

Edinburgh Research Explorer

Bigraphs and Their Algebra

Citation for published version:
Milner, R 2008, 'Bigraphs and Their Algebra' Electronic Notes in Theoretical Computer Science, vol. 209,
pp. 5-19. DOI: 10.1016/j.entcs.2008.04.002

Digital Object Identifier (DOI):
10.1016/j.entcs.2008.04.002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2008.04.002
https://www.research.ed.ac.uk/portal/en/publications/bigraphs-and-their-algebra(98b3ab09-11cb-4326-a31a-9d3dbef5c338).html

Bigraphs and Their Algebra

Robin Milner
1

University of Cambridge
United Kingdom

Abstract

Bigraphs are a framework in which both existing process calculi and new models of behaviour can be
formulated, yielding theory that is shared among these models. A short survey of the main features of
bigraphs is presented, showing how they can be developed from standard graph theory using elementary
category theory. The algebraic manipulation of bigraphs is outlined with the help of illustrations. The
treatment of dynamics is then summarised. Finally, origins and some related work are discussed. The
paper provides a motivating introduction to bigraphs.

Keywords: Bigraphs, Process Calculi

1 Introduction

Space Even before the digital computer was invented some sixty years ago, com-

putation depended on ways to organise space; not the space of Euclidean geometry,

but a discrete space involving notions like order and containment. Arabic numerals

use linear space to represent the power of digits; then two-dimensional space can be

used to represent the basic numerical algorithms—addition, multiplication, and so

on. Spatial structures of data—sequences, matrices and graphs—played an impor-

tant part before the stored-program computer; indeed, the algorithms for solving

differential equations with a manual calculator combined the use of space for data

and calculation in sophisticated ways.

Computer programming ramifies the use of space and spatial metaphor, both for

writing programs and for explaining them. This shows up in our vocabulary: flow

chart, location, send and fetch, pointer, nesting, tree, etc. Concurrency expands the

vocabulary further: distributed system, remote procedure call, network, routing,

etc.

We are living with a striking phenomenon: the metaphorical space of algorithms—

graph, array, and so on—is mixed with the space of physical reality. Consider the

1 Email: rm135@cam.ac.uk

Electronic Notes in Theoretical Computer Science 209 (2008) 5–19

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.002

mailto:rm135@cam.ac.uk
http://www.elsevier.com/locate/entcs

embedded software distributed among the artefacts it controls on a flying plane, or

the physical deployment of sensors and effectors through which the software agents

in a ubiquitous computing system will interact with their environment, whether

along a highway controlling motor traffic or in a human body monitoring the blood-

stream and administering treatment. Informatic objects flow in physical space;

physical objects such as mobile telephones manipulate their informatic space.

Model In defining a model for spatially-rich systems we have to consider who will

use it, and for what purpose. We must cater for end-users and programmers, as well

as for system-designers and theoretical analysts. We have argued that discrete space

is intrinsic to model informatics, so it is natural to seek a graphical model—and

this will naturally appeal to end-users. On the other hand mathematical presen-

tations suit analysts, programming languages suit programmers, and specification

formalisms suit designers. These are all formal, to some degree. One formalism

will not suit everyone; but there is nothing contradictory about a model that can

be presented graphically for less technical clients and mathematically for analysts,

underlying a design methodology for engineers and providing an executable subset

that is a programming language. This is what the bigraph model tries to provide.

2 Bigraphs in pictures

In this section we develop the notion bigraph pictorially, from well-known concepts.

Notation and convention We write S�S′ for the union of sets S and S′ known

or assumed to be disjoint. We consider a non-negative integer k as the finite ordinal

k = {0, 1, . . . , k − 1}. We denote by Ord the category whose objects and arrows

are the finite ordinals and the maps between them.

In a graph with nodes V and edges E, an edge joins a pair of nodes. A hypergraph

is a generalisation in which an edge may join any number of nodes. We begin

with a form of hypergraph in which each node v ∈ V has an arity ar(v), a finite

ordinal, and has ports Pv
def

= {(v, i) | i ∈ ar (v)}. Thus the hypergraph has ports

PV
def

=
⊎

v∈V Pv. Then we define a hypergraph to be a quadruple

(V, ar , E, link)

where ar :V →Ord defines arities, and link : PV →E assigns each port to an edge.

v4

v2

v0

v3

v5

v1

e0

e1 e2

a hypergraph

The diagram shows a hypergraph with nodes {v0, . . . , v5} and edges E = {e0, e1, e2};
nodes are circles, ports are blobs, and an edge is shown as a linkage among its ports.

We shall now enrich these hypergraphs into bigraphs, in four steps. First, con-

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–196

sidering a hypergraph as linking nodes, we endow nodes with an extra structure

which we call placing—justifying the prefix ‘bi’. Second, we introduce interfaces,

which make parts of a bigraph externally accessible. Third, we introduce signatures

to classify nodes. Fourth, we show how to construct larger bigraphs from smaller

ones.

2.1 Placing and linking

A bigraph with nodes V and edges E has a hypergraph with nodes V and edges

E, and a forest with nodes V .

We wish to allow nodes to be nested. This nesting will represent spatial structure,

whether in physical space or in the kind of virtual space that is familiar in program-

ming languages (e.g. the nesting of the scopes of variables) or in process calculi

(e.g. the nesting of mobile ambients). The two structures, which we call placing

and linking, are completely independent. We already have linking represented by a

hypergraph; placing consists of a forest (of the nodes), i.e. a set of trees. In drawing

a bigraph we represent this forest by the nesting of nodes. We shall use the notation

F̆ , Ğ, . . . to stand for these so-called bare bigraphs. Here is a bare bigraph Ğ having

nodes V = {v0, . . . , v5} and edges E = {e0, e1, e2}, with its forest and hypergraph:

v0

v1

v2

v3

v4

v5

v0

v1

v4

v5

v3

v2

e1

e2

bare bigraph Ğ

forest of Ğ hypergraph of Ğ v4

v2

v0

v3

v5

v1

e0

e1 e2

e0

The upper diagram presents both the forest and the hypergraph; it depicts the

forest by nesting. The lower two diagrams represent the two structures separately,

in a conventional manner. The hypergraph of Ğ is the one illustrated earlier.

2.2 Interfaces

A bigraph has interfaces, which define its use as a construction block.

We want to make larger bigraphs from smaller ones, and to consider one bigraph as

a sub-structure of another. For example here is F̆ , informally a ‘part’ of Ğ, having

only some of its nodes and with one hyperlink broken. Can we call it a sub-structure

of Ğ ?

v3 v5

v4

v1

bare bigraph F̆

e1

e2

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 7

To make it so, we add interfaces to bare bigraphs, thus extending F̆ and Ğ to

bigraphs F and G. This will allow us to represent the occurrence of F as a sub-

structure of G by an equation G = H ◦F , where H is some ‘host’ or contextual

bigraph. We do this extension independently for forests and hypergraphs; a forest

with interfaces will be called a place graph, and a hypergraph with interfaces will

be called a link graph.

A place graph interface is a finite ordinal n = {0, 1, . . . , n−1}. The members

of a place graph’s outer and inner interfaces—or faces as we shall call them—are

respectively its roots and sites, and are disjoint from its nodes. The outer and inner

faces of a link graph are name-sets: respectively, its outer and inner names. Names

are drawn from an infinite repertoire X .

0 1 2

v4

v5

v3v1

roots . . .

place graph

FP : 0→ 3
v5

v4

yxouter names . . .

link graph

F L : ∅→ {xy} e1
e2

v3

v1

Let us illustrate with the bare bigraph F̆ . For the forest of F̆ we choose the outer

face 3 = {0, 1, 2}, providing distinct roots as parents for the nodes v1, v3 and v4.

For its inner face we choose 0, i.e. it has no sites. We write the resulting place graph

as FP : 0→ 3; it is shown at the left of the above diagram. For the hypergraph of

F̆ we choose outer face {xy}, thus naming the parts of the broken hyperlink, and

inner face ∅. 2 We write the resulting link graph as F L : ∅→ {xy}.

Finally, a bigraph is a pair B = 〈BP, BL〉 of a place graph and a link graph with

the same node-set; these two graphs are its constituents. Its outer face is a pair

〈n, Y 〉, where n and Y are the outer faces of BP and BL respectively. Similarly

for its inner face 〈m,X〉. For our example F = 〈FP, F L〉 these pairs are 〈3, {xy}〉

and 〈0, ∅〉 respectively. We call the trivial interface ε
def

= 〈0, ∅〉 the origin. We write

F : ε→〈3, {xy}〉, and we draw it as follows:

x

v1

y

0
v3

1 2

v5

v4
bigraph

F : ε→〈3, {xy}〉
e1

e2

The rectangles in F—sometimes called regions—represent its roots. The link graph

F L has four links. Two of these are the edges e1 and e2, also called closed links; the

other two are named x and y, and are called open links.

Let us also add interfaces to the bare bigraph Ğ, extending it to a bigraph G.

It has no open links, i.e. all its links are edges, so the name-set in its outer face

will be empty. We give it two roots, as parents of v0 and v4; then, if G is placed in

some larger context, these nodes may be in distinct places—i.e. may have distinct

parents. Here are G and its constituents:

2 We use single letters for names, so we shall often write a set {x, y, . . . } of names as {xy · · · }.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–198

v1

v3

e1

v2

v5

v4

10 v0

e0

bigraph

G : ε→〈2, ∅〉

e2

v0

v1

v2

v3

v4

v5

0 1

place graph

GP : 0→ 2

link graph

GL : ∅→∅

roots . . .

v3

v4

e1

v1

v2

v0

e0

v5

e2

Note especially that, in the upper diagram, there is no significance in where a link

‘crosses’ the boundary of a node or region; this is because the forest and hypergraph

structures are independent.

2.3 Classification

The nodes of a bigraph may be of different kinds; this reflects that they may

contribute differently to dynamics.

To each node in a bigraph is assigned as kind, called a control. For each application

we are likely to have different controls, specified—together with their arities—in a

signature such as

K = {K : 2, L : 0, M : 1}.

Thus, in any bigraph over K, the arity of a node is the arity of its control. If we are

not interested in the identifier v of each node, but only in its control, then we omit

the identifier in diagrams and show the control instead. Thus, for G : ε→〈2, ∅〉 as

above, we would draw the following:

x y

0 1 2

M

KK
K

10

K

M

M

K

K

L

F : ε→〈3, {xy}〉

bigraphs with controls G : ε→〈2, ∅〉

/z /w (Kxz.1 ‖Kzw.1 ‖Kwy.Mw.1) /x /z /w (Mx.(Kxz.1 | L.Kzw.1) ‖Kwx.Mw.1)

Note that we have also omitted edge identifiers. We call a bigraph concrete or

abstract, according as the node and edge identifiers are present or absent. From

now on we shall work mainly with abstract bigraphs.

It is essential to have an algebraic notation for abstract bigraphs, so that we can

manipulate them rigorously. The diagram shows algebraic expressions for F and

G. From now on we shall give such expressions for every bigraphical diagram, but

they can be ignored until the algebra is explained in the ensuing section. There we

shall see how the algebra arises directly from standard categorical operations.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 9

2.4 Construction

We make larger bigraphs from smaller ones via their interfaces; this construction

is defined in terms of the constituent place and link graphs.

We are now ready to construct a bigraph H such that G = H ◦F , illustrating

categorical composition. The inner face of H must be 〈3, {xy}〉, the outer face of F ;

to achieve this, H must have three sites 0, 1 and 2, and inner names x and y. Here

are H and its constituents, with sites shown as shaded rectangles:

v2

10 v0

e0

x

0 1

2

y

v0

v2

0 1

0 1 2

roots . . .

sites . . .

place graph

HP : 3→ 2

bigraph

H : 〈3, {xy}〉→〈2, ∅〉

inner names . . . x y

e0

v0

v2

link graph

HL : {xy}→∅

In the place graph, each site and node has a parent, which is a node or a root; in

the link graph, each inner name and port belongs to a link, closed or open. We

draw inner names below the bigraph and outer names above it; this is merely a

convention to indicate their status as inner or outer. A name may be both inner

and outer, whether or not in the same link. In a bigraph diagram it is insignificant

where a link ‘crosses’ a site, just as it is insignificant where it ‘crosses’ a node or

root boundary.

Here is H as an abstract bigraph, with its controls and its algebraic representa-

tion.

L

10
M

x

0 1

2

y

abstract bigraph

H : 〈3, {xy}〉→〈2, ∅〉

/z z/{xy} (id{xy} ‖Mx.(�0 | L.�1) ‖�2)

In general, let F : I →J and H :J →K be two bigraphs with disjoint nodes

and edges, where I = 〈�,X〉, J = 〈m,Y 〉 and K = 〈n,Z〉. Then the composite

H ◦F : I →K is just the pair of composites 〈HP ◦FP,HL ◦F L〉, whose constituents

are constructed as follows (informally):

• To form the place graph HP ◦FP : �→n, for each i ∈ m join the ith root of FP

with the ith site of HP;

• To form the link graph HL ◦F L :X →Z, for each y ∈ Y join the link of F L having

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–1910

the outer name y with the link of HL having the inner name y.

Thus H and F are joined at every place or link in their common face J , which ceases

to exist. The reader may check these constructions for H and F in our example.

This concludes our informal introduction to the structure of bigraphs.

3 Applications, algebra and dynamics

In this section we use bigraphs to model both physical systems and process cal-

culi. We also explain informally how the algebra of bigraphs arises from standard

categorical notions; thus we make sense of the algebraic expressions that we have

hitherto provided for several diagrammed bigraphs. Finally we represent dynamics

as the reconfiguration of bigraphs.

3.1 Application

Each application of bigraphs requires a signature.

Consider a model of a built environment in which there are agents, buildings, com-

puters and rooms. These four controls are declared in the signature

{A : 2, B : 1, C : 2, R : 0}.

The next diagram shows a bare bigraph E over this signature. The node-shapes

are not significant, except to indicate informally the purpose of each port. The

figure represents a state which may change because of the movement of agents, and

perhaps other movements. Think of the three agents as conducting a conference

call (the open link x). An agent in a room may also be logged in (the short links)

to a computer in the room, and the computers in a building are linked to form a

local area network.

A

A

C

bigraph E

A

C

R

C

x w

B

/z (Bz.(R./y Cyz | /y Axy |R./y (Axy |Cyz)) ‖ R./y (Axy |Cyw)

R R

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 11

Process calculi can also be modelled. Consider finite CCS, with the following

syntax for processes and alternations (sums):

P ::= A
∣∣ νxP

∣∣ P |P

A ::= 0
∣∣ μ.P

∣∣ A+A

μ ::= x
∣∣ x .

To translate these terms into bigraphs we declare the signature

{send : 1, get : 1, alt : 0}.

Both parallel composition of processes and sums of alternates are represented by

the juxtaposition of bigraphs; a sum or alternation is distinguished from a process

by being nested in an ‘alt’ node. The empty process 0 is represented by the empty

summation nil
def

= alt.1, and restriction νx is represented by name closure /x. Here,

for example, is the translation P̃ of the CCS process P = x.0 | (x.Q + z.0) where

Q = y.0:

alt

nil

alt

nil

zx

nil

y y

alt
sendsend sendget

P̃ = alt.sendx.nil | alt.(get
x
.Q̃ | sendz.nil)

eQ

Q̃ = alt.sendy.nil

An important development of bigraphs involves the binding of links. This allows

bigraphs to model both the λ-calculus and the π-calculus, and indeed any calculus

whose syntax admits the binding of names. Binding in bigraphs consists simply of

confining certain links to certain places; that is, the ports of such a link must lie

within its designated place. This involves some refinement of the theory of bigraphs,

but much of it remains unaffected. Indeed, the theory of binding bigraphs is best

explained against the background of the pure theory in which placing is independent

of linking.

3.2 Algebra

Diagrams are valuable for rapid appreciation of a system’s structure. On the other

hand algebra is essential, to express and manipulate the ways in which a system

may be resolved into components.

We explain the algebraic forms which have been associated with many bigraphs

in preceding sections. This algebra is concerned only to express the structure of

bigraphs, not their dynamics.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–1912

Interfaces Recall that an interface takes the form I = 〈n,X〉. If X = ∅ we abbre-

viate this to I = n; if n = 0 we abbreviate it to I = X, or I = x if X = {x}. If n = 1

the interface I is said to be prime. The empty interface ε = 〈0, ∅〉 is called the origin.

The category of bigraphs The abstract bigraphs over a given signature form

a category with interfaces I, J, . . . as objects and bigraphs F : I →J as arrows. If

I = ε then F is said to be ground ; if J is prime, then F is said to be prime. Given

F : I →J and G : J →K, we have already illustrated how to form the composite

G ◦F , by placing the roots of F in the sites of G and eliding each open link y of F

with every link of G that contains the inner name y.

This category is strict symmetric monoidal (ssm); this means that it has a well-

behaved operation for juxtaposing two disjoint bigraphs F0 : I0 →J0 and F1 : I1 →J1.

This is called the tensor product, written F0⊗F1 : I0⊗ I1 →J0⊗J1. If Ii = 〈mi,Xi〉

(i = 0, 1) and X0,X1 are disjoint, then I0 ⊗ I1
def

= 〈m0+m1,X0 � X1〉; similarly for

J0 ⊗ J1.
3 Then the product F0 ⊗ F1 of F0, F1 is formed just by laying them side-

by-side. Product and composition enjoy pleasant properties, and all our algebraic

expressions are definable in terms of them. Thus bigraphs have a secure mathemat-

ical foundation.

Elementary bigraphs There are three kinds of elementary bigraph. The first

two kinds are node-free. If a node-free bigraph also has no links it is called a

placing ; if it has no places, it is called a linking. Here are the elementary placings

and linkings, from which all others can be formed using composition and product.

1

0

0

1

x0

y

y/X : X → y

xn−1

swap : 2→ 2

elementary placings and linkings

0

0 n−1

mergen : n→ 1

x

/x : x→ ε

We often need the product of a placing and a linking. for example, if F has the

outer face 〈2,X〉 then (swap ⊗ idX) ◦F swaps the two regions of F . On the other

hand (id2 ⊗ y/X) ◦F replaces all its outer names X by y. Without ambiguity we

shall often abbreviate such compositions, writing them respectively as swap F and
y/X F .

A placing mergen is called a merge. The special case when n = 0 consists of a

single ‘idle’ region (one that is empty); we write it as 1.

A linking y/X is called a substitution. The special case when X = ∅ consists of

a single ‘idle’ link (one that links nothing); we write it as y. We write a singleton

X = {x} as x.

The linking /x is called a closure; it closes an x-link.

3 To be precise: in an ssm category the tensor product is a total operation, while here I0 ⊗ I1 is defined
only when the names of I0 and I1 are disjoint. This relaxation makes little difference for our purposes.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 13

The third kind of elementary bigraph is a discrete ion, i.e. a single K-node of

arity n with its ports linked to n distinct outer names x. It has a single site:

discrete ion
K

x0

Kx : 1→〈1, {x}〉

xn−1

Operations It is remarkable that all bigraphs can be constructed from the ele-

mentary ones using composition (◦) and tensor product (⊗). But these operations

hardly appear in the expressions for various bigraphs in our illustrations. This is

partly because we have used abbreviations for composition with the elementary bi-

graphs, but mainly because we have used three derived operations which we now

describe.

The first two operations, the parallel product F0 ‖F1 and the prime product

F0 |F1, resemble tensor product except that the outer names of F0 and F1 need not

be disjoint—in other words, they share outer names. We first define these products

on arbitrary interfaces Ji = 〈ni, Yi〉 (i = 0, 1), as follows:

J0 ‖J1
def

= 〈n0+n1, Y0 ∪ Y1〉

J0 |J1
def

= 〈1, Y0 ∪ Y1〉 .

Then the products of bigraphs Fi : Ii →Ji (i = 0, 1) are

parallel product: F0 ‖F1 : I0 ⊗ I1 →J0 ‖J1

prime product: F0 |F1 : I0 ⊗ I1 →J0 | J1 .

They are defined exactly like tensor product except that the links of shared outer

names in Y0 ∩ Y1 are coalesced, and the prime product has a prime outer face. The

operations can be defined from tensor product with the help of substitution and

merging; in fact we find that F0 |F1 = merge (F0 ‖F1).

The third operation, nesting, is a derived form of composition. If F : I →〈m,X〉
and G : m→〈n, Y 〉 then the nesting of F within G is defined by

G.F
def

= (idX ‖G) ◦F : I →〈n,X ∪ Y 〉 .

A good example is when G = Kx, an ion; in this special case we have m = n = 1.

We may think of F placed inside G, but the outer names of F are rendered accessible

as outer names of G.F , and indeed may share with the outer names of G.

Having understood the elementary bigraphs, and these derived operations, you

are invited to examine the algebraic expressions associated with several bigraphs

in the preceding diagrams, to convince yourself that they do indeed denote those

bigraphs.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–1914

Every such expression represents a way to resolve a bigraph into components.

Each bigraph can be expressed in many ways. But there exists a sound and complete

axiomatisation of bigraphs, i.e. a set of equational axioms such that two expressions

can be proved equal by the equations if and only if they denote the same bigraph.

These equations represent the so-called structural congruence of bigraphs.

3.3 Dynamics

Bigraphs can reconfigure themselves according to reaction rules, which can be

defined arbitrarily.

We now explain how bigraphs can reconfigure themselves, using both our built

environment and CCS as illustrations. For each application we are free to define

reconfiguration by means of reaction rules, each consisting of a redex (the pattern

to be changed) and a reactum (the changed pattern). These patterns are both

bigraphs, so they may involve both placing and linking.

A rule may induce a reaction in a bigraph G if its redex matches a part of G;

we omit the precise details of matching. Here are three possible rules for built

environments, such as the system E shown above:

RA R

A

B3 x
x

y
y

A

B2

A

CC

x zzx

Axy |R.� � R.(Axy |�)

Axy
� x | /xAxy

/y Axy | /y Cyz
� /y (Axy |Cyz)

B1
AA

x y x y

Rule B1 is the simplest: an agent can leave a conference call. The redex—the left-

hand pattern—can match any agent; the out-pointing links mean that her ports

may at first be linked to zero or more other ports, in the same place or elsewhere.

If she is linked via x in a conference call to other agents, perhaps in other buildings,

the reaction by B1 will unlink her; any link to a computer is retained.

Rule B2 shows a computer connecting to an agent in the same place (presumably

a room). The redex insists that at first the agent is linked to no computer and the

computer is linked to no agent. Rules B1 and B2 change only the linking—not the

placing—in a bigraph, though the redex of B2 does insist on juxtaposition.

Rule B3, by contrast, changes the placing; an agent enters a room. Again,

the rule requires the agent and the room to be in the same place (presumably a

building). The site (shaded) represents a parameter of the rule; it allows the room

to contain other occupants, e.g. a computer. The matching discipline allows these

occupants to be linked anywhere, either to each other or to nodes lying outside the

room.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 15

Another feature of B3 is that its redex allows the ports of the agent to be already

linked to nodes elsewhere; the reactum retains any such link. Equally, there may

be no such link—the context in which the rule is applied may close it off. Thus B3

can be applied to the system represented by E, allowing an agent in the left-hand

building to enter a room.

You may check that, after each of these three rules has been applied once, the

system reaches the state E′ as shown:

A

C

bigraph E′

A

R

C

RR

x w

B

R

A

C

In Section 3.1 we discussed the translation of finite CCS into bigraphs. We now

show the translation of the single reaction rule of CCS:

(x.P + A) | (x.Q + B) −→ P |Q .

Since the redex and reactum have respectively four and two parameters, the same

applies to the bigraphical rule, shown here:

xR R′

alt alt

x

0

1

2

3

getsend

10

alt. (sendx.�0 |�1) | alt. (get
x
.�2 |�3) x |�0 |�1

Note that the rule, with redex R and reactum R′, is also equipped with a map—the

long arrows—showing where the parameters of R are instantiated in R′. In general

this parameter map is neither injective nor surjective; thus bigraphical reconfigura-

tion can involve both discard and replication of components.

This concludes our summary of bigraph dynamics. Much more has been done;

in particular, it has been shown how to derive labelled transition systems for several

process calculi, in such a way that the resulting behavioural pre-orders and equiva-

lences agree well with the original theories of those calculi. Thus bigraphs provide

some unity among disparate models of concurrent behaviour, as well as providing a

framework in which new phenomena, such as ubiquitous systems, may be modelled.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–1916

4 Origins and related work

Bigraphs [25] were developed from action calculi [24], by adoption of the main idea

in Section 2: that linking and placing should be independent, at least in the basic

model. This independence yields a double gain: not only does it reflect real-life

systems (we need only think of wireless networks) but it also dramatically simplifies

the theory.

One criterion for the success of bigraphs has been that they should recover the-

ory for existing process calculi, in particular their behavioural equivalences and pre-

orders, which are often based upon labelled transition systems. It was shown [21]

how to derive these transition systems in any categorical model possessing rela-

tive pushouts. The demonstration that action calculi possess that property [20]

was difficult, but under the independency assumption in bigraphs it became quite

tractable [18], and has been applied to several calculi [17,18,22,27,16,3].

There is a long tradition in graph-rewriting based upon the double pushout

(DPO) construction originated by Hartmut Ehrig [10]. That work typically uses

a category in which the objects are graphs and the arrows are embeddings. In con-

trast, our approach has interfaces as objects and graphs as arrows. There are links

between these formulations, both via cospans [12] and via a categorical isomorphism

between graph embeddings and a coslice over s-categories [4]. Ehrig [11] investi-

gated these links further, after discussion with the author, and we believe that useful

cross-fertilisation is possible. Gadducci, Heckel and Llabrés Segura [12] represent

graph-rewriting by 2-categories, whose 2-cells correspond to our reactions. Several

other formulations of graph-rewriting employ hypergraphs, for example Hirsch and

Montanari [15]; their hypergraphs are not nested, but rewriting rules may replace

a hyperedge by an arbitrary graph. Another use of 2-categories is by Sassone and

Sobocinski [29], where the notion of relative pushout is generalised.

There is a variety of frameworks for modelling concurrent interactive behaviour. 4

We have already discussed one: graph rewriting. Others are: term rewriting by a

group of authors led by J.W. Klop [30], which can accommodate arbitrary equa-

tional axioms; rewriting logic led by J. Meseguer [23,5] which includes Maude, an

automated logic for rewriting; the tile model led by U. Montanari [13], whose tiles

represent rewriting rules and can be composed in two dimensions, one to yield longer

rewritings and one to yield compound rules. The bigraph model is also a framework;

to obtain a specific calculus one defines both a signature and a set of reaction rules.

As we have seen, this admits calculi that differ widely. But the model makes a com-

mitment to a particular kind of graph; this was suggested by the observation that

both placing and linking are fundamental to informatic systems, so that a theory of

these two notions deserves specific treatment. This theory has three significant as-

pects. First, as shown in this paper and many others already cited, it is committed

to a special family (indexed by signatures) of graphical categories; second, it enjoys

a specific algebraic theory that has been soundly and completely axiomatized [26,8].

4 As in the abstract of this paper, we use the term ‘framework’ to mean not just a single process calculus
(e.g. CCS) but a method or style for defining a family of such calculi.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 17

Third, extending the well-established link between process calculi and modal logics,

researchers are exploring the link between bigraphs and spatial logics [6,7].

The modelling of large-scale informatic systems is still at an experimental stage.

Moreover, as with programming languages, the useful experiments are those carried

out with real applications, involving real users and an assessment of their experi-

ence. With this in mind, a group [2] led by Lars Birkedal at the IT University of

Copenhagen has embarked on the design and implementation [1] of a bigraphical

language for specification and programming, and its implementation as a simulator.

The first experiments with the language are now being carried out in their labo-

ratory. In the same group bigraphs are also being applied experimentally to the

modelling of business processes [14].

Finally, work is proceeding with a stochastic treatment of the behaviour of bi-

graphs [19], in the spirit of the stochastic κ-calculus [9]; it associates a stochastic

rate to each reaction rule. This work shows how rates for labelled transitions can

be derived uniformly, and applies the model to cell behaviour (membrane budding)

in biology. Many applications of bigraphs, including biology, are non-deterministic;

thus the stochastic treatment has special relevance to implementation, in order to

yield useful simulation.

Acknowledgement

I gratefully acknowledge the Préfecture of the Île-de-France Region for the award of

a Blaise Pascal International Research Chair, which has enabled me to clarify and

advance this work. I held this post for one year in the Laboratoire d’Informatique

at l’École Polytechnique in Paris. I warmly thank my hosts there, Professors Jean-

Pierre Jouannaud and Catuscia Palamidessi, not only for the chance to devote my

whole effort to research in collaboration with their teams, but also for organising—

with Frank Valencia—the successful conference on New Trends in Concurrency (re-

ported in this volume) to coincide with the beginning of my stay in France.

References

[1] Birkedal, L. Damgaard, C.D., Glenstrup, A.J. and Milner R, (2006), Matching of bigraphs. In: Proc.
Workshop in Graph Transformation for Verification and Concurrency, Electronic Notes in Theoretical
Computer Science, Elsevier.

[2] Birkedal, L. and Hildebrandt, T. (2004), Bigraphical programming languages. Laboratory for Context-
Dependent Mobile Communication, IT University, Denmark. http://www.LaCoMoCo.itu.dk .

[3] Bundgaard, M. and Sassone, V. (2006), Typed polyadic pi-calculus in bigraphs. In: Proc. 8th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming, pp1–12.

[4] Cattani, G.L., Leifer, J.J. and Milner, R. (2000), Contexts and embeddings for closed shallow action
graphs. University of Cambridge Computer Laboratory, Technical Report 496.

[5] Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. (1996), Priniciples of Maude. In: J. Meseguer
(ed.) Proc. First International Workshop on Rewriting Logic and ite Applications, Electronic Notes
in Theoretical Computer Science 4, Elsevier.

[6] Conforti, G., Macedonio, D. and Sassone, V. (2005), Spatial logics for bigraphs. In: International
Conference on Automata, Languages and Programming, pp766–778.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–1918

http://www.LaCoMoCo.itu.dk

[7] Conforti, G., Macedonio, D. and Sassone, V. (2005), Bigraphical Logics for XML. In: Proc. 13th Italian
Symposium on Advanced Datebase Systems (SEBD), pp392-399.

[8] Damgaard, C.D. and Birkedal, L. (2006), Axiomatizing binding bigraphs. Nordic Journal of Computing
13(1–2), pp58–77.

[9] Danos, V., Feret, J., Fontana, W. and Krivine, J. (2007), Scalable modelling of biological pathways. In:
Z. Shao (ed.), Proceedings of APLAS, 4807, pp139–157.

[10] Ehrig, H. (1979), Introduction to the theory of graph grammars. In: Graph Grammars and their
Application to Computer Science and Biology, LNCS 73, Springer Verlag, pp1–69.

[11] Ehrig, H. (2002), Bigraphs meet double pushouts. EATCS Bulletin 78, October 2002, pp72–85.

[12] Gadducci, F., Heckel, R. and Llabrés Segura, M. (1999), A bi-categorical axiomatisation of concurrent
graph rewriting. In: Proc. 8th Conference on Category Theory in Computer Science (CTCS), Electronic
Notes in TCS 29, Elsevier Science.

[13] Gadducci, F. and Montanari, U. (2000), The tile model. In: G. Plotkin, C. Stirling and M. Tofte (eds.)
In: Proof, Language and interaction, MIT Press, pp133–166.

[14] Hildebrandt, T., Niss, H. and Olsen M. (2006), Formalising business process execution with bigraphs
and reactive XML. In: Proc. 8th International Conference on Coordination Models and Languages,
LNCS 4038, Springer Verlag, pp113–129.

[15] Hirsch, D. and Montanari, U. (2001), Synchronised hyperedge replacement with name mobility. In:
Proc. 12th International Conference on Concurrency Theory (CONCUR), LNCS 2154, pp121–136.

[16] Jensen, O.H. (2005), Forthcoming PhD Dissertation.

[17] Jensen, O.H. and Milner, R. (2003), Bigraphs and transitions. In: 30th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages.

[18] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobile processes (revised). Technical Report UCAM-
CL-TR-580, University of Cambridge Computer Laboratory.

[19] Krivine, J., Milner, R. and Troina, A. (2007), Stochastic bigraphs. Submitted for publication (17pp).

[20] Leifer, J.J. (2001), Operational congruences for reactive systems. PhD Dissertation, University of
Cambridge Computer Laboratory. Distributed in revised form as Technical Report 521. Available from
http://pauillac.inria.fr/~leifer.

[21] Leifer, J.J. and Milner, R. (2000), Deriving bisimulation congruences for reactive systems. In: Proc.
CONCUR 2000, 11th International Conference on Concurrency Theory, pp243–258. Available at
http://pauillac.inria.fr/~leifer.

[22] Leifer, J.J. and Milner, R. (2004), Transition systems, link graphs and Petri nets. Mathematical
Structures in Computer Science 16, pp989–1047.

[23] Meseguer, J. (1992), Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science 96, pp73–155.

[24] Milner, R. (1996), Calculi for interaction. Acta Informatica 33, pp707–737.

[25] Milner, R. (2001), Bigraphical reactive systems. In: Proc. 12th International Conference on Concurrency
Theory, LNCS 2154, pp16–35.

[26] Milner, R. (2005), Axioms for bigraphical structure. Mathematical Structures in Computer Science 15,
pp1005–1032.

[27] Milner, R. (2006), Pure bigraphs: Structure and dynamics. Information and Computation 204, pp60–
122.

[28] Regev, A., Silverman, W. and Shapiro, E. (2001), Representation and simulation of biochemical
processes using the π-calculus process algebra. In: Proc. Pacific Symposium of Biocomputing 2001
(PSB2001), Vol 6, pp459–470.

[29] Sassone, V. and Sobocinski, P. (2002), Deriving bisimulation congruences: a 2-categorical approach.
Electronic Notes in Theoretical Computer Science, Vol 68 (2), 19pp.

[30] Terese (2003) Term Rewriting Systems. Cambridge University Press.

R. Milner / Electronic Notes in Theoretical Computer Science 209 (2008) 5–19 19

http://pauillac.inria.fr/~leifer
http://pauillac.inria.fr/~leifer

	Introduction
	Bigraphs in pictures
	Placing and linking
	Interfaces
	Classification
	Construction

	Applications, algebra and dynamics
	Application
	Algebra
	Dynamics

	Origins and related work
	Acknowledgement
	References

