

Edinburgh Research Explorer

Matching of Bigraphs

Citation for published version:
Birkedal, L, Damgaard, TC, Glenstrup, AJ & Milner, R 2007, 'Matching of Bigraphs' Electronic Notes in
Theoretical Computer Science, vol. 175, no. 4, pp. 3-19. DOI: 10.1016/j.entcs.2007.04.013

Digital Object Identifier (DOI):
10.1016/j.entcs.2007.04.013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.entcs.2007.04.013
https://www.research.ed.ac.uk/portal/en/publications/matching-of-bigraphs(8bcd3c6b-eb58-420c-93ce-802cf9bc06b8).html

Matching of Bigraphs

Lars Birkedal1 Troels Christoffer Damgaard1

Arne John Glenstrup1

IT University of Copenhagen, Denmark

Robin Milner2

University of Cambridge, UK

Abstract

We analyze the matching problem for bigraphs. In particular, we present a sound and complete inductive
characterization of matching of binding bigraphs. Our results pave the way for a provably correct matching
algorithm, as needed for an implementation of bigraphical reactive systems.

Keywords: Bigraphs, bigraphical reactive systems, matching, complete inductive characterization.

1 Introduction

Over the last decade, a theory of bigraphical reactive systems has been devel-

oped [9,13,14]. Bigraphical reactive systems (BRSs) provide a graphical model of

computation in which both locality and connectivity are prominent. In essence, a

bigraph consists of a place graph; a forest, whose nodes represent a variety of com-

putational objects, and a link graph, which is a hyper graph connecting ports of the

nodes. Bigraphs can be reconfigured by means of reaction rules. Loosely speaking,

a bigraphical reactive system consists of set of bigraphs and a set of reaction rules,

which can be used to reconfigure the set of bigraphs. BRSs have been developed

with principally two aims in mind: (1) to be able to model directly important as-

pects of ubiquitous systems by focusing on mobile connectivity (the link graph) and

mobile locality (the place graph), and (2) to provide a unification of existing theo-

ries by developing a general theory, in which many existing calculi for concurrency

1 Email: {birkedal,tcd,panic}@itu.dk
2 Email: Robin.Milner@cl.cam.ac.uk

Electronic Notes in Theoretical Computer Science 175 (2007) 3–19

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.04.013

mailto:birkedal@itu.dk
mailto:Robin.Milner@cl.cam.ac.uk
http://www.elsevier.com/locate/entcs

and mobility may be represented, with a uniform behavioural theory. The latter

is achieved by representing the dynamics of bigraphs by an abstract definition of

reaction rules from which a labelled transition system may be derived in such a

way that an associated bisimulation relation is a congruence relation. The unifica-

tion has recovered existing behavioural theories for the π-calculus [9], the ambient

calculus [8], and has contributed to that for Petri nets [11]. Thus the evaluation

of the second aim has so far been encouraging. In [2], Birkedal et al. initiate an

evaluation of the first aim, in particular it is shown how to give bigraphical models

of context-aware systems.

As suggested and argued in [9,1,2] it would be very useful to have an implemen-

tation of the dynamics of bigraphical reactive systems to allow experimentation and

simulation. In the Bigraphical Programming Languages research project at the IT

University, we are working towards such an implementation. The core problem of

implementing the dynamics of bigraphical reactive systems is the matching problem,

that is, to determine for a given bigraph and reaction rule whether and how the

reaction rule can be applied to rewrite the bigraph. The topic of the present paper

is to analyze the matching problem.

In Figure 1 we show several bigraphs. Consider the bigraph named a. It is

intended to model two buildings, one belonging to a corporation and one belonging

to a consultancy group. Inside the buildings are laptops with data nested inside

folders. The nesting structure depicts the place graph. Links are used to name

the buildings and, moreover, to model which folders can be shared between the

corporation and the consultancy group and inside the corporation. Thus the laptop

shown in the middle is intended to belong to a consultant working for the corporation

— the consultant has folders with data belonging to the consultancy group (the link

shown to the left) and folders with data belonging to the corporation (the link shown

to the right). The fact that folders belonging to the corporation should not leave

the corporation is expressed by linking those folders to a so-called binding port on

the corporation building, indicated by the circle.

The abstract semantic definition of matching, as defined in the theory of bi-

graphs [9], is roughly as follows (omitting many details): Given a reaction rule with

redex R and reactum R′ (with R and R′ both bigraphs), and a bigraph a (the agent

to be rewritten), if a = C ◦(R⊗ idZ)◦d, then it can be rewritten to C ◦(R′⊗ idZ)◦d.

Here ◦ denotes composition of bigraphs and Z is the set of global names of d. In

other words, if the reaction rule matches a, in the sense that a can be decomposed

into a context C, redex R and a parameter d, then a can be rewritten.

Consider again the example in Figure 1. There is a reaction rule expressed

by the redex R and the reactum R′; the intention of the reaction rule is to allow

copying of data between connected folders in the same nesting hierarchy (note the

link in R between the two folders and the so-called local name y). The agent a

can be written as a composition of C, R and d — formally, a = C ◦ (R ⊗ idz) ◦ d.

Composition works by (1) plugging the roots of R and d into the holes (aka sites)

of C respectively R; (2) fusing together the connections between folder and z (in d)

and z and folder (in C), removing the name z in the process; (3) fusing together

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–194

a=

Building

Laptop

Folder

Data

Building

Laptop

Folder

Data

Folder

Data

Laptop

Folder

Data

consultancy corporation

C =

Building

Laptop

Folder

Data

Building

0

consultancy

y

z

corporation

R =

Laptop

0

Folder

1

Laptop

2

Folder

3

y

R′ =

Laptop

0

Folder

1

Laptop

2

Folder

3 4:=1

y

d =

Folder

Data Data Data

z

Fig. 1. Example of a ground agent a = C ◦ (idz ⊗ R) ◦ d. Reaction rule R → R′ copies data between
connected folders.

the connection between the local name y and the two folders in R and the name y

and the bound port in C, removing the name y in the process. Note the use of idz

in the composition a = C ◦ (R ⊗ idz) ◦ d; it allows a name z from the parameter d

to be “passed through” the redex and be attached to something in the context C.

The reactum R′ contains a copy of the site numbered 1 in R, expressing that data

is copied between the shared folders. The sites numbered 0 and 2 in R allow the

reaction rule to apply also when the laptops contain other folders than the two that

are connected. Thus a can be rewritten using the reaction rule to another agent a′

like a but with two data items in the rightmost laptop (the agent a′ is not shown

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 5

in Figure 1).

In the present paper we provide an inductive characterization of when a =

C ◦(R⊗ idZ)◦d holds, by induction on a and R (the input to a matching algorithm).

It is a precise characterization in the sense that it is both sound and complete with

respect to the abstract definition. This provides a detailed analysis of the matching

problem, and paves the way for developing and proving correct an actual matching

algorithm (which, given a and R, must find C, d, and Z such that a = C◦(R⊗idZ)◦d
holds). We further include a discussion of how one may derive matching algorithms

from our inductive characterization. We will report on our work on an actual

implementation of matching in a subsequent paper.

Our inductive characterization is based on normal form theorems for bi-

graphs [13,5], which express how general bigraphs may be decomposed into a compo-

sition of simpler graphs. The normal form theorems and also the inductive charac-

terization we present here is based on so-called discrete decompositions of bigraphs.

Discrete bigraphs are bigraphs with a simple form of linkage. To a large extent, this

allows us to analyze matching of a general bigraph by considering its link graph and

place graph separately.

Of course, the matching problem is closely related to the NP-complete graph

embedding problem. Thus we analyze the embedding problem for a restricted class

of graphs, and our inductive characterization makes good use of the algebraic pre-

sentation of such graphs [13,5]. One hopes that matching implementations will

be efficient in practice since redices typically are small. Furthermore, sorting bi-

graphs [3] could be a source of early search elimination.

The remainder of this paper is organized as follows. In Section 2 we give an

informal description of binding bigraphs. The main contribution of this paper is in

Section 3, where we present our inductive characterization of matching. Section 4

discusses how the inductive characterization may ensure a correct and efficient al-

gorithm for matching. In the final sections we discuss related work and conclude.

Detailed proofs of Theorem 3.15, which states completeness of the characteriza-

tion, can be found in Damgaards Master’s thesis [4].

2 Binding Bigraphs

Here we present bigraphs informally; for a formal definition, see [9,5].

2.1 Concrete Bigraphs

A concrete binding bigraph G consists of a place graph GP and a link graph GL.

The place graph is an ordered list of trees indicating location, with roots r0, . . . , rn,

nodes v0, . . . , vk, and a number of special leaves s0, . . . , sm called sites, while the

link graph is a general graph over the node set v0, . . . , vk extended with inner names

x0, . . . , xl, and equipped with hyper edges, indicating connectivity.

We usually illustrate the place graph by nesting nodes, as shown in the upper

part of Figure 2 (ignore for now the interfaces denoted by “ : · → ·”). A link is

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–196

Bigraph G : 〈3, [{}, {}, {x0, x2}], X〉 → 〈2, [{y0}, {}], Y 〉

0

1

2

y0 y1 y2

x0 x2

x1

e′

v0

v1

v2 v3

e

X = {x0, x1, x2}

Y = {y0, y1, y2}

Place graph GP : 3 → 2

roots:

sites:

r0

v0

v1

s0

v2

r1

v3

s2 s1

Link graph GL : X → Y

names:

inner names:

y0 y1 y2

v0

v1

v2

v3

x0 x2 x1

e

e′

Fig. 2. Example bigraph illustrated by nesting and as place and link graph.

a hyper edge of the link graph, either an internal edge e or a name y. Links that

are names are called open, otherwise they are closed. Names and inner names can

be global or local, the latter being located at a specific root or site, respectively. In

Figure 2, y0 is located at r0, indicated by a small ring, and x0 and x2 are located

at s2, indicated by writing them within the site. Global names like y1 and y2 are

drawn anywhere at the top, while global inner names like x1 are drawn anywhere

at the bottom. A link, including internal edges like e′ in the figure, can be located

with one binder (the ring), in which case it is a bound link, otherwise it is free.

However, a bound link must satisfy the scope rule, a simple structural requirement

that all points of the link lie within its location (in the place graph), except for the

binder itself. This prevents y2 and e in the example from being bound.

2.2 Controls

Every node v has a control K which determines a binding and free arity, indicated

by v : K. In the example of Figure 2, we could have vi : Ki, i = 0, 1, 2, 3, where

K0 : 0 → 1, K1 : 0 → 2, K2 : 0 → 3, K3 : 1 → 2. The arities determine the number

of bound and free ports of the node, to which bound and free links, respectively,

are connected. Ports and inner names are collectively referred to as points.

2.3 Abstract Bigraphs

While concrete bigraphs with named nodes and internal edges are the basis of

bigraph theory [9], our prime interest is in abstract bigraphs, equivalence classes

of concrete bigraphs that differ only in the names of nodes and internal edges 3 .

