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This paper axiomatises the structure of bigraphs, and proves that the resulting theory is

complete. Bigraphs are graphs with double structure, representing locality and connectivity.

They have been shown to represent dynamic theories for the π-calculus, mobile ambients

and Petri nets in a way that is faithful to each of those models of discrete behaviour. While

the main purpose of bigraphs is to understand mobile systems, a prerequisite for this

understanding is a well-behaved theory of the structure of states in such systems. The

algebra of bigraph structure is surprisingly simple, as this paper demonstrates; this is

because bigraphs treat locality and connectivity orthogonally.

1. Introduction

The diagram shows a bigraph, suppressing some of its detail. The ovals and circles are

nodes, which may be nested, and each node has ports, which may be linked. The links are

a partition of all the ports in a bigraph. Some links are external, shown here with wires

escaping from the top of the diagram. When this bigraph is inserted in another (insertion

will be represented by categorical composition) it will be placed in some region of the

host graph, and each external link joined to some link of the host in a way that does not

depend on the placing. Thus the independence of the linking and the placing of nodes,

already illustrated by the way links cross boundaries in the diagram, is also respected by

the operation of composing bigraphs.



R. Milner 1006

The bigraphical model, which has recently stabilised (Jensen and Milner 2004), arises

from a long-term effort (Milner 2001b; Milner 2001a), beginning with action calculi (Mil-

ner 1996; Gardner 2000), to provide a theory common to different process calculi, and to

base this theory on the topographical ideas that appear to pervade those calculi. These

ideas are especially evident in the calculus of mobile ambients (Cardelli and Gordon 2000);

less obviously, they have also been found to inform the π-calculus (Milner et al. 1992). A

contributory effort (Sewell 1998; Cattani et al. 2000; Leifer and Milner 2000; Leifer 2001;

Milner 2001a; Jensen and Milner 2004) has been to unify the treatment of labelled

transition systems by treating the labels as contexts, especially graphical contexts. This

unification has recovered existing behavioural theories for the π-calculus (Jensen and

Milner 2003) and for mobile ambients (Jensen 2004), and has contributed to that for Petri

nets (Milner 2004).

In the categorical treatment of transition labels as contexts, the definition of a transition

a L
" a′ of an agent a specifies, among other things, that the composition L ◦a (a in

context L) performs a reaction; in other words, a and L may collaborate to perform it.

This immediately suggests a categorical formulation in which the arrows are bigraphs, and

the objects are interfaces explaining what kind of ‘hole’ in L will be occupied by the agent

a, and what links will connect a to L. Considering the static structure alone, this recalls

Lawvere’s categorical treatment of algebraic theories (Lawvere 1963), in which the objects

are simply finite ordinals and the arrows are tuples of terms; composition is substitution

of terms for variables in other terms. In bigraphs, term substitution is replaced by a more

ramified notion of graph substitution.

The topic of this paper is to axiomatise the resulting structure of bigraphs. The

justification for such a specific topic is threefold. First, the work already cited gives ample

evidence that a graphical structure combining topography with connectivity has wide

application in computer science; for, as already mentioned, it brings unity to at least

three models of discrete dynamics, each of which already has many applications. Second,

the algebraic treatment of such dual structures does not appear to have been addressed

previously; yet the behaviour of systems whose connectivity and topography are both

reconfigurable may be so complex that their dynamics cannot be properly understood

without a complete and rigorous treatment of their statics. Bigraphs are just one possible

treatment of such dual structure, but it is likely that their static theory can be modified

for other treatments. Third, as we shall see, dual structures seem to require a novel kind

of normal form, which is essential to a proof of axiomatic completeness.

Underlying this dual structure is the notion of strict symmetric monoidal category, which

is growing in importance in the foundation of computation, especially as concurrency

becomes more prominent. An early use of strict monoidal categories was by Benson (Ben-

son 1975), who drew attention to them as the natural foundation for syntactic derivations.

He even proposed that the free strict monoidal category warrants the title ‘the syntactic

category’. This insight survives the change of emphasis from derivations, where we think

of generating a language from a grammar, to rewritings, which are used to represent

the dynamic behaviour of a system. Evidence for this is in the paper ‘Petri nets are

monoids’ (Meseguer and Montanari 1990). Bigraphs represent a further step in this

direction; they can be considered as the syntax, but better as the static structure, found
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Fig. 1. A bigraph G showing agents interacting in a structured environment.

in systems whose chief purpose is to manipulate their own structure. To accommodate

common features of such systems, they have become a strict symmetric monoidal category,

which is nearly, but not quite, free. This paper characterises that structure.

We begin in Section 2 with examples, whose purpose is to justify the structure in terms

of the kind of systems it can model. One example illustrates a simple mobile real-life

system, and others are drawn from process calculi. In Section 3 we set up bigraphs as

a category, and in Section 4 we explore their algebra far enough to be able to propose

the notion of discrete normal form (dnf). Section 5 introduces axioms, which are based

upon those of a strict symmetric monoidal category, and proves their completeness using

dnf. Section 6 introduces an alternative, connected normal form (cnf), that appears closer

to process calculi and to programming languages, but uses a form of product that lends

itself less well to axiomatisation. Finally, the concluding section mentions some related

work and open problems.

2. Examples

This section reviews how bigraphs may be applied. We begin by illustrating their structure,

and how they may be composed, reflecting as far as possible how real systems are built

from subsystems. We then give four examples of reaction rules, the means by which

bigraphical systems reconfigure themselves. The main intention of the bigraph model is

to support dynamic behaviour as apparently different as physical systems (such as our

structural example) and process calculi, and thereby to reveal and study what they have

in common. This dynamic study is treated in detail elsewhere, and will be the subject of

further publications; the examples in this section are given to motivate their underlying

static structure, which is the main topic of the present paper.

The bigraph G in Figure 1 is a snapshot of part of a system in which people and things

are interrelated and interacting. A bigraph consists principally of nodes, shown here with

bold outlines. (Their differing shapes are meant to be informally helpful, but are formally

insignificant.) The nodes may be nested, and they have ports which may be connected
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Fig. 2. A host context F .

by links. Each link may connect many ports; for example, all the A-nodes are joined by

a single link represented by a forking bent line. The term ‘bigraph’ connotes this double

structure of nesting and linking. The nesting of nodes imposes no constraint upon the

linkage of their ports.

Every node is assigned a control (A, B, . . . ) which represents what kind of node it is

and determines its arity, that is, how many ports it has. In our example, the arities of A,

B, C and R are 2, 1, 2 and 0, respectively. Here A-nodes represent agents, perhaps people

equipped with mobile phones; the link among them indicates that they are conducting a

conference call. If an agent is in a room (R) it may also be plugged in to a computer C.

The computers in all rooms of a building (B) may be connected by a network, part of the

building’s infrastructure.

Our bigraph represents only part of a total (host) system. Some links have names; these

are the open links that may be connected to other parts of the host. On the other hand

the closed links, such as those joining three agents to their computers or two computers

to the building, cannot be connected to other parts.

Every bigraph has a width; this one has width 2, shown by the two dotted rectangles,

called regions. Nodes in the same region cannot be located within different nodes of the

host; on the other hand, different regions may be arbitrarily far apart in the host.

As in all computing structures, some aspects of the behaviour of a subsystem can be

analysed independently of its position within, or linkage to, its host system. In this case,

we can imagine analysing the exchange of information among the four agents, and how

it relates to their interaction with their computers, even though we know neither what

building is occupied by the fourth agent, nor what other agents in the host are also taking

part in the conference call (via the open link y).

Figure 2 illustrates a host bigraph F , which G may inhabit. F is a contextual bigraph,

in two ways. It has two holes, the grey squares, which may be inhabited by a bigraph

with two regions (such as G has). It also has two inner names, y and z, for linking to an

inhabitant bigraph via its corresponding outer names. We draw a bigraph’s inner names
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Fig. 3. F ◦G, the partial system G embedded in host context F .
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Fig. 4. An agent enters a room.

below it, and its outer names above it. An inner name cannot be associated with a

particular hole, because the corresponding link in an inhabitant belongs to no particular

one of its regions; a link has no location (though each of its ports does).

Figure 3 shows the result F ◦G of inserting G into the context F . We now know more

about the conference call; it is being conducted by three people in one of the two buildings

and two in the other. But F ◦G may inhabit a further context; so, via its open link x

the conference call may involve inhabitants of further buildings. It may not be obvious

at first that the bigraph in Figure 3 represents the insertion of G into F (to see it, first

place each region of G in the proper hole of F and then join corresponding inner and

outer names); the reason is that placing and linking are in a sense orthogonal. This will

be reflected in our mathematical formulation.

We turn now to reconfigurations, or reactions. Different controls are equipped with

different reaction rules, often called rewriting rules in syntactic or graphical systems. Each

rule consists of a precondition or redex, which may be transformed into a postcondition or

reactum wherever it occurs; both of these are themselves bigraphs. The first two reaction

rules pertain to the preceding example.

Figure 4 allows an agent A, in the same region as a room R, to enter the room. The hole,

or parameter, in the redex represents all other possible occupants (computers, agents, . . . )
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Fig. 6. One mobile ambient enters another.

of the room. This rule is purely a placing reconfiguration. The linking persists; it represents

any possible connectivity (possibly none) between the agent and the host context.

Figure 5 allows an agent A in the same region (perhaps a room) as a computer C, to

become linked to the computer. This rule is purely a linking reconfiguration. Note that

the rule requires the computer to be unlinked beforehand; on the other hand, if the agent

is linked to a computer (elsewhere?) beforehand, he or she exchanges any such link for

the new one. A variant of this rule could require the agent to be unlinked beforehand.

Figure 6 is a slight simplification of a rule for the calculus of mobile ambients (Cardelli

and Gordon 2000). Note that each ambient, unlike the room in Figure 4, is named (by a

link); this allows the command ‘in’, residing within ambient x but referring to ambient y,

to cause ambient x and all its contents to enter ambient y. Ordinals 0,1 identify parameters

in the reactum with those in the redex.

Finally, Figure 7 represents the single rule of communication in the π-calculus (Milner

et al. 1992), simplified for pure CCS, where it would be written

(x.P + M) | (x.Q + N) " P |Q.

The parameters M and N represent alternative actions of the same form as x.P or x.Q.

The ordinals 0,1,2 and 3 represent P ,M,Q and N; thus, as in CCS, the effect of the

communication is to discard the alternatives in each sum. (The standard rule for the π-

calculus is slightly more refined.) An important role of placing emerges here. The controls

B, R and amb in the previous examples are all declared as active, which means that other

reactions can occur inside them; on the other hand, the controls sum, send and get

are all passive, thus preventing internal reaction. This matches the intention in CCS that
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Fig. 7. A communication occurs in CCS.

summation ‘+’ and prefixing ‘x.’ and ‘x.’ are guarding; their reactions must precede those

of their contents.

The dynamical theory of bigraphs has been somewhat developed (Jensen and Mil-

ner 2004), and shown to model behaviour in the π-calculus (Jensen and Milner 2003),

mobile ambients (Jensen 2004) and Petri nets (Milner 2004), in each case making a

theoretical contribution to those disciplines. This development rests firmly on the static

structure that is the main topic of the present paper.

3. Definitions

In this section we define the notion of bigraph formally in terms of the constituent notions

of place graph and link graph. We shall organise bigraphs as the arrows of a partial strict

symmetric monoidal category whose objects are a simple form of interface. (We explain

what ‘partial’ means in a footnote below.)

Before we look at the details, it is helpful to have a simple insight into how to build a

bigraph. Take a collection of nodes, each having several ports, each of which has a wire

hanging loose. We build a bigraph in two stages:

(1) Placing: nest nodes inside each other in any way you please, with no concern for the

wires.
(2) Linking: join wires together in any way you please, with no concern for the nesting.

All that remains are the subtleties of how to make a larger bigraph from smaller ones.

Notation. We use ‘ ◦ ’, ‘id’ and ‘⊗’ for composition, identity and tensor product in a

category. IdS denotes the identity function on a set S , and !S the empty function from

! to S . We use S % T for the union of sets S and T that are known or assumed to be

disjoint, and f % g for the union of functions with domains that are known or assumed to

be disjoint. We often interpret a natural number m as a finite ordinal m = {0, 1, . . . , m−1}.
We use #x to denote a finite sequence {xi | i ∈ m}. We presuppose a denumerable set X of

names.

Definition 3.1 (Signature). A signature K is a set whose elements are called controls. For

each control K ∈ K it provides a finite ordinal ar(K), which is an arity.

In refinements of the theory, a signature may carry further information, such as a

sign and/or a type for each port. The sign may be used, for example, to enforce the
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restriction that each negative port is connected to exactly one positive port, as in action

calculi (Cattani et al. 2000; Milner 1996). Another possible refinement is a kind assigned

to each node, determining the controls of the nodes it may contain. (An extreme case

would be atomic nodes, which may contain no other nodes at all.)

Definition 3.2 (Interface). An interface I = 〈m,X〉 consists of a finite ordinal m called a

width and a finite set X ⊂ X called a name set†.

We are now ready to define bigraphs. We shall first define a concrete bigraph to be the

combination of two constituents, a place graph and a link graph.

Definition 3.3 (Concrete bigraph). A concrete bigraph over the signature K takes the form

G = (V , E, ctrl , GP, GL) : I → J , where the interfaces I = 〈m,X〉 and J = 〈n, Y 〉 are its

inner and outer faces. Its first two components V and E are finite sets of nodes and edges,

respectively. The third component, ctrl :V →K, is a control map, which assigns a control

to each node. The remaining two components are:

GP = (V , ctrl , prnt):m→n a place graph

GL = (V , E, ctrl , link ):X→Y a link graph .

We shall define the composition, identities and tensor product of bigraphs in terms of the

same operations on their constituents. Let us take place graphs first.

Definition 3.4 (Place graph). A place graph G = (V , ctrl , prnt) : m→n has an inner width

m and an outer width n, both finite ordinals; a finite set V of nodes with a control map

ctrl : V →K; and a parent map prnt : m % V →V % n. The parent map is acyclic, that is,

prnt k(v) ,= v for all k > 0 and v ∈ V .

Being acyclic, the parent map prnt represents a forest of n unordered trees. The widths m

and n of G:m→ n index its sites 0, . . . , m−1 and roots 0, . . . , n−1, respectively. The sites

and nodes, that is, the domain of prnt , are called places. A node or root is barren if it has

no children.

The sites and roots provide the means for composing the forests of two place graphs;

each root i of the first is planted in site i of the second. Figure 8 shows a simple example

of composing place graphs; note the correspondence between the sites of F and the

roots of G. Formally, let Gi = (Vi, ctrl i, prnt i) : mi →mi+1 (i = 0, 1) be place graphs with

V0 ∩ V1 = !. Then G1 ◦G0
def
= (V , ctrl , prnt), where V = V0 % V1, ctrl = ctrl0 % ctrl1 and

prnt = (IdV0 % prnt1) ◦ (prnt0 % IdV1 ).

The identity place graph at m is idm
def
= (!,!K, Idm) : m→m.

† We saw in the previous section that alphabetic names are used to link bigraphs together. A more abstract
presentation would dispense with them, representing names positionally – as in abstract treatments of the
λ-calculus. This is perfectly possible here. Indeed, the word ‘partial’ used above would then be redundant;
it refers to the fact that the tensor product of interfaces is defined only when their name sets are disjoint,
and that condition is unnecessary with positional notation. We prefer alphabetic names here; it makes little
difference to the mathematics, and allows a much more lucid connection to be made to process calculi.
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Fig. 8. Composing two place graphs.
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Fig. 9. Composing two link graphs.

The tensor product of two place graphs F: k→% and G:m→n with disjoint node sets

is F ⊗ G: k+m→ %+n. It consists simply of placing the two forests side-by-side, and we

need not define it more formally.

We turn now to link graphs.

Definition 3.5 (Link graph). A link graph G = (V , E, ctrl , link ) : X → Y has finite sets

X of inner names, Y of outer names, V of nodes and E of edges. It also has a function

ctrl : V →K, called the control map, and a function link : X % P →E % Y , called the link

map, where the disjoint sum P
def
=

∑
v∈V ar(ctrl (v)) is the set of ports of G.

The inner names X and ports P are the points of G, and the edges E and outer names Y

are its links. The link map induces a partition of the points; thus a link graph is a species

of hypergraph. A link is idle if it has no preimage under the link map. A link graph is

lean if it has no idle edges. An outer name is an open link; an edge is a closed link. A

point (that is, an inner name or port) is open if its link is open; otherwise it is closed.

It may seem superfluous to admit the possibility of an idle link, including one that

is open, which is an outer name y that ‘names’ nothing. But the dynamic rules of a

bigraphical system allow such a name to arise. In the π-calculus and CCS (see Figure 7)

it arises when a communication on the channel y has occurred and no further use of this

channel remains. A similar reaction can give rise to a barren root in a place graph.

Figure 9 shows a simple example of composing link graphs. Formally, let

Gi = (Vi, Ei, ctrl i, link i) : Xi →Xi+1 (i = 0, 1)

be two link graphs, with V0 ∩ V1 = E0 ∩ E1 = !. Then G1 ◦G0
def
= (V , E, ctrl , link ), where

V = V0 % V1, ctrl = ctrl0 % ctrl1, E = E0 % E1 and

link = (IdE0 % link 1) ◦ (link 0 % IdP1 ).
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We can describe the composite link map link of G1 ◦G0 as follows, considering all possible

arguments p ∈ X0 % P0 % P1:

link (p) =






link 0(p) if p ∈ X0 % P0 and link 0(p) ∈ E0

link 1(x) if p ∈ X0 % P0 and link 0(p) = x ∈ X1

link 1(p) if p ∈ P1.

The identity link graph at X is idX
def
= (!,!,!K, IdX) : X→X.

The tensor product of two link graphs F:W → X and G:Y → Z can be formed

provided that their node sets and edge sets are disjoint and that W ∩ Y = X ∩ Z = !. It

is F ⊗ G:W % Y →X % Z , and consists simply of the union of their link maps.

We are now ready to define the category that is the main object of study in this

paper. Recall that in Definition 3.3 a concrete bigraph G: 〈m,X〉 → 〈n, Y 〉 consists of a

combination of a place graph GP:m → n and a link graph GL:X → Y having the same

node set and control map. We shall write such a combination as G = 〈GP, GL〉.

Definition 3.6 (Monoidal category of bigraphs). The composition of two concrete bigraphs

G = 〈GP, GL〉: I → J and F = 〈FP, FL〉: J → K with disjoint node sets and disjoint edge

sets is

F ◦G
def
= 〈FP ◦GP, FL ◦GL〉: I →K.

Two concrete bigraphs G0 and G1 are said to be lean-support equivalent, G0 ! G1, if they

differ only by a bijection between their nodes and between their non-idle edges; idle edges

are ignored. An abstract bigraph consists of a !-equivalence class of concrete bigraphs.

Composition and identity of abstract bigraphs are given by

[F]! ◦ [G]!
def
= [〈FP ◦GP, FL ◦GL〉]!

id〈m,X〉
def
= [〈idm, idX〉]!.

The tensor product of two interfaces with disjoint name sets is

〈m,X〉 ⊗ 〈n, Y 〉 def
= 〈m+n,X % Y 〉.

The tensor product of two abstract bigraphs F:H → I and G: J →K , where H ⊗ J and

I ⊗ K are defined, is given by

[F]! ⊗ [G]!
def
= [〈FP ⊗ GP, FL ⊗ GL〉]!:H ⊗ J→I ⊗ K.

Figure 10 shows the composition of two bigraphs; they are the combinations of the place

graphs and link graphs composed in Figures 8 and 9. The labelling of sites in F indicates

where each root of a client bigraph (such as G) should be planted. For clarity, nodes are

identified in the figure; in an abstract bigraph these identifiers are forgotten.

The reader may wonder whether the algebra of bigraphs can be factored into two

separate algebras, one for placing and the other for linking. But in each of these separate

algebras the identity of nodes would have been forgotten (just as in ordinary algebra the

identity of subterms is forgotten when one term is substituted in another), and we have

seen that the combination of a place graph with a link graph to form a bigraph depends

crucially on the identity of nodes. Much of the subtlety of bigraph algebra stems from
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Fig. 10. Composing two bigraphs.

how this combination interacts with the algebraic operations of composition and tensor

product.

4. Algebra and discrete normal form

For the remainder of this paper we are concerned only with abstract bigraphs, that is,

with !-equivalence classes of concrete ones. We often talk of a class generated by certain

elements; this means the class formed from those elements using composition and product.

In this section we give the elementary bigraphs from which all others can be generated.

We then define a normal form for bigraphical expressions, called discrete normal form

(dnf), and show how each bigraph can be expressed uniquely in dnf (up to isomorphism).

To avoid too many parentheses in expressions, we shall often represent composition by

juxtaposition; it binds tightly, for example G1G2 ⊗ G3 means (G1 ◦G2) ⊗ G3.

There are two degenerate forms of interface: a place interface 〈m,!〉, and a link interface

〈0, X〉. We write them as m and X (or just x if X = {x}), respectively. The fully degenerate

form is the origin ε
def
= 〈0,!〉, which is of course the unit for tensor product on interfaces.

An important class of bigraphs are the ground bigraphs G: ε→ I , those whose inner face

is the origin. If G is ground, it has no holes or inner names; in this case there is no useful

composition GF , since (by the properties of a strict monoidal category) it can be written

as a product G ⊗ F .

A placing is a bigraph m→n with no nodes. All placings can be expressed in terms of

three kinds:

1 : ε→1 a barren root

join : 2→1 join two sites

γm,n : m+n→n+m swap m with n places.

We use π, ρ to range over permutations, those placings generated from the γm,n. By contrast,

join generates placings that join any number of sites.
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Fig. 11. Elementary linkings and ions.

Definition 4.1 (Merge). For all m " 0 we define mergem:m→1 recursively, by

merge0
def
= 1

mergem+1
def
= join(id1 ⊗ mergem).

Note that merge1 = id1, and hence merge2 = join .

A linking or wiring is a bigraph X →Y , which necessarily has no nodes. All linkings

can be expressed in terms of two kinds (see Figure 11):

/x : x→ε closure
y/X : X→y substitution x .→ y (all x ∈ X).

A closure just closes a single link. For X = {x1, . . . , xk} we define the multiple closure

/X
def
= /x1 ⊗ · · · ⊗ /xk . For X = X1 % · · · % Xn and Y = {y1, . . . , yn}, a multiple substitution

σ:X → Y is defined by y1/X1 ⊗ · · · ⊗ yn/Xn. A substitution need not be surjective. We

write Y : ε→Y for the empty substitution (that is, when X is empty), or just y: ε→ y if

Y = {y}; these are the duals of closures. We shall use ω to range over linkings, σ, τ over

substitutions, and α,β over the bijective substitutions, which we call renamings.

Permutations π and renamings α, together with the identities, generate all isomorphisms

in the category of bigraphs; in fact every isomorphism takes the form π ⊗ α. To see this,

suppose ι: I → J is an iso, with inverse κ. Since κι = idI and ικ = idJ , the support of

ι must be empty, and its place graph and link graph must be bijections ιP:m → m and

ιL:X → Y , where I = 〈m,X〉 and J = 〈m, Y 〉. In other words, ι = 〈π, α〉, where π is a

permutation on m and α is a renaming; this is readily expressed as ι = π ⊗ α.

The only other elementary bigraph is a discrete ion K#x: 1 → 〈1, {#x}〉, for any sequence
#x = x0, . . . , xk−1 of distinct names where k = ar(K) (see Figure 11).

We now turn to the first of our normal forms. It depends on the following two important

concepts.

Definition 4.2 (Prime and discrete). An interface is prime if it has unit width. It takes the

form 〈1, X〉. A bigraph G: I →J is prime if J is prime and I has no names. A bigraph is

discrete if every link joins exactly one point to an outer name.

Thus, a discrete bigraph is open and has no idle names. A discrete ion is an instance of

a prime discrete bigraph. More generally, we define a discrete molecule M to be a prime

discrete bigraph having a single outermost node.
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The top part of Figure 12 shows a bigraph G and its underlying discrete bigraph D.

Note that D consists just of discrete ions in a topographical arrangement; by composing

it with a linking we recover G.

Our proof of the existence of normal forms will use the following notions.

Definition 4.3 (Firm and automorphism). A bigraph is firm if every root has exactly one

child and every open link has exactly one point. An automorphism for F is an isomorphism

ι such that Fι = F .

We then have a cancellation property in the presence of firm bigraphs.

Proposition 4.4 (Cancelling). In abstract bigraphs, let FG = FG′ where G and G′ are firm.

Then ιG = G′, where ι is an automorphism for F .

We are now ready to establish formally the existence of a discrete normal form (dnf) for

a bigraph. We identify four levels of structure as four forms of expression. Taken in reverse

order, these forms represent the dnf of any bigraph G; at each level, the expression is

unique up to certain isomorphisms. It may be helpful to read the theorem in conjunction

with the example described later, and illustrated in Figure 12.

Notation. In the theorem we shall use G to range over bigraphs, D over discrete bigraphs, P

over prime discrete bigraphs and M over discrete molecules. We understand permutations

π both as placing bigraphs and in the conventional way. With our bigraph convention,

π(i) means ‘the root to which π maps the site i’; but we also need the convention, when

π is a permutation of the sequence 0, 1, . . . , n−1, that π〈i〉 means ‘the ith element in the

permuted sequence’. Thus π〈i〉 = π−1(i).

Theorem 4.5 (Discrete normal form).

1 A discrete molecule M may be uniquely expressed as M = (K#x ⊗ idY )P , where P is a

discrete prime.

2 A discrete prime may be expressed as

P = (mergen+k ⊗ idY )(idn ⊗ M0 ⊗ · · · ⊗ Mk−1)π,

where each Mi:mi →〈i, Yi〉 is a discrete molecule. Any other such expression of P takes

the form (mergen+k ⊗ idY )(idn ⊗ M ′
0 ⊗ · · · ⊗ M ′

k−1)π
′, where there exist permutations ν

on n, κ on k and µi on mi (i ∈ k) such that

M ′
i = Mκ〈i〉µi and (ν ⊗ κ′)π = (idn ⊗ µ0 ⊗ · · · ⊗ µk−1)π

′,

where κ′ = κ#m is defined in terms of κ and #m as in Lemma 5.4.

3 A discrete bigraph with outer width n may be expressed as

(P0 ⊗ · · · ⊗ Pn−1)π ⊗ α,

where each Pi is prime and discrete. Any other such expression of D takes the form

(P ′
0⊗· · ·⊗P ′

n−1)π
′⊗α, where P ′

i = Piπi and (π0⊗· · ·⊗πn−1)π′ = π for certain permutations

πi.
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4 A bigraph G with outer width n may be expressed as (idn ⊗ ω)D, where D is discrete.

Any other such expression of G takes the form (idn ⊗ ω′)D′, where ω′ = ωα and

(idn ⊗ α)D′ = D for some renaming α.

Proof. We shall outline the proof of (2); the others are easier. It is routine to confirm

that an expression of the required form exists. If there are two such expressions, they

must have the same n, k and Y ; so we may write them as

P = (mergen+k ⊗ idY )Q where Q = (idn ⊗ M0 ⊗ · · · ⊗ Mk−1)π

P = (mergen+k ⊗ idY )Q′ where Q′ = (idn ⊗ M ′
0 ⊗ · · · ⊗ M ′

k−1)π
′.

Now Q and Q′ are firm, so ιQ = Q′ where ι is an automorphism for mergen+k ⊗ idY . So

ι takes the form ρ ⊗ idY ; and structural considerations show that in this case ρ = ν ⊗ κ,

where ν and κ permute n and k, respectively. Moreover, κ can be ‘pushed through’ #M as

in Lemma 5.4, and if we define κ′ = κ#m as in that lemma, we find

(idn ⊗ Mκ〈0〉 ⊗ · · · ⊗ Mκ〈k−1〉)(ν ⊗ κ′) = (idn ⊗ M ′
0 ⊗ · · · ⊗ M ′

k−1)π
′.

It follows by consideration of place graphs that M ′
i = Mκ〈i〉πi for some permutation πi

(i ∈ k); thus, setting R = idn ⊗ Mκ〈0〉 ⊗ · · · ⊗ Mκ〈k−1〉, we deduce

R(ν ⊗ κ′)π = R(idn ⊗ π0 ⊗ · · · ⊗ πk−1)π
′.

Now permutations are firm, so we can cancel R up to an automorphism ι, which,

by consideration of place graphs, must take the form ι = idn ⊗ ι0 ⊗ · · · ⊗ ιk−1 where

Mκ〈i〉ιi = Mκ〈i〉. Now define µi
def
= ιiπi. We can then conclude the proof; for we find

M ′
i = Mκ〈i〉µi, and by cancelling R we deduce

(ν ⊗ κ′)π = (idn ⊗ µ0 ⊗ · · · ⊗ µk−1)π
′.

This theorem reveals the placing and renaming isomorphisms that allow variation of

expression in each of the four cases. For example, consider case (3) for D: 〈m,X〉→〈n, Y 〉;
each inner name x ∈ X is linked to a distinct name y ∈ Y , which has no other children,

and this fully determines the renaming α. However, the order of sites within each prime

Pi may be chosen arbitrarily, and the product needs to be composed with a permutation

correspondingly chosen to yield the correct order among all the sites of D.

Unique factorisation of a discrete bigraph D into primes justifies our definition of

‘prime’; unicity would fail without the constraint that a prime has no inner names.

These DNFs are central to this paper. Of course, a bigraph can be expressed in many

ways; but we shall later prove that, under certain algebraic laws, all other ways can be

transformed into DNF. Thus the algebraic laws, being in this sense complete, give us a

tight mathematical characterisation of bigraphs.

Example. Figure 12 shows part of the expression of a particular bigraph G in DNF. Using

the equations of Theorem 4.5 in reverse order, we obtain in this case:

G = (id1 ⊗ ω)D where ω = x/x0x1 ⊗ y/y0y1 ⊗ (/z ◦ z/z0z1)

D = (P ⊗ Q)π ⊗ α where α = x1/w and π: i .→ i − 1(mod 3)

P = (merge1 ⊗ idx0y0z0 )(id0 ⊗ M0)id1 = M0

M0 = (Ay0 ⊗ idx0z0 )P0.
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Fig. 12. Expressing a bigraph in discrete normal form.

The figure traces the analysis through the prime P , but not Q. It also shows P0, the

contents of A. The reader may care to resolve P0 further; in fact, it simplifies to

P0 = (join ⊗ idx0z0 )(Cx0 ⊗ Cz01) ;

note that the second molecule contains the empty region 1.

The reader may rightly criticise the verbosity of the expressions in this example, par-

ticularly the last one! Our DNF is not designed for programming convenience but for

analysis. In Section 6 we briefly explore an alternative normal form, connected normal

form or CNF, which employs prime parallel product ‘ | ’ (parallel composition in CCS).

This operation combines tensor product with merging and sharing of names. Here we

can use it to write more succinctly P0 = Cx0 | Cz01. But, as we shall see in Section 6, there

appears to be no easy axiomatisation that uses such a parallel product in place of the

tensor product.

5. Axioms and completeness

We now address the question: What set of axioms is complete for equations between

bigraph expressions, in the sense that every valid equation is provable? To answer this

question, we must define our class of expressions precisely. We are considering expressions

built by composition and tensor product from the identities and the following six classes

of elementary forms:

1 join γm,n /x y/X K#x

where the #x are distinct. Each expression E has two interfaces; we write E: I →J , where I

and J take the form 〈m,X〉, recalling that we allow abbreviations when m = 0 or X = !.

In forming expressions, the interfaces for each composite expression (composition or

tensor product) are determined from those of its components in the standard way. Then,
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Table 1. Axioms for bigraph equality.

Categorical axioms:

A id = A = idA

A(BC) = (AB)C

A ⊗ idε = A = idε ⊗ A

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

idI ⊗ idJ = idI⊗J

(A1A0) ⊗ (B1B0) = (A1 ⊗ B1)(A0 ⊗ B0)

γI,ε = idI

γJ,IγI,J = idI⊗J

γI,K(A ⊗ B) = (B ⊗ A)γH,J (A:H →I, B: J→K)

Link axioms:

x/x = idx

z/(Y %y) ◦ (idY ⊗ y/X) = z/(Y %X)

/y ◦y/x = /x

/y ◦y = idε

Place axioms:

join(1 ⊗ id1) = id1 (unit)

join(join ⊗ id1) = join(id1 ⊗ join) (associative)

joinγ1,1 = join (commutative)

Node axioms:

(id1 ⊗ α)K#x = Kα(#x).

for any given expression E it is clear from the previous sections exactly which bigraph

it denotes. As is standard, we write |= E = F when the equation E = F is valid, that is,

when the expressions denote the same bigraph.

In formulating our axioms over expressions it is convenient to extend the symmetry

expressions γm,n to arbitrary interfaces by defining the following abbreviations:

γI,J
def
= γm,n ⊗ idX%Y where I = 〈m,X〉, J = 〈n, Y 〉.

With the help of these, we define the equational axioms in Table 1. As is standard, we

shall write /E = F to mean that the equation is provable, that is, can be deduced from

the axioms. The rest of this section is devoted to answering the opening question of

this section; indeed, we shall prove that /E = F if and only if |= E = F . The forward

implication means that our axioms are sound; the backwards implication means they are

complete.

Before embarking on the proof, we note a few points about the axioms.

Categorical axioms: These are standard for a strict symmetric monoidal category. But

note that the tensor product is defined only when interfaces have disjoint name sets;
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thus the equations are required to hold only when both sides are defined. The two

axioms / idI ⊗ idJ = idI⊗J and / (A1A0) ⊗ (B1B0) = (A1 ⊗ B1)(A0 ⊗ B0) express the

fact that the tensor product is bifunctorial.

The last three categorical axioms are concerned with symmetries. Note that from the

final axiom we can prove /A ⊗ B = B ⊗ A for link graphs. Indeed, if H = X and

I = Y , we have / γH,I = γε,ε ⊗ idX%Y = idX%Y by definition, using also the axioms

/ γε,ε = idε and / idε ⊗ A = A; a similar result for γJ,K completes the proof.
Link axioms: The first two of these axioms express obvious properties of substitutions.

The last two are novel, because closure /x is not normally studied; remarkably, they

tell us all we need to know about closure. For example, we can deduce a form of alpha-

conversion for closure, namely / /z ◦ z/X = /w ◦w/X. To see this, first put Y = ! and

y = w in the second link axiom to get / z/w ◦w/X = z/X, then use this in combination

with the third link axiom.
Place axioms: These axioms are intuitive and need little explanation. They do not

tell the whole story about placing; the three categorical axioms for symmetries are

important for the permutation of places.
Node axioms: No axioms are required on ions except this simple renaming axiom, and

this is needed only because names are treated positionally. This indicates that bigraphs

are a rather free structure.

The soundness of our axiom system, that is, that /E = F implies |= E = F , is

straightforward. The validity of each axiom follows routinely from the definition of the

categorical operations as given in Section 3, and the definition of the placings, linkings

and ions as given in Section 4.

We now turn to the main task, to prove completeness.

Preliminaries

In this subsection we prove some useful lemmas, including completeness for certain

subclasses of expressions. We say that a class is generated by a set of elementary

expressions if it is the smallest class including those elementary expressions and closed

under composition and tensor product. In particular: the permutation expressions are

generated by symmetries γm,n and place identities; the place expressions are generated by

these together with 1 and join; and the link expressions are generated by closures /x,

substitutions y/X and link identities.

We now state without proof a standard result of symmetric monoidal categories.

Proposition 5.1 (Permutation completeness). The theory is complete for permutation

expressions.

To extend this to place expressions, we need some auxiliary results. They follow from the

axioms, together with the inductive definition of mergem (Definition 4.1).

Lemma 5.2.

1 / merge1 = join(id1 ⊗ 1) = id1.

2 /mergem+n = join(mergem ⊗ mergen).
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3 / mergem+1 = join(mergem ⊗ id1).

4 / mergem+1γm,1 = mergem+1.

Proof (outline). The first part just requires manipulation of the axioms; the second and

third require the first, with induction on m; the fourth requires the third.

Lemma 5.3.

1 / mergemπ = mergem.

2 / mergem(mergen0
⊗ · · · ⊗ mergenm−1

) = mergen, where n =
∑

i∈m ni.

Proof (outline). The first part is proved by induction on m. The inductive step requires

the fact that any permutation π on m+1 can be expressed as π = (id1 ⊗ π′)(γm−k,1 ⊗ idk),

where π′ is a permutation on m and 0 # k # m. More strongly, by the completeness for

permutation expressions, we can assert that this equation is provable in the theory.

The second part requires Lemma 5.2(2), together with induction on m.

We need a further property of permutations. The axiom / γI,K (A ⊗ B) = (B ⊗ A)γH,J

‘pushes’ the elementary permutation γI,K through a binary product. We need to generalise

this to allow a permutation in n to be pushed through a product of n primes. Moreover,

this property must be provable from the axioms.

Lemma 5.4. Let π be a permutation expression on n, and let #m = m0, . . . mn−1 be finite

ordinals. Then there exists a permutation expression π#m such that, for any n prime

expressions Pi:mi →〈1, Xi〉 for i ∈ n, with X =
⊎

i∈n Xi,

/ (π ⊗ idX)(P0 ⊗ · · · ⊗ Pn−1) = (Pπ〈0〉 ⊗ · · · ⊗ Pπ〈n−1〉)π#m.

Proof. We proceed by induction on n. The basis n = 0 is trivial, since we must have

/ π = id0 and we choose π to be id0.

For the inductive step, let ρ be a permutation expression on n+1. We can consider

the permutation ρ as first applying a permutation π on the first n of n+1 elements, then

inserting the last of them just after the first k in the permuted sequence, for some k ∈ n+1.

So, knowing completeness for permutation expressions, we have

/ ρ = (idk ⊗ γn−k,1)(π ⊗ id1).

Thus ρ〈i〉 = π〈i〉 for i < k, ρ〈k〉 = mn, and ρ〈i〉 = π〈i−1〉 for i > k. Let #m and Pi (i ∈ n)

be as in the lemma statement, with an additional prime expression Pn:mn → 〈1, Xn〉. We

have to define ρ#m,mn
so that

/ (ρ⊗ idX%Xn
)(P0 ⊗ · · · ⊗ Pn) = (Pρ〈0〉 ⊗ · · · ⊗ Pρ〈n〉)ρ#m,mn

. (∗)

For this purpose, let % =
∑

i∈k mπ(i), the total inner width of Pπ〈0〉, . . . , Pπ〈k−1〉; then m−% is

the total inner width of Pπ〈k〉, . . . , Pπ〈n−1〉. Define

ρ#m,mn

def
= (id% ⊗ γm−%,mn

)(π#m ⊗ idmn
).

Then, by routine manipulation, using the axioms and the inductive assumption, we can

verify the required property (∗) for ρ#m,mn
, and we are done.

We are now ready to prove some special instances of completeness.
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Proposition 5.5 (Place completeness). The theory is complete for place expressions.

Proof. First we show for every place expression E that

/E = (mergem0
⊗ · · · ⊗ mergemk−1

)π

for some k " 0 and permutation expression π. The proof is by structural induction on

expressions. For the inductive step, if it holds for E and F , it immediately holds for E ⊗F ,

and to show it for EF amounts to a simple use of Lemmas 5.3 and 5.4.

Now suppose F is another place expression with |= E = F and

/F = (mergen0
⊗ · · · ⊗ mergen%−1

)π′.

Then we must have k = %, mi = ni, and |= π′ = (ρ0 ⊗ · · · ⊗ ρk−1)π for some ρi.

Hence, also, / π′ = (ρ0 ⊗ · · · ⊗ ρk−1)π, by permutation completeness. We also have

/ mergemi
ρi = mergemi

from Lemma 5.3, so we deduce /E = F , as required.

Proposition 5.6 (Link completeness). The theory is complete for link expressions.

Proof. First we show for every link expression E that /E = Ê, where Ê is a link normal

form, which is either idε or a product of terms of the three kinds

/y x/Y /x ◦x/Y ,

where in the second kind Y may be any set (including !), and in the third kind Y may

be any set with at least two members. The latter kind represents a closed link between

two or more inner names.

We now proceed by structural induction. We consider all cases for the form of E. If it

is either /x or x/Y , we take Ê to be E itself. If E is idX with X = {x0, . . . , xn−1}, then,

from the axioms / idX⊗Y = idX ⊗ idY and / x/x = idx, we derive

/E = idx0 ⊗ · · · ⊗ idxn−1 = x0/x0 ⊗ · · · ⊗ xn−1/xn−1.

If E is a tensor product E1 ⊗ E2, the result is obvious by induction.

The last possibility is that E is a composition E1E2. Then, by induction, /E = Ê1Ê2.

One situation that arises when converting this by the axioms into a normal form is when

Ê1 contains a term x/Y with Y = {y0, . . . , yn−1}, and Ê2 contains n terms yi/Zi for i ∈ n.

Then, using categorical axioms, Ê1Ê2 can be provably converted to a tensor product

containing the term

x/Y ◦ (y0/Z0 ⊗ · · · ⊗ yn−1/Zn−1),

and, by repeated use of the second link axiom, this can be brought into the form x/Z

where Z = Z0 % · · · % Zn−1.

A similar situation arises when Ê1 contains a term /x ◦x/Y , and it can be treated

similarly. We leave the reader to supply the details. This completes the inductive proof

that /E = Ê for some link normal form Ê.

Now, by soundness, if |= E = F , then |= Ê = F̂ also. But our normal form is such

that two of them denoting the same bigraph must contain exactly the same terms, though

possibly ordered differently. So / Ê = F̂ , hence /E = F , as required.
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We now approach the completeness of the theory for bigraphs. In order to reduce it to

completeness for discrete bigraphs, we need a syntactic version of dnf. In particular, we

shall show that any discrete bigraph has a linear expression, defined as follows.

Definition 5.7 (Linear). A bigraph expression is linear if it contains no restrictions, and

no substitution elements except linear ones – those of the form y/x.

As we shall see in Proposition 5.13, a linear expression always denotes a discrete bigraph.

This is intuitively clear; by banning y/X except when X is a singleton, we ensure all links

contain exactly one point, and by banning /x we exclude closed links.

Clearly, all sub-expressions of a linear expression are linear; so linearity is amenable to

structural induction. For example, we have the following lemma.

Lemma 5.8. If E is linear, /E = E ′ ⊗ α where E ′ is linear without inner names.

Proof. We use structural induction. The proof for elements and identities is easy; so

is the inductive step for product. It remains to show the inductive step for composition,

that is, if the property holds for E and F , it holds for EF . Let EF be linear with

/E = E ′ ⊗ α and /F = F ′ ⊗ β, where E ′ and F ′ have no inner names. We have

/ α = α0 ⊗ α1, where the domains of α0, α1 are the outer names of F and β, respectively.

Then /EF = (E ′ ⊗ α0)F ′ ⊗ α1β, which is of the required form.

We end this subsection with a first approximation to a provable normal form for arbitrary

bigraph expressions.

Proposition 5.9 (Underlying linear expression). For any expression G of outer width m

there exist ω and linear E such that /G = (idm ⊗ ω)E.

Proof. We use structural induction again, and we need only look at the inductive step

for composition. Consider GH , and assume that for some linear E and F

/G = (idm ⊗ ω)E and /H = (idn ⊗ ω′)F.

Then, by Lemma 5.8, we have /E = E ′ ⊗ α where E ′ has no inner names. Hence

/GH = (idm ⊗ ω)(E ′ ⊗ αω′)F

= (idm ⊗ ω(idY ⊗ αω′))(E ′ ⊗ idX)F,

where X and Y are the outer names of F and E ′, respectively. This is of the required

form, since (E ′ ⊗ idX)F is linear.

Provable normal forms

We are interested in four increasingly general kinds of expression: those that denote

discrete molecules, discrete primes, discrete bigraphs and arbitrary bigraphs, respectively.

We now set out to prove that every expression of each kind can be proved equal to the

corresponding kind of dnf, defined as follows (as suggested in the previous section).

Definition 5.10 (Discrete normal forms). There are four kinds of dnf: an mdnf M for

discrete molecules, a pdnf P for discrete primes, a ddnf D for discrete bigraphs and a
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bdnf B for bigraphs:

mdnf M ::= (K#x ⊗ idY )P

pdnf P ::= (mergen+k ⊗ idY )(idn ⊗ M0 ⊗ · · · ⊗ Mk−1)π

ddnf D ::= (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

bdnf B ::= (idn ⊗ ω)D .

We begin with a lemma showing that normal forms are provably closed under isomorph-

ism, in a certain sense.

Lemma 5.11. Let B: I →I ′ be a bdnf. If ι and ι′ are isomorphisms on I and I ′, respectively,

then / ι′Bι = B′ for some bdnf B′.

The analogous property holds also for ddnf, pdnf and mdnf.

We omit the proof, which depends on Lemma 5.4; it uses induction on the number of

ions in an expression. Our next lemma uses a more complex instance of this technique,

and shows that dnfs are provably closed under certain compositions.

Lemma 5.12. Let C: %→〈m,Z〉 be a product of pdnfs. Then:

1 If M:m→〈1, Y 〉 is an mdnf, then / (M ⊗ idZ )C = M ′ for some mdnf M ′.

2 If P :m→〈1, Y 〉 is a pdnf, then / (P ⊗ idZ )C = P ′ for some pdnf P ′.

3 If D:m→〈n, Y 〉 is a ddnf, then /DC = D′ for some ddnf D′.

Proof. We first prove (1) and (2) by simultaneous induction on the number n of ions

in P or M. Assume both parts hold for < n ions.

For (1) with n ions, let M be (K#x ⊗ idW )P for pdnf P :m→〈1,W 〉. Then

/ (M ⊗ idZ )C = (K#x ⊗ idW%Z )(P ⊗ idZ )C,

where P has n−1 ions. We may therefore apply (2) to P , yielding the required result.

For (2) with n ions, let P be (mergeh+k ⊗ idY )(idh ⊗ M0 ⊗ · · · ⊗ Mk−1)π. Now C is a

product Q0 ⊗ · · · ⊗ Qm−1 of pdnfs, and by Lemma 5.4, we may push π through it to get,

for some π′,

/ (P ⊗ idZ )C = (mergeh+k ⊗ idY %Z )(id〈h,Z〉 ⊗
⊗

i∈k
Mi)(Qπ〈0〉 ⊗ · · · ⊗ Qπ〈m−1〉)π

′.

Now the sequence of Qj can be factored into products C ′, C0 . . . , Ck−1 with outer names

Z ′, Z0, . . . Zk−1, where Z ′ %
⊎

i Zi = Z , yielding

/ (P ⊗ idZ )C = (mergeh+k ⊗ idY %Z )(C ′ ⊗
⊗

i∈k
(Mi ⊗ idZi

)Ci)π′.

Since each Mi has at most n ions, we can apply (1) to each (Mi ⊗ idZi
)Ci. Furthermore,

using Lemma 5.3(2), the merge in each prime factor of C ′ may be combined with the

outer merge. Together, these manipulations provably yield a DPNF P ′, as required. This

concludes the inductive proof of (1) and (2).

To prove (3), note that D takes the form (P0 ⊗ · · · ⊗Pn−1)π⊗ α. We first push π through

C by Lemma 5.4. Then we apply (2) to n forms (Pi ⊗ idZi
)Ci. The result is then provably

equal to a ddnf D′ using Lemma 5.11.
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We are now ready for our main result on provable normal forms.

Proposition 5.13 (Provable normal forms). Let E be a linear expression.

1 If E denotes a molecule, then /E = M for some mdnf M.

2 If E denotes a prime, then /E = P for some pdnf P .

3 If E denotes a bigraph, then /E = D for some ddnf D.

4 If G is any expression, then /G = B for some bdnf B.

Proof. We first prove (3) by structural induction. The base case (elementary linear

expressions) and the case for tensor product of two linear expressions are straightforward.

For the case of a composition, suppose the result holds for linear E0 and E1; we wish to

prove it for E0E1. By assumption, we have /Ei = Di for ddnf Di (i = 0, 1). Now D1 has

the form Cπ ⊗ β, where C is a product of pdnfs, and we have /D0 = D′
0 ⊗ α where D′

0

is ddnf and α is composable with β. Hence

/E0E1 = D′
0Cπ ⊗ αβ = D ⊗ αβ

where D is a ddnf by Lemma 5.12, so we are done.

For (2), we first note from (1) that /E = D, which is a ddnf. But since D has outer

width 1 and no inner names, by inspection of the ddnf structure we find (with the help

of Lemma 5.11) that /D = P , which is a pdnf, and we are done.

For (3), we first note from (2) that /E = P , which is a pdnf. But since P denotes a

molecule, as in the previous case we find that /D = M, which is a mdnf, and we are

done.

Finally, (4) follows directly from (3) and Proposition 5.9.

Completeness

We are now ready to prove completeness. We first need an inductive argument to prove

it for linear expressions, and full completeness then follows directly.

Proposition 5.14 (Linear completeness). If E and E ′ are linear expressions and |= E = E ′,

then /E = E ′.

Proof. We first prove completeness for prime linear expressions by induction on the

number of ions in E (and hence also in E ′). Assume the result holds for < n ions.

First we prove the result when E and E ′, with n ions, denote a molecule. In this case,

by Proposition 5.13(1) and Theorem 4.5(1), we have provable mdnfs

/E = (K#x ⊗ idY )P

/E ′ = (K#x ⊗ idY )P ′

where P and P ′ are pdnfs with < n ions such that |= P = P ′. By the induction hypothesis,

we have /P = P ′, and it follows that /E = E ′.

Now we extend the result to when E and E ′, with n ions, denote any prime. By

Proposition 5.13(2) and Theorem 4.5(2), we have provable pdnfs

/E = (mergen+k ⊗ idY )(idn ⊗ M0 ⊗ · · · ⊗ Mk−1)π

/E ′ = (mergen+k ⊗ idY )(idn ⊗ M ′
0 ⊗ · · · ⊗ M ′

k−1)π
′
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where Mi, M ′
i , π and π′ satisfy the conditions set out in Theorem 4.5(2). But these discrete

molecules have no more than n ions, so we apply the above result to obtain provable

equality of certain mdnfs and then, with the help of Lemma 5.3(1), provable equality for

the two displayed pdnfs; hence again /E = E ′. This completes the inductive proof of

the proposition for prime linear expressions.

Finally, suppose that E and E ′ are any linear expressions. By Proposition 5.13(3) and

Theorem 4.5(3), we have provable ddnfs

/E = (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

/E ′ = (P ′
0 ⊗ · · · ⊗ P ′

n−1)π
′ ⊗ α′,

where the Pi and P ′
i are pdnfs such that |= P ′

i = Piρi and |= (ρ0 ⊗ · · · ⊗ ρn−1)π′ = π for

certain permutations ρi. But, with the help of Lemma 5.11, our inductive argument shows

that the first equation is provable, and the second is also provable by Proposition 5.5. It

follows immediately that /E = E ′.

Theorem 5.15 (Completeness). If |= G = G′, then /G = G′.

Proof. By Proposition 5.13(4) and Theorem 4.5(4), we have provable ddnfs

/G = (idn ⊗ ω)E

/G′ = (idn ⊗ ω′)E ′,

where E and E ′ are ddnfs such that |= E = (idn ⊗α)E ′ and |= ωα = ω′ for some renaming

α. But Proposition 5.14, with Lemma 5.11, shows that the first equation is provable, and

the second is also provable by Proposition 5.6. It follows that /G = G′.

6. Programming and connected normal form

The completeness of the axiom system in Table 1 depends primarily on two things: first,

that all linking can be exposed at the outermost level of an expression; second, that we have

a strict symmetric monoidal category of bigraphs, with a tensor that is partial on objects.

Crucial to the tensor is that it is bifunctorial, that is, (A1A0)⊗ (B1B0) = (A1 ⊗B1)(A0 ⊗B0);

this axiom underlies most of our manipulