, d(R), of R is 0 if k =0 and 
1 + maxid Il< i6 k) otherwise. We prove the result by induction on 
d = d(P) + d(Q). If d = 0 then P E 0 and Q = 0 and the result is immediate. 
Suppose d > 0. 

If a. M is a summand of P with a a free action, then since P 5 M and 
Q is in head normal form there is a summand a.N of Q such that A4 ,L N. 
By the induction hypothesis, t-- M = N, and so 1 X. M = a. N. 

Suppose that x( y).M is a summand of P. Then choosing z 4 n(P, Q), 
P 3 M’ E M{ z/y}. Hence there is a summand x(w). N of Q such that for 
all v, M’{v/z) A N’{v/z}, where N’ = N{z/w}. Then by the induction 
hypothesis for all v, t-M’(u/z} = N’{u/z). So by Cl, t-x(z).M’=x(z).N’, 
and hence by A, since x(z).M’-x(y).M and x(z).N’rx(w).N, 
tx(y).M=x(w).N. 

Suppose that X(y). M is a summand of P. Then choosing z 4 n(P, Q), 
P 3 M’ E M{z/y}. Hence there is a summand $w).N of Q such that 
M’ A N’ where N’ E N{z/w}. Then by the induction hypothesis t- M’ = N’ 
and so kX(z).M’=X(z).N’, and hence by A, since X(z).M’rX(y).M and 
Z(z).N’zx(w).N, t-f(y).M=X(w).N. 

Similarly, for each summand a. N of Q, there is a summand 8. M of P 
such that j- fl. M = a. N. The result follows by S&S3. i 

With this result we easily obtain a complete axiomatization of strong 
D-equivalence by adding the following law: 

D From PO = Qa, for all CJ respecting D, infer P =D Q. 

(A more refined formulation of rule D actually confines the hypothesis to 
finitely many distinct a.) 
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THEOREM 21. SGEu {D} is sound, and complete over finite agents, 
when = and = D are interpreted as L, and wD, respectively. 

Proof: Directly from Definition 12 and Theorem 20. 1 

Thus strong equivalence (with the pleasant property of being a con- 
gruence) is given an indirect axiomatization in terms of strong bisimilarity 
(which is not preserved by positive prefix). We leave the problem of 
axiomatizing strong equivalence directly as a topic of further investigation. 
At first it might appear that such a direct axiomatization can be obtained 
from SGE (ommitting MO and E which are not valid for N ) by adding 
appropriate laws from Section 4.1. Unfortunately this is not the case. There 
are equations involving matching, such as 

[x=y][y=z]P- [x=y][x=z]P, 

which we are presently unable to derive without D. 

APPENDIX 

In this Appendix we outline the proofs of some of the results stated in 
the text; most of the proofs are by case analysis, and we give the argument 
for a few crucial or typical cases. Full proofs may be found in Milner, 
Parrow, and Walker (1989b). 

Proof of Lemma 1. The proof is by induction on depth of inference. We 
consider in turn each transition rule as the last rule applied in the inference 
of the antecedent PA P’. We give two cases. 

(INPUT-ACT) Then c( =x(y) and P-x(z).P, with y#fn((z)P,) and 
P’ = P, {y/z}, so (i) holds and (ii) fn(P’) G (fn(P,) - {z}) u {y> c 
fW)u {Y>. 

(CLOSE) Then a = r and PEP, 1 P2 with P, 2 Pi, PI “clrl Pi and 
P’-(y)(P;I P;), so (i) holds, and fn(P;)sfn(P,)u {y} and fn(P;)s 
fn(P,)u {y}, so fn(P’)=(fn(P;)ufn(P;))- {y}Cfn(P). m 

Lemmas 2-5 are all similarly proved by induction on depth of inference. 
Theorem 1 follows easily from the lemmas. 

Proof of Lemma 6. Let Y = U, < w  Yn, where 
yo= h. 

9 n+~= {(P{w/z>, Q~w/zl)IfZQel w$fn(P, Q)}. 

We show that Y is a strong bisimulation by showing by induction on n 
that if PYnQ then 

1. If CI is a free action and P -% P’ then for some Q’, Q 2 Q’ and 
P’YQ’, 
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2. If y$fn(P, Q) and P”“! P’ then for some Q’, Q 3 Q’ and for 
all u, P’{~lyj.~Q’{~ly), 

3. If y$fn(P, Q) and P* P’ then for some Q’, Q = Q’ and 
P’YQ’. 

If n =0 then 1, 2, and 3 hold since YO= A. 
Suppose that n > 0 and that PaYnQa, where PYHp, Q and a = {w/z>, 

where w  .$ fn(P, Q). We consider only 3. 
Suppose that Pa 3 P’, where y $ fn( Pa, Qa). Choose y’ .$ n( P, Q, w, z). 

Then Pa 9 P” = P’{ y’/y}. Hence by Lemma 4 for some P” and x’ with 
pf”, E p” and x’a = ?c, p x) pill. 
some Q 111, Q 3( Q”’ 

Since PYn _ i Q and y’ # n(P, Q) for 
and P”‘9’Q”‘. Hence Qa 3 Q” z Q’a, and so 

Qa* Q’-Q”{.v/y’). Then 

P’ = P”’ { w/z } { y/y ’ } 
~Q”‘~W{Y/Y’) since y$fn(P”‘{w/z}, Q”‘{w/z}) 

E Q’. I 

Proof of Lemma 7. Let Y* = lJ, <w 5$, where 

Y. = Y 

~+,=(((w)P,(w)Q,IPY’Q~,w~~}. 
The proof involves showing that Y* is a strong bisimulation. First we note 
that by induction on n, if PXQ and w$fn(P, Q), then P{w/z}~Q{w/z}. 
For n =0 this is immediate from the definition. Suppose n >O and 
(u)PY,(u)Q, where Pz-,Q and w$fn((v)P, (u)Q). Then ((u)P){w/z} = 
(u)P{u/~}{w/z} and ((u)Q)(w/z) - (~)Q(~/u>{w/z}, where u4fn((u)P, 
(o)Q, w) and U{W/Z) = ~9 so W’W+%9QW4. 

Next we show by induction on n that if PLYj?,Q then 

1. if CI is a free action and P 2 P’ then for some Q’, Q -5 Q’ and 
P’cY*Q’, 

2. if y 4 n( P, Q) and P 3 P’ then for some Q’, Q 2 Q’ and for all 
0, P’WYW’*Q’WY~> 

3. if y $ n(P, Q) and P”“‘! P’ then for some Q’, Q a Q’ and 
P’Y*Q’. 

For n = 0 this is immediate from the fact that Y, is a strong bisimulation 
up to restriction and the definition of Y*. The remaining details are 
omitted. 1 

Proof of Theorem 2. (a) That A is both reflexive and symmetric is 
clear. For transitivity it suffices to show that k L is a strong bisimulation. 
The proof uses Lemma 2. We give one case. 



CALCULUS OF MOBILE PROCESSES, II 71 

Suppose that y $ n(P, R) and P”‘yl P’. Choose z 4 n(P, Q, R). Then 
P”“1 P” E P’{z/y}, so for some Q’, Q 3 Q’ and for all w, P”{ w/z} A 

Q’{ w/z}. Hence for some R’, R”“! R’ and for all w, Q’(w,/z} A R’{w/z}. 
Then R 2 R” z R’{ y/z> and for all w, P’{w/y} A A. R”{w/y}. 

(b) For the congruence properties note that: 

(1) (cr.P, cr.Q)l P A Q} u A is a strong bisimulation. 

(2) {(P+ R, Q + R)I P L Q} u L is a strong bisimulation. 
(3) {([x =y] P, [x =y] Q) 1 P N Q} u y is a strong bisimulation. 

(4) Let Y= (PI R, Q 1 R) / P L Q}. It suffices by Lemma 7 to show 
that Y is a strong bisimulation up to restriction. To see this note first that 
if P A Q and w  $ fn(P, Q) then by Lemma 6, P{ w/z> A Q(w/z} and so 
(PIR)(w/z)Y(QlR){wlz). It is routine to check that the clauses concern- 
ing transitions hold. The only rules applicable are PAR, COM, and CLOSE. 

(5) It follows from Lemma 6 that A is a strong bisimulation up to 
restriction. Hence by the proof of Lemma 7, if P A Q then (w) P A, (w)Q. 

(c) Note that {(x(y).P, .x(y).Q)Ifor all wEfn(P, Q, y), P{w/y} A, 
Q( w/y} > is a strong bisimulation. This follows easily using Lemma 6. 1 

Proof of Theorem 8. The proofs of Theorem 8 (a) and (b) are 
straightforward. In contrast, the proofs of Theorem 8 (c) and(d) are not 
short. 

Proof of Theorem 8 (c). In the proof we make use of the idea of a 
strong bisimulation up to A and restriction. For completeness we introduce 
first the following concept. 

DEFINITION 25. A relation Y is a strong simulation up to A iff whenever 
PYQ then 

1. If c( is a free action and P 5 P’ then for some Q’, Q 5 Q’ and 
P’ c; 9 & Q', 

2. If y $ n(P, Q) and P 2 P’ then for some Q’, Q 3 Q’ and for all 
w, P’{w/Y> A 9 i, Q’{w/Y>, 

3. If y 4 n(P, Q) and P = P’ then for some Q’, Q -% Q’ and 
P’ A 9 A Q’. 

Y is a strong bisimulation up to L iff both 9’ and Y- ’ are strong simula- 
tions up to A. 

LEMMA 9. If Y is a strong bisimulation up to A then 9 c L. 
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Proof: Let Y* = U,,,, Yn where 

Then by an argument very similar to that in the proof of Lemma 6 it can 
be shown that S* is a strong bisimulation. We omit the details. 1 

Combining this concept with that of a strong bisimulation up to 
restriction we obtain the following. 

DEFINITION 26. A relation Y is a strong simulation up to ,L and 
restriction iff whenever PYQ then 

1. If w$fn(P, Q) then P{w/z}YQ{w/zj, 

2. If P -% P’ then for some Q’, Q 2 Q’ and P’ A Y A Q’, 

3. If y 4 n(P, Q) and P “‘II! P’ then for some Q’, Q * Q’ and for all 
w, P’(w/y} z 9’ A+ Q’{N/~), 

4. If y $ n(P, Q) and P 2 P’ then for some Q’, Q a Q’ and 
P’ A y A Q’, 

5. If P 5 P’ then for some Q’, Q 2 Q’ and either P’ A Y A Q’ 
or for some P”, Q” and w, P’ L (w) P”, Q’ ,G (w)Q” and P”sPQ”. 

9 is a strong bisimulation up to A and restriction iff both Y and Y-’ are 
strong simulations up to k and restriction. 

We have the following result. 

LEMMA 10. If 9’ is a strong bisimulation up to L. and restriction then 
YCA. 

Proof Let Y* = U,,,, 9, where 

yop,=LyA 

Y n+1= -{((w)f’, (w)Q,IW,Q, w~M) A. 

Then by an argument similar to that in the proof of Lemma 7 it may be 
shown that Y* is a strong bisimulation. We omit the details. 1 

Returning to the main proof of Theorem 8 (c), we prove that the relation 

~=(((~)P,IP,,(~)(P,IP~))IP,,P,agents,~4fn(P~))uId 

is a strong bisimulation up to A and restriction. Thus, for each P and Q 
such that PYQ and each transition P ---% P’, we must find a “simulating” 
transition Q 5 Q’ satisfying the requirements of a strong simulation up 
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to restriction and equivalence, and vice versa. Clearly, if P = Q this is 
trivial, so we assume that P 3 (y) P, 1 P,, Q = (y)(Pl 1 Pz), and y # fn(P,). 

The proof that there always exists an appropriate transition 
Q G ( y)(Pl 1 P2) -% Q’ is by a case analysis on how the transition 
P =_ (y) P, 1 P, 5 P’ is derived, and vice versa. There are 16 cases in all 
from which we draw a sample of two. 

For each case the derivations of transitions from P and Q are presented 
in the following way: 

We then have to prove three things: 

( U): that the premises of the upper derivation imply the premises of 
the lower derivation; 

( h ): conversely that the premises of the lower derivation imply the 
premises of the upper derivation; 

(9’): that the derivatives P’ and Q’ satisfy the requirement of a strong 
bisimulation up A and restriction. 

Note that by the definition of strong simulation we only have to consider 
o! such that y $ bn(a), since y occurs in the agents P and Q. 

Case. 
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( U ): Trivial. 

( h ): From y $ fn(P,) and Lemma 1 we get that x # y. We cannot 
prove that z # y, but if z =J) then we use a fresh z’ instead of z to get 
a simulating transition as follows: from Lemma 2 we get that 
P, -% P’, (z’/y). The simulating transition then is 

(.v)P, I p, -L ((YIP; {=‘ly)){W> I pi. (*) 

(Y):From u,z#y it follows that ((y)P~){v/z}=(y)P’,{u/z}, and 
Lemma 1 with y $ fn(P,) gives that y $ fn(P;), so 

((Y)p;){~/~~Ip;~(Y)(p;~~l~~Ip~) 

as required. For the simulating transition (*) we know that z =y, so it 
holds (since u # y and z’ is chosen fresh) that 

((v)P, {Z’/Y>,{W> I pi = (.v)fY Wv~ I p; 9 (.v)(fY bh4 IW. 

Case. 

~~ 

,I, 

( U ): Trivial. 

( h ): From Lemma 1 and y $ fn(P,) we get x # y. The situation when 
u = y is treated in another case (see Milner, Parrow, and Walker, 1989b). 

(9): From Lemma 1 and y $ fn(P,) we get that y = z or y 4 fn(P;), so 
from u # y it follows that y 4 fn(P; {U/Z}). This proves as required that 

(Y)p;Ip;{4z) ~“(Y)(p;Ip;IdzI). I 

Proof of Theorem 8 (d). The proof involves showing that the relation 
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is a strong bisimulation up to A and restriction. Thus, for each P and Q 
such that PYQ and each transition P -5 P’ we must find a simulating 
transition Q -% Q’ satisfying the requirements of a strong simulation up 
to AJ and restriction, and vice versa. 

The proof that there always exists an appropriate transition Q --% Q’ is 
by a case analysis on how the transition P”- P’ is derived, and vice 
versa. There are 30 cases in total. We present one sample case in the same 
style as in the proof of Theorem 8 (c). 

Case. 

P, I Pz A (z)(P\ I Pi) 

V 

Pz3 P;(z’/z} z’$fn(P,) 
PAR: 

P,IP,3 P;{z’/z}IP, P,=J P;(z’/z} 
CLOSE: 

P,I(P,IhF+ ~~‘~~~;{~‘/~}l~~;{~‘/~~I~~~~ 

( v ): By Lemma 2 there exists a fresh Z’ such that P, 3 P’, {f/z} 
and P,a P;{z’/z}. 

(9’): Note that z ’ is a fresh name. By alpha-converting z to z’ and then 
applying Theorem 8 (c) we get that 

(z)(p; IP;)I p, = MfY {z’/z> I p;{z’/~~)Ip, 

A. (~‘)((p;{,-‘/=}Ip;{z’/z})Ip,) 

so the condition for a simulation up to A and restriction is satisfied: 

(P;{z’/z) I P;{z’/z))I P, Y P; {Z’/Z} I (P;{z’/z}) P3). 1 

Proof of Theorem 17. We first state some immediate consequences of 
the definition of replacement. If E is an agent expression and ~7 a substitu- 
tion of names, then Eo is defined to be the agent expression obtained in the 
way analogous to Definition 3. Then substitutions of names as expected 
commute with replacements in the following way: E(A,, . . . . A,)a= 
Ea(A 1, . . . . A,). Also, since replacement clearly distributes over the 
operators we have that Theorem 2 generalizes to agent expressions. These 
facts will be used freely in what follows. 

643/100/l-6 
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We will only prove the theorem for I= { 1). The proof of the general 
case is similar and only notationally more cumbersome. We write E, F, A, 
B, X, -f for E,, F,, A,, B,, X,, .?,. Assuming the premises of the theorem, 
define the relation Y by 

,Y = ((G(A), G(B)) : G has only the schematic identifier X}. 

We show that Y is a strong bisimulation up to L. By Lemma 9 it follows 
that Y s A. By choosing G = X(p) we then get that A(j); B(j); since this 
holds for any names j it implies that A(l)& B(T)0 for any rr, which 
amounts to A(.?) - B(1). 

To prove .Y a strong bisimulation up to A it is clearly enough to prove 
the following properties, which we call (*): 

1. If G(A) --% P’ and tl is a free action or bound output action with 
bn(a) n n(G(A), G(B)) = a, then G(B) 2 Q” with P’YLQ”. 

2. If G(A) -% P’ and y $ n(G(A), G(B)) then G(B) 3 Q” such that 
for all U, P’{u/y}.Y A Q”(u/y}. 

So assume G(A) --% P’; we prove (*) by induction on the depth of the 
inference of this transition. We argue by cases on how the last step in this 
transition is inferred. We give two sample cases. 

Case. The transition G(A) --% P’ is inferred with the rule IDE. Then 
G(A) E C(j) for some identifier C. There are two subcases: either G - C(j) 
or GE X(j). In the first subcase, G(A) = G(B), so (*) is immediate. 
Consider the second subcase, G = X(j). Then G(A) = A(j) 2 P’. Then 
by a shorter inference, E(A){ y/Z} = E{ j/-t} (A ) 5 P’. 

Consider first the subsubcase where cx is a free action or a bound output 
action. We only have to consider c( such that bn(a) n n(G(A), G(B)) = a. 
By definition, then, bn(a) n n(E(sC/Z](A), E{ j/.?}(B)) = a, so by 
induction, E{ j/Z.)(B) 2 Q” with P’Y h Q’. Since E - F it follows that 
E{ j/g}(B) A F{ j/T}(B); hence F{ j/‘/a}( B) -5 Q”’ k Q”. So by the IDE 

rule, G(B) E B(j) L Q”‘. Since L is transitive, P’Y A Q”’ as required. 
Consider next the subsubcase where a = x(y) is an input action. We only 

have to consider y$ n(G(A), G(B)). By definition, then, y $ n(E(j/Z}(A), 
E~JI-fl(B)), so by induction, E{ j/Z}(B) 4 Q” with P’{ u/y} 9’ A 
Q”{ u/y} for all U. Since E-F it follows that E{ J/T}(B) L, F(jj/R}(B); 
hence F(j/Z}(B) -% Q”’ such that for all U, Q”‘{i/y} A Q”{u/y}. By 
the IDE rule, G(B) E B(p) A Q”‘. Since k is transitive, P’{ u/y} Y L 
Q”’ {u/y} as required. 

Case. The transition G(A)2 P’ is inferred with the rule PAR. Then 
G E Gi I Gz, and by a shorter inference, Gi( A) 5 PI for i = 1 or i = 2; 
assume i = 1 (the case i = 2 is symmetric.). So P’ E P’, 1 G,(A) and 
bn(a) nfn(G,(A)) = @. 
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Consider first the subcase where c1 is a free action or a bound output 
action. We only have to consider c( such that bn(cr) n n(G(A), G(B)) = @. 
So by induction, G,(B) --% Q; with P’,Y A Q;. Hence there exists an H’ 
such that P’, = H’(A) and Qy L H’(B). By PAR (remember that 
fn(G2(A))=fn(G,(B))) we get that G(B)EG,(B)IG,(B)& Q;,IG,(B). 
Let H=H’(G,. Then P’=H(A) and Q;IG2(B) A H(B), so P’Y ,L 
Q; 1 G,(B) as required. 

Consider next the subcase where c( = x( JJ) is an input action. We only 
have to consider y such that y $ n(G(A), G(B)). So by induction, 
G,(B)-% Qy with P;{u/y}Y A Q;‘(u/y} f or all u. Hence there exist HL 
such that P’, (U/Y} E H:(A) and Q;{u/.v} A H’,(B). By PAR (remember 
fn(G,(A))=fn(G,(B))) we get that G(B)=G,(B)IG,(B)~ Q;IG2(B). 
Let H,-HLIG,. Then P’{u/~~}r(P~~G~(A)){u/y}~P~{u/y}~Gz(A)~ 
H(A) and Q;‘lG,(B){u/y}-Q;‘Cu/l’}IGz(B) L H,(B), so P’{u/y}Y A 
(Q;IG,(B))ju/)t} for all u as required. 1 
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