Abstract bigraphs are illustrated with their node controls, as shown in Figure 1

with Building, Laptop, etc. In what follows, “bigraph” will thus mean “abstract

bigraph.”

3 Formally, we also disregard idle edges, those edges not connected to anything.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 7

2.4 Interfaces

Every bigraph G has two interfaces I and J , written G : I → J , where I is the

inner face and J the outer face. An interface is a triple 〈m, �X,X〉, where m is the

width (the number of sites or roots), X the entire set of local and global names,

and �X indicates the locations of each local name, cf. Figure 2. We let ε = 〈0, [], {}〉;
when m = 1 the interface is prime, and if all x ∈ X are located by �X, the interface

is local. As in [12] we write G : → J or G : I → for G : I → J when we are not

concerned about about I or J , respectively.

A bigraph G : I → J is called ground, or an agent, if I = ε, prime if I is local

and J prime, and a wiring if m = n = 0, where m and n are the widths of I and J ,

respectively. For I = 〈m, �X,X〉, bigraph idI : I → I consists of m roots, each root

ri containing just one site si, and a link graph linking each inner name x ∈ X to

name x.

2.5 Discrete and Regular Bigraphs

We say that a bigraph is discrete iff every free link is a name and has exactly one

point. The virtue of discrete bigraphs is that any connectivity by internal edges

must be bound, and node ports can be accessed individually by the names of the

outer face. In Figure 1, only R,R′ and d are discrete, because the free internal edges

of a and C have two points. Further, a bigraph is name-discrete iff it is discrete

and every bound link is either an edge, or (if it is an outer name) has exactly one

point. Note that name-discrete implies discrete.

A bigraph is regular if, for all nodes v and sites i, j, k with i ≤ j ≤ k, if i and

k are descendants of v, then j is also a descendant of v. Further, for roots ri′ and

rj′ , and all sites i and j where i is a descendant of ri′ and j of rj′ , if i ≤ j then

i′ ≤ j′. The bigraphs in the figures are all regular, the permutation in Table 1

is not. The virtue of regular bigraphs is that permutations can be avoided when

composing them from basic bigraphs.

2.6 Tensor Product, Parallel Product, and Composition

For bigraphs G1 and G2 that share no names or inner names, we can make the

tensor product G1 ⊗ G2 by juxtaposing their place graphs, constructing the union

of their link graphs, and increasing the indexes of sites in G2 by the number of sites

of G1. For instance, bigraph d of Figure 1 is a tensor product of four primes. We

write
⊗n

i Gi for the iterated tensor G0 ⊗ · · · ⊗ Gn−1, which, in case n = 0, is idε.

The parallel product G1 ||G2 is like the tensor product, except global names can

be shared: if y is shared, all points of y in G1 and G2 become the points of y in

G1 || G2.

We can compose bigraphs G2 : I → I ′ and G1 : I ′ → J , yielding bigraph

G1 ◦ G2 : I → J , by plugging the sites of G1 with the roots of G2, eliminating

both, and connecting names of G2 with inner names of G1—as in Figure 1, where

a = C ◦ (idz ⊗R) ◦ d. In the following, we will omit the ‘◦’, and simply write G1G2

for composition, letting it bind tighter than tensor product.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–198

2.7 Active, Passive and Atomic Controls

In addition to arity, each control is assigned a kind, either atomic, active or passive,

and describe nodes according to their control kinds. We require that atomic nodes

contain no nodes except sites; any site being a descendant of a passive node is

passive, otherwise it is active. If all sites of a bigraph G are active, G is active.

For Figure 1 we could have Data : atomic(0 → 0), Folder : passive(0 → 1),

Laptop : active(0 → 0), Building : active(1 → 1).

2.8 Bigraphical Reactive Systems

Bigraphs in themselves model two essential parts of context: locality and connec-

tivity. To model also dynamics, we introduce bigraphical reactive systems (BRS) as

a collection of rules. Each rule R →� R′ consists of a regular redex R : I → J , a

regular reactum R′ : I ′ → J , and an instantiation �, mapping each site of R′ to a

site of R. Interfaces I = 〈m, �X,X〉 and I ′ = 〈m′, �X ′,X ′〉 must be local, and are

related by X ′
i = X�(i). We illustrate � by a ‘i := j’, as shown in Figure 1, whenever

�(i) = j 	= i. Given an instantiation � and a discrete bigraph d = d0 ⊗ · · · ⊗ dk

with prime di’s, we let �(d) = d�(0) ⊗ · · · ⊗ d�(k), allowing copying, discarding and

reordering parts of d.

Given an agent a, a match of redex R is a decomposition a = C(idZ ⊗ R)d,

with active context C, discrete parameter d, and some set of names Z. Dynamics is

achieved by transforming a into a new agent a′ = C(idZ ⊗R′)d′, where d′ = �(d)—

an example is shown in Figure 1. This definition of a match is as in [9], except

that we here also require R to be regular. This restriction to regular redexes R

(and to discrete parameters d) does not limit the set of possible reactions. We

restrict attention to regular R’s because it simplifies the inductive characterization

of matching by allowing us to omit trivial permutations.

2.9 Notation, Basic Bigraphs, and Abstraction

In the sequel, we will use the following notation:
 denotes union of sets required

to be disjoint; we write {�Y } for Y0
 · · ·
Yn−1 when �Y = Y0, . . . Yn−1, and similarly

{�y} for {y0, . . . , yn−1}. For interfaces, we write n to mean 〈n, [∅, . . . , ∅], ∅〉, X to

mean 〈0, [],X〉, 〈X〉 to mean 〈1, [{}],X〉 and (X) to mean 〈1, [X],X〉.

Any bigraph can be constructed by applying composition, tensor product and

abstraction to identities (on all interfaces) and a set of basic bigraphs, shown in

Table 1 [5]. For permutations, when used in any context, π �X
G or Gπ �X

, �X is given

entirely by the interface of G; in these cases we simply write π �X as π.

Given a prime P , the abstraction operation localises a subset of its outer names.

Note that the scope rule is necessarily respected since the inner face of a prime P is

required to be local, so all points of P are located within its root. The abstraction

operator is denoted by (·)· and reaches as far right as possible.

For a renaming α : X → Y , we write �α� to mean (id1 ⊗ α)�X�, and when

σ : U → Y , we let σ̂ = (Y)(σ⊗ id1)�U�. We write substitutions �y/[∅, . . . , ∅] : ε → Y

as Y .

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 9

Notation Example

Merge mergen : n → 1 merge3 =
0 1 2

Concretion �X� : (X) → 〈X〉 �{x1, x2}� =
0

x1

x1

x2

x2

Abstraction (Y)P
: I→〈1, [Y], Z � Y 〉

({y1, y2})({y3})�{y1, y2, y3, z}� =
0

y1

y1

y2

y2

y3

y3

z

z

Substitution
σ

�y/ �X : X → Y [y1, y2, y3]/[{x1, x2}, {}, {x3}] =

x1

y1

x2

y2

x3

y3

Renaming
α, β

�y/�x : X → Y [y1, y2, y3]/[x1, x2, x3] =

x1

y1

x2

y2

x3

y3

Closure /X : X → {} /{x1, x2, x3} =
x1 x2 x3

Wiring
ω

(id ⊗ /Z)σ
: X → Y

(id{y1,y2} ⊗ /{z1, z2})
[y1, z1, y2, z2] /
[{}, {x1, x2}, {x4, x5}, {x6}]

=

y1

x1 x2 x4

y2

x5 x6

Ion
K

�y(�X)

: ({ �X}) → 〈{�y}〉
K[y1,y2]([{x1},{x2,x3},{}]) =

K

y1 y2

x1x2x3

Permutation
π �X

{i 	→ j, . . .}
: 〈m, �X, X〉 → 〈m, π(�X), X〉

{0 	→ 2, 1 	→ 0, 2 	→ 1}[{x},∅,{y}] =
1 2 0

y

y

x

x

Table 1
Basic bigraphs, the abstraction operation, and variables ranging over bigraphs.

Note that []/[] = /∅ = π0 = idε and merge1 = �∅� = π1 = id1, where πi is the

nameless permutation of width i.

As an example, the bigraph of Figure 2 can be written

G = (ω ⊗ (({y0})(y0/Y ⊗ id1)�Y �)) (((Y)P1) ⊗ P2 ⊗ y2/x1) , where

ω = (/e ⊗ id{y1,y2})[y1, y2, e]/[{y1}, {y2, y
′
2, y

′′
2}, {e, e

′}], Y = {y0, y
′
0, y

′′
0}

P1 = (id{y0,y1,y′
2,e} ⊗ merge2)

(
(id{y0,e} ⊗ K0[y′

0])K1[y0,e] ⊗ K2[y′′
0 ,y1,y′

2]
merge0

)
P2 = (id{e′,y′′

2 }
⊗ merge2)(K3[e′,y′′

2]([{x0,x2}]) ⊗ �∅�),

and for Figure 1 we have a = (id{consultancy ,corporation} ⊗ /z) (p1 || p2), where

p1 = (idz ⊗ Building[consultancy]([{}])Laptop)Folder[z]Datamerge0

p2 = (idz ⊗ Building[corporation]([{y1,y2}]))({y1, y2})(id{z,y1,y2} ⊗ merge2) (p′2 ⊗ p′′2)

p′2 = (id{z,y1} ⊗ Laptopmerge2)(Folder[z]Datamerge0 ⊗ Folder[y1]Datamerge0)

p′′2 = (idy2 ⊗ Laptop)Folder[y2]Datamerge0

Finally, a molecule is a prime with just one outermost node.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–1910

3 Inductive Characterization of Matching

In this section we present our inductive characterization of matching. To ease the

presentation we shall disregard the requirement that the context in a match must

be active (it is straightforward to extend the following presentation to include the

active requirement).

3.1 Preliminaries

In this subsection we introduce useful notation and establish some propositions

about how one may decompose bigraphs. To simplify notation we shall simply

write id for identity bigraphs, without a subscript showing the interface, when it is

clear from the context what interface is intended.

The following propositions express how bigraphs may be decomposed into sim-

pler constitutent components. The proofs follow easily from the normal form the-

orem in [5]. Note that ω,α, σ and π range over wirings, renamings, substitutions

and permutations, cf. Table 1.

Proposition 3.1 Any bigraph G can be decomposed into a composition of the fol-

lowing form

G = (ω ⊗ id)(D ⊗ idY),

where D is discrete and with local innerface. Any other decomposition of G on

this form takes the form G = (ω′ ⊗ id)(D′ ⊗ idY), where ω′ = ω(α ⊗ idY) and

D′ = (α−1 ⊗ id)D, for suitable α.

Proposition 3.2 Any discrete bigraph D of width n with local innerface can be

decomposed such that

D =
(n⊗

i

(σ̂i ⊗ id)Pi

)
π,

where the Pi’s are name-discrete and prime. Any other decomposition on this form

of D takes the form
(⊗n

i (σ̂′
i ⊗ id)P ′

i

)
π′, where, for some α̂i, ρi, for all i, P ′

i =

(α̂i
−1 ⊗ id)Piρi (

⊗n
i ρi)π

′ = π, and σ̂′
i = σ̂iα̂i.

For primes and molecules, the normal form can be found in loc. cit.

One can decompose binding ions K�y(�X) into K�y(�u)

⊗n
i (ui)/(Xi). Such decom-

positions will be useful because of the following proposition, which is a corollary of

Theorem 1, item 1, in [5] (specialized to free discrete ions).

Proposition 3.3 Any free discrete molecule M : I → ({�y}
Z) can be decomposed

as

M = (K�y(�u) ⊗ idZ)P,

where P is a discrete prime. Any other decomposition of M on this form, has the

form (K�y(�x) ⊗ idZ)P ′, where there exists a unique α̂, given by ui �→ xi, such that

K�y(�u)α̂ = K�y(�x) and P = (α̂ ⊗ idZ)P ′.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 11

3.2 Matching Sentences

We now define matching sentences and rules for deriving valid matching sentences.

Definition 3.4 A matching sentence is a 7-place relation among wirings and

bigraphs, written ωa, ωR, ωC
 a,R ↪→C, d, satisfying that ωa, ωR, ωC are wirings,

and a, R, C, d are discrete bigraphs, R and C have local inner faces, and R is

regular.

Definition 3.5 A matching sentence ωa, ωR, ωC
 a,R ↪→C, d, where ωR :→ Y ,

and d has global outer names Z, is valid, denoted ωa, ωR, ωC � a,R ↪→C, d, iff

(id ⊗ ωa)a = (id ⊗ ωC)(C ⊗ idY ⊗ idZ)(id ⊗ idZ ⊗ ωR)(R ⊗ idZ)d.

where unqualified identities are local and determined from the context.

Note that for a valid sentence ωa, ωR, ωC
 a,R ↪→C, d, if we let a′ = (id⊗ωa)a,

C ′ = (id ⊗ ωC)(C ⊗ idY ⊗ idZ), and R′ = (id ⊗ ωR)R, then a′ = C ′(R′ ⊗ idZ)d.

Conversely, if, for general a′, C ′, R′, d we have a match a′ = C ′(R′ ⊗ idZ)d, then

by Proposition 3.1, we can decompose a′, C ′, and R′ and obtain a corresponding

valid sentence. Thus, valid sentences precisely capture the abstract definition of

matching.

3.3 Rules for Matching

In Figure 3 we present a set of rules for inferring matching sentences. In par we

require further that the tensor products of all discrete components be defined. Also,

in the premises of the rules perm and ion, and in the conclusion of rules merge,

ion, and switch we require the id’s to have width 0 (hence be link graph identities).

This determines them entirely from the context.

We now explain the rules.

The perm rule simply pushes a permutation on the inside of the context through

the redex, permuting the discrete primes, and producing a pushed-through permuta-

tion π, depending on π and the innerface of the redex, as stated in the push-through

lemma [5].

The par rule explains how to match a product, given two valid matches, which

share some context wiring ω if the two parts of the redex share a (necessarily global)

name, cf. Figure 4.

The lsub rule allows us to match any discrete prime (c.f. Proposition 3.2) by

matching an underlying free (name)discrete prime with the wiring of agent and con-

text extended with the underlying global substitutions σa and σC. In other words,

this rule expresses that we can match a bigraph with local names by matching the

corresponding free bigraph (forgetting that the names are local) and then remember

to make the correct names local again.

The merge rule simply states that to match bigraphs with an outer merge and

a global id, we must be able to match the underlying bigraphs.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–1912

perm

ωa, ωR, ωC
 a,
⊗m

i Pπ−1(i) ↪→C, (π ⊗ id)d

ωa, ωR, ωC
 a,
⊗m

i Pi ↪→Cπ, d

par

ωa, ωR, ωC || ω
 a,R ↪→C, d ωb, ωS, ωD || ω
 b, S ↪→D, e

ωa || ωb, ωR || ωS, ωC || ωD || ω
 a ⊗ b,R ⊗ S ↪→C ⊗ D, d ⊗ e

lsub

σa ⊗ ωa, ωR, σC ⊗ ωC
 p,R ↪→P, d σa : Z → W σC : U → W

ωa, ωR, ωC
 (σ̂a ⊗ id)(Z)p,R ↪→(σ̂C ⊗ id)(U)P, d

merge

ωa, ωR, ωC
 a,R ↪→C, d a global

ωa, ωR, ωC
 (merge ⊗id)a,R ↪→(merge ⊗id)C, d

ion

ωa, ωR, ωC
 ((�v)/(�X) ⊗ id)p,R ↪→((�v)/(�Z) ⊗ id)P, d α = �y/�u σ : {�y} →

σ || ωa, ωR, σα || ωC
 (K�y(�X) ⊗ id)p,R ↪→(K�u(�Z) ⊗ id)P, d

switch

ωa, idε, ωC(σ ⊗ ωR ⊗ id)
 p, id ↪→P, d P :→ 〈W
 Y 〉 σ : W → U

ωa, ωR, ωC
 p, (σ̂ ⊗ id)(W)P ↪→�U�, d

prime-axiom

α : X → β : Z → p : 〈X
 Z〉

ω, idε, ω(α−1 ⊗ β−1)
 p, id ↪→�α�, (X)(β ⊗ id〈X〉)p

wiring-axiom

y, Y, y/Y
 idε, idε ↪→ idε, idε

close

σa, σR, idYR
⊗ σC
 a,R ↪→ C, d σC :→ Y
 YC σR :→ U
 YR

(id ⊗ /(YR
 YC))σa, (id ⊗ /YR)σR, (id ⊗ /YC)σC
 a,R ↪→ C, d

Fig. 3. Rules for matching binding bigraphs

K L

xw1y1 y2w2 z

a b

ωa ωb

YC = {w}

YD = {w, z}

x y1 y2 z

x y1 y2

w

w

ω

z

C⊗idYC
idYD

⊗D

ωC ωD

K L

xw1y1 y2w2 z

R S

ωR ωS

Fig. 4. Matching a product using the par rule

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 13

The ion rule works intuitively by splitting up a binding ion into a free, discrete

ion and an underlying local substitution. For any given match of discrete primes,

we can compose with ions K�y(�X) or K�u(�Z), if we extend the wirings of agents and

contexts with isomorphic wiring on the outer names �y and �u; stated in the rule by

requiring that we extend with σy and σyα (where α = �y/�u). For example, if we seek

to match the agent a = (id⊗K
�y(�X)

)p yielding a context C = (id⊗K
�u(�Z)

)P , then it

suffices to consider matching of a′ = (�v)/(�X)p yielding a context C ′ = (�v)/(�Z), as

illustrated in Figure 5.

K

y1 y2

y′
1 y′

2

σy

p

x1x2x3x4

a

K

u1 u2

y′
1 y′

2

σyα

P

z1z2z3z4

C

v1 v2 v3

p

x1x2x3x4

a′

v1 v2 v3

P

z1z2z3z4

C′

Fig. 5. Matching ion agent a yielding context C by matching a′ yielding context C′

Given an agent and considering an inference tree operationally bottom up, the

rules specify how to decompose the agent while constructing the corresponding

context (cf., e.g., the ion rule). At the point where the root of the redex is matched,

the switch rule is applied, switching the redex into context position, so that further

decomposition of the agent checks that the redex matches. Thus, when inferring a

match, every rule except switch can be used in two modes: one where the agent

and redex are given, resulting in a context and parameter; and one where the agent

and context are given, resulting in a parameter.

The prime-axiom and wiring-axiom axioms are our base cases and are intu-

itively clear (the latter is used to match bigraphs of zero width).

The close rule allows us to infer a match for bigraphs where all global links are

open, and “close” this match by replacing names in wirings with edges, cf. Figure 6.

An internal edge in the agent need not have the same identity as its counterpart in

redex or context, hence the α.

a R C

K1 K2 L1 L2 M1 M2 K1 K2 L1

u

L2 M1 M2

u

K1 K2 L1 L2 M1 M2

y z2z1

K1 K2 L1

y u

L2 M1 M2

z2

u

z1

y

y

a′ R′ C′

Fig. 6. Matching closed links within and between redex and context

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–1914

Theorem 3.6 The rules for matching in Figure 3 are sound, that is, any matching

sentence that can be derived is valid.

Proof. Straightforward, but tedious, standard algebraic manipulations. �

The completeness theorem will be proved by induction on the size of valid sen-

tences, which is defined as follows.

Definition 3.7 The size of a matching sentence ωa, ωR, ωC
 a,R ↪→C, d is the

number of ions in a.

The following lemmas express how a valid sentence may be derived by applica-

tions of inference rules to valid sentences of lesser or equal size. The proofs proceed

by first decomposing the components of the given valid sentence, then defining the

components of the valid sentence(s) claimed to exist and, finally, verifying that (1)

the sentences claimed to exist really are valid and (2) that the given sentence can in-

deed be derived as claimed. The decompositions are obtained via Propositions 3.1,

3.2, and 3.3, and the verifications proceed using centrally the unicity results for

these normal forms and lemmas as found in [5].

Lemma 3.8 Every valid sentence ωa, ωR, ωC � a,R ↪→C, d is provable using the

close and the perm rule on a valid sentence, of equal size, of the form σa, σR, σC �

a, S ↪→
⊗n

i Pi, e.

Lemma 3.9 Every valid sentence σa, σR, σC � a,R ↪→P ⊗
⊗n

i Pi, d, with P and

Pi prime and discrete, is provable using the par rule on valid sentences, of lesser

or equal size, of the form σP
a , σP

R, σP
C || σS

C � p, S ↪→P, e and σC
a , σC

R, σC
C || σS

C �

a′, R′ ↪→
⊗n

i Pi, e
′.

Lemma 3.10 Every valid sentence σa, σR, σC � a,R ↪→ idε, d is provable using par

and wiring-axiom.

Lemma 3.11 Every valid sentence ωa, ωR, ωC � p,R ↪→P, d, with p and P prime

and discrete, is provable using the lsub rule on a valid sentence, of lesser or equal

size, of the form ω′
a, ω

′
R, ω′

C � p′, R ↪→P ′, d, where p′ and P ′ are discrete free primes.

Lemma 3.12 Every valid sentence σa, σR, σC � p,R ↪→Q, d, with p and Q discrete

and free primes, is provable using merge, par (iterated), and switch rules on valid

sentences, each of lesser or equal size, and each on one of two forms:

• σ′
a, σ

′
R, σ′

C � pN , id ↪→PN , e, where pn and PN are free discrete primes,

• σ′
a, σ

′
R, σ′

C � m,S ↪→M,e, where m and M are free discrete molecules.

Lemma 3.13 Every valid sentence σa, σR, σC � m,R ↪→M,d, with m and M free

discrete molecules, is provable using the ion rule on a valid sentence σ′
a, σ

′
R, σ′

C �

p,R ↪→P, d, of lesser size, where p and P are discrete primes.

Lemma 3.14 Every valid sentence σa, σR, σC � p, id ↪→P, e, with p and P free

discrete primes, is provable using the merge and par (iterated) rules on valid

sentences of equal or lesser size, which are either instances of rule prime-axiom or

of the form σ′
a, σ

′
r, σ

′
M � m,R ↪→M,d.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 15

Theorem 3.15 The rules for matching in Figure 3 are complete, that is, any valid

matching sentence can be derived from the rules.

Proof. By induction on the size of a sentence. By the lemmas above, we have

that all valid sentences with size n can be derived from valid sentences of the form

σa, σR, σC � m,R ↪→M,d, with m and M free discrete molecules, of size less than

or equal to n. By Lemma 3.13, these can be derived from sentences of size less than

n. �

4 Towards Algorithms for Matching

The completeness theorem tells us that we can find all valid matching sentences by

applications of the rules for matching. Thus the rules for matching define an algo-

rithm for matching, for instance easily expressed in Prolog, which simply operates

by searching for inference trees using the rules.

Although we can (e.g., in Prolog) base a matching algorithm directly upon the

matching rules, we do not claim that an efficient matching algorithm has to be so

based. We have introduced matching rules for a dual purpose: first, to characterise

matching structurally and inductively in order to understand it (in particular to

understand the relation to representations based on normal forms and to understand

where exactly choices between different matches can be made during matching);

second, to provide a point from which to begin the search for truly efficient matching

algorithms, and to verify them. This rigorous approach to matching is justified, in

our view, because matching will be the workhorse of any implementation of bigraph

dynamics.

In practice, one is, of course, interested in minimizing unnecessary blind search,

and thus, for instance, only search for inference trees of a certain form. Indeed,

one can show that it suffices to consider so-called normal inference trees, which

put restrictions on the order in which the inference rules are applied (such as, e.g.,

always concluding with the close rule). We shall not include a formal definition of

normal inference trees here, but rather discuss some of the possibilities for defining

normal inference trees. We first remark that to retain completeness, any definition

of normal inference must, of course, ensure no loss of provability. Looking at the

formulations of the lemmas leading up to the completeness theorem, we see that

there are indeed several possibilities for the definition of normal inference tree. For

example, from Lemma 3.8 we see that we are free to conclude each inference tree

with close and then perm or vice versa. Further, in several rules we are allowed to

propagate closed links, even though close intuitively makes that unnecessary. We

have chosen to leave this freedom in the rule system and instead comment on how

we could extend the set of rules to allow even more freedom in chosing our definition

of normal inference tree. This is important when thinking about implementations,

as each definition of normal inference tree corresponds to a different algorithmic

approach to matching.

One may say that the current set of rules naturally give rise to normal inferences

that are a mix between matching the link graph “lazily”or “eagerly”. Instead of

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–1916

the close rule, one could have amended the par and ion rules (those with || in

the conclusion) such that they would also handle matching of closures. This would

have allowed true “by need” link-matching. Conversely, one could have amended

the close to also compare substitutions, allowing us to consider matching of dis-

crete bigraphs up to renaming isos on their outerfaces. If we amended the lsub

and switch rules to work accordingly, this would actually preclude the need for

the wirings ωa, ωR, ωC in matching sentences. It seems, though, that the tedious

complexity added into these rules would mean that we would gain little in removing

complexity from the rules as a whole. Anyhow, these changes would allow us to

define a variant of normal inferences, which would be “strict” in the link graph,

in that we would immediately be able to reject possible matches based on the link

graph (instead of the place graph).

Another possibility would be to add a rule glob, allowing us to match all wiring

stemming from a single prime as global wiring. This idea seems to indicate that

matching in local bigraphs [12] (where there is no global linkage but instead multi-

located names) could be handled similarly, by recasting the rules to work on local

links and just locating names at all roots where they occur.

4.1 Representations of Graphs

An implementation of matching must, of course, represent bigraphs in some way.

One possibility is to represent bigraphs directly by place and link graphs, and then

implement the normal form lemmas, which express how bigraphs may be decom-

posed into simpler bigraphs; then matching can proceed by induction on the de-

composed graph. In general, however, the “decomposition functions” return sets

of possible decompositions, because normal forms are only unique up to certain

permutations. (For example, merge(M1 ⊗ M2) = merge(M2 ⊗ M1).) A matching

implementation needs to explore all the possible decompositions. This can be made

explicit formally, by phrasing the inductive characterization of matching not on bi-

graphs but on bigraphical expressions (syntax), as defined in [13,5]. Doing so forces

us to add an inference rule, which allows one to replace any expression in a matching

sentence ωa, ωR, ωC
 a,R ↪→C, d, say a, by another, say a′, that is provably equal

via the axioms for equality in [5]. Doing so clearly yields a complete set of rules on

bigraphical expressions. When defining normal inference trees for these, one seeks,

of course, to restrict the application of the equality axioms. The definition of nor-

mal inference trees will then formally explicate all the possibilities that a matching

algorithm needs to explore. We have worked out a definition of normal inference

tree for matching of place graph expressions and proved it complete. Based on that

experience, we believe it should not be too hard to work out a suitable definition of

normal inference tree binding bigraph expressions and prove it complete.

5 Conclusion and Related Work

We have presented a sound and complete inductive characterization of matching for

binding bigraphs. We are currently working toward an implementation of matching

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 17

based upon the characterization.

Bigraphical reactive systems are related to graph transformations systems; see [6]

for a recent comprehensive overview of graph transformation systems. In partic-

ular, bigraph matching is strongly related to the general graph pattern matching

(GPM) problem, so general GPM algorithms might be applicable [17,7,10,20]. Due

to the special structure of bigraphs, general GPM algorithms are expected to be

inefficient, although some GPM tools [19] use heuristic search strategies that might

be able to discover and exploit bigraph structure. A special aspect of bigraphs is

that we may match a set of subtrees with a single node (site) in the redex, and

match multiple redex roots in different places within the agent. Fu [7] handles such

wildcard nodes and multiple patterns, but directly applying his algorithm is not

straightforward, as he attacks the problem of tree isomorphism of rooted graphs

unfolded to finite unbounded depths. The subtree isomorphism problem [15,18,16]

is simpler than GPM, but applying it directly to the place graphs of bigraphs would

not exploit the constraints imposed by the link graphs. Rather, efficient imple-

mentations of bigraph matching should be derived from the initial implementation

by experimenting with different normal inference tree definitions, and combining it

with subtree isomorphism algorithms. The inductive characterization provided here

will make it easier to prove the actual algorithm correct.

Acknowledgement

This work was funded in part by the Danish Research Agency (grant no.: 2059-03-

0031) and the IT University of Copenhagen (the LaCoMoCo project).

References

[1] Birkedal, L., Bigraphical Programming Languages—a LaCoMoCo research project, in: Second UK
UbiNet Workshop, Cambridge, 2004, position paper.

[2] Birkedal, L., S. Debois, E. Elsborg, T. Hildebrandt and H. Niss, Bigraphical models of context-aware
systems, in: L. Aceto and A. Ingólfsdóttir, editors, FOSSACS ‘06: Proceedings of 9th International
Conference on Foundations of Software Science and Computation Structures, LNCS 3921 (2006), pp.
187–201.

[3] Birkedal, L., S. Debois and T. Hildebrandt, Sortings for reactive systems, Technical Report 84, IT
University of Copenhagen (2006).

[4] Damgaard, T. C., “Syntactic Theory for Bigraphs,” Master’s thesis, IT University of Copenhagen
(2006).

[5] Damgaard, T. C. and L. Birkedal, Axiomatizing binding bigraphs, Nordic Journal of Computing 13

(2006), pp. 58–77.

[6] Ehrig, H., K. Ehrig, U. Prange and G. Taentzer, “Fundamentals of Algebraic Graph Transformation,”
Monographs in Theoretical Computer Science. An EATCS Series, Springer, 2006.

[7] Fu, J. J., Directed graph pattern matching and topological embedding, Journal of Algorithms 22 (1997),
pp. 372–391.

[8] Jensen, O. H., “Mobile Processes in Bigraphs,” Ph.D. thesis, Univ. of Cambridge (2006).

[9] Jensen, O. H. and R. Milner, Bigraphs and mobile processes (revised), Technical Report UCAM-CL-
TR-580, University of Cambridge (2004).

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–1918

[10] Larrosa, J. and G. Valiente, Constraint satisfaction algorithms for graph pattern matching,
Mathematical Structures in Computer Science 12 (2002), pp. 403–422.

[11] Leifer, J. J. and R. Milner, Transition systems, link graphs and Petri nets, Technical Report UCAM-
CL-TR-598, University of Cambridge (2004).

[12] Milner, R., Bigraphs whose names have multiple locality, Technical Report UCAM-CL-TR-603,
University of Cambridge, Computer Laboratory (2004).

[13] Milner, R., Axioms for bigraphical structure, Mathematical Structures in Computer Science 15 (2005),
pp. 1005–1032.

[14] Milner, R., Pure bigraphs: structure and dynamics, Inf. Comput. 204 (2006), pp. 60–122.

[15] Selkow, S. M., The tree-to-tree editing problem, Information Processing Letters 6 (1977), pp. 184–186.

[16] Shamir, R. and D. Tsur, Faster subtree isomorphism, Journal of Algorithms 33 (1999), pp. 267–280.

[17] Ullman, J. D., An algorithm for subgraph isomorphism, Journal of the ACM 23 (1976), pp. 31–42.

[18] Valiente, G., “Algorithms on Trees and Graphs,” Springer, Berlin, 2002.

[19] Varró, G., D. Varró and K. Friedl, Adaptive graph pattern matching for model transformations using
model-sensitive search plans, in: G. Karsai and G. Taentzer, editors, GraMot 2005, International
Workshop on Graph and Model Transformations, Electronic Notes in Theoretical Computer Science,
2005, pp. 191–205.

[20] Zündorf, A., Graph pattern matching in PROGRES, in: J. Cuny, H. Ehrig, G. Engels and G. Rozenberg,
editors, Proceedings of the 5th International Workshop on Graph-Grammars and their Application to
Computer Science, LNCS 1073 (1996), pp. 454–468.

L. Birkedal et al. / Electronic Notes in Theoretical Computer Science 175 (2007) 3–19 19

	Introduction
	Binding Bigraphs
	Concrete Bigraphs
	Controls
	Abstract Bigraphs
	Interfaces
	Discrete and Regular Bigraphs
	Tensor Product, Parallel Product, and Composition
	Active, Passive and Atomic Controls
	Bigraphical Reactive Systems
	Notation, Basic Bigraphs, and Abstraction

	Inductive Characterization of Matching
	Preliminaries
	Matching Sentences
	Rules for Matching

	Towards Algorithms for Matching
	Representations of Graphs

	Conclusion and Related Work
	Acknowledgement
	References

