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Pervasive Process Calculus

Robin Milner

The Computer Laboratory
University of Cambridge

Cambridge, UK

Abstract

Process calculi with various signatures and reaction rules may provide a theoretical basis for pervasive
computing.

Keywords: bigraph, graph-rewriting, mobile agent, pervasive computing, process calculus.

Do process calculi need to ramify, if we want to model pervasive computing? I

believe so; we can’t expect a fixed small set of primitives to work for everything.

This already shows up with locality and mobility (e.g. in the mobile ambients of

Luca Cardelli and Andy Gordon) and with continuous dynamics (e.g. in the Φ-

calculus of Bill Rounds). In general, it shows up when we try to decide which kinds

of action are primitive; this depends on our purpose. Researchers who apply process

calculi in biology are finding that the primitives they need depend upon the desired

granularity of action; for example, at one level the ingestion of a molecule by a cell

is a single discrete action, but at a lower level it is a continuous process. The same

thing surely occurs in pervasive computing. For example, in a sentient building, the

entry of a mobile agent into a room is at one level a single action, but at a lower

level it is complex (involving keys, walking etc); and the computer in the room may

then sense-and-login the agent in a single macro-action, involving detailed software

activity at a lower level.

So we need a modelling framework which embraces calculi of processes at dif-

ferent levels; the realisation (or implementation) of a higher-level calculus by a

lower-level one should be a kind of morphism of calculi. This is the aim of the bi-

graphical framework. I hope that these morphisms will harmonise with the concept

of refinement, developed over many years by Tony Hoare and colleagues at Oxford.

Then an important consequence could be a bigraphical language that coordinates

descriptions on different levels – some for specification, some for programming. As

well as this ‘vertical’ coordination, it should coordinate descriptions ‘horizontally’,
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Fig. 1. Sentient buildings: structure. The bigraph G is a subsystem of a larger system, and has two parts
that may be widely separated in the whole. H is a host system; a context whose holes (the grey rectangles)
may be occupied by the parts of G to form a larger system. The composite system H ◦G is shown in Figure
2.

in the familiar sense of coordination languages.

I am working on this with a team at the ITU Copenhagen led by Lars Birkedal

and Thomas Hildebrandt, http://www.itu.dk/research/theory/bpl. We hope

to derive a Bigraphical Programming Language (BPL) from the bigraph model.

Then engineers of pervasive systems may find themselves programming in a language

that is amenable to analysis because it is theoretically understood, though they need

not know the theory. That was what ALGOL 60, logic programming and functional

programming all aspired to; there is no reason not to aspire to it in the anarchical

world of pervasive computing.

The bigraph model arose from the increasing need in real-world informatic sys-

tems, especially pervasive systems, to treat localities in the style of mobile ambients,

and equally to treat the connectivities of a system in the style of the channels of

CSP, CCS or π-calculus. Moreover (1) connectivities and localities may be real or

virtual, (2) they should be treated independently of one another (where you are

does not affect whom you may talk to), and (3) mobility is just reconfiguration of

both these structures. What distinguishes bigraphs is not the details of these two

structures, but the orthogonal treatment of them.

The rest of this note shows how bigraphs may capture the phenomena of perva-

sive computing, and also how they represent familiar process calculi rather directly.

First, consider a kind of sentient building B containing rooms R. Each room

contains a computer C that is also a sensor, and all these computers are linked as

part on the building’s infrastructure. Agents A may occupy the building, inside or

outside rooms; they carry devices — e.g phones — allowing them to communicate

with each other; with the help of these devices they can also be sensed and logged

in by any computer in a room. Figure 1 shows a bigraph G representing a system

of such entities; the left part of G has a building with rooms and agents, while the

right part has a single room, which may be somewhere else entirely, and a single

agent. The nesting of nodes represents locality, and the slender links represent

connectivity. One of G’s links connects all the agents, even the one in the right

part of G remote from the building; it may represent an ongoing conference call.
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Fig. 2. Sentient buildings: dynamics. F = H ◦G represents the bigraph G of Figure 1 inserted in the host
H. Note how the ‘outer’ names of G have been linked to the ‘inner’ names of H. The upper diagram
shows a reaction in which F becomes F ′; an agent A enters a room R, then it is sensed and logs in to the
computer C located there. Below it are shown the two simple reaction rules that induce this reaction; one
represents entry to a room, the other represents sensing and logging in.

Another link connects the building’s computers, as part of its infrastructure.

The number of G’s regions, together with its ‘outer names’ y and z, constitute

its outer (inter)face J = 〈2, {y, z}〉. These interfaces are objects in a symmetric

monoidal category, whose arrows are bigraphs. In general, an arrow is a context ; it

has not only an outer face, as G does, but also a non-trivial inner face determining

the bigraphs with which it may be composed (i.e. those that can occupy the context).

Thus H : J →K is such a context, where K = 〈1, {x}〉. The inner face of G is the

trivial one I = 〈0, ∅〉; such a bigraph is called ground. To form the composition

F = H ◦G, shown in the upper diagram of Figure 2, we insert the parts of G in the

holes of H, and then join like-named links (one for y, one for z) and delete their

names.

Dynamics is represented by a reaction relation over ground bigraphs, generated

by a set of reaction rules which may vary from one application to another. Indeed,

R. Milner / Electronic Notes in Theoretical Computer Science 162 (2006) 255–259 257



each application of bigraphs, called a bigraphical reactive system (BRS), is repre-

sented by a signature that specifies a set of controls (like B, R, . . . ) each having a

few attributes, together with a set of reaction rules that these controls. Two very

simple reaction rules for sentient buildings are shown in the lower paret of Figure 2;

the first allows an agent to enter a room (preserving its linkage), while the second

allows the room’s computer to sense and login the agent. Note that a rule can

be parametric; the grey holes in the first rule stand for arbitrary ground bigraphs

with appropriate interfaces. Also note that the second rule requires the agent and

computer to be co-located; it cannot apply between an agent in a corridor and a

computer in a room.

From one viewpoint the actions represented by these rules are very elementary;

at a higher level we may consider as primitive an action such as ‘an agent A locates

agent B in room R and moves there’, which employs our rules (and others) many

times. From another viewpoint the two rules are themselves complex; for example,

entry to a room may involve a key and walking, while sense-and-login may invoke

detailed software. Thus other BRSs may treat more complex or less complex activity

as primitive. For example, if the building’s operating system is written in a language

based upon the π-calculus, then we would like to coordinate the building BRS with

one that represents that calculus.

Joachim Parrow and others have exposed the topographical intuition underly-

ing the π-calculus, using various graphical models. It is also easy to represent the

π-calculus in bigraphs. In particular, parallel composition is represented by juxta-

position of nodes that may be linked (representing name-sharing). An idea of the

encoding is given by Figure 3, which shows two reaction rules. The first represents

the π-calculus rule

(xz.P + · · · ) | (x(y).Q + · · · ) � P |Q ;

two of its parameters (the holes) represent P and Q, while the other two represent

the summands (‘· · · ’) that are discarded. (Bound names like y have a natural treat-

ment in bigraphs; their scopes are locations.) Most of the axioms for structural

congruence become just identities in bigraphs, which is an indication that bigraphs

are faithful to the intuition of the calculus. However, replication —sometimes repre-

sented in the π-calculus by the axiom !P ≡ P | !P of structural congruence— is best

treated in bigraphs as a dynamic rule, as shown in Figure 3. Ole Jensen and I have

worked out the correspondence between this encoding and the original calculus; the

detailed story will appear in his forthcoming PhD dissertation.

This note only gives a rough idea of how bigraphs work. It shows that the

model represents mobility of both placing and linking, that these places and links

may be both physical and virtual, and that various different systems (with different

signatures and reactions) can be coordinated in the bigraphical calculus. more

detail can be found via my web page, http://www.cl.cam.ac.uk/users/rm135,

which gives links to papers on bigraphs. Those written so far have concentrated

upon recovering as much as possible of the theory of known calculi within bigraphs.

Theory has been recovered for the π-calculus, mobile ambients, CCS, Petri nets
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Fig. 3. Two reaction rules for the π-calculus. The first represents communication; the controls send, get
and alt represent sending, receiving and summation. The labelling of holes shows which parameters are
discarded. In bigraphs replication is best presented as a dynamic rule, using the control ‘ !’; here the labelling
shows that the parameter is duplicated.

and the λ-calculus; much of this work uniformly derives —from the reaction rules—

labelled transition systems whose labels are small contexts. This derivation was

worked out with Jamey Leifer, and exploits category theory in a novel way.

Two other approaches to this kind of work deserve mention. One is the long-

existing theory of graph-rewriting based upon the double-pushout construction orig-

inated by Hartmut Ehrig and colleagues in the 1970s. That work is based upon

categories with graphs as objects and embeddings as arrows. In bigraphs we have

preferred graphs as arrows and interfaces as objects, since it closely follows the

algebraic tradition of process calculi. But there are close links between the two

approaches. Equally there are close links with the approach of Vladi Sassone and

Pawel Sobocinski, based upon 2-categories. The approaches are complementary;

work is in progress to see which approach works best for different purposes.

On the practical side we shall experiment with using bigraphs in applications,

especially in the role of a programming language. If a language based upon such a

topographical model is found convenient for specifying and programming pervasive

computing systems, then it can contribute greatly to their scientific explanation.

Given the complex nature of such systems, as well as the intimacy with which they

will pervade our lives, such rigorous understanding is of the greatest importance.
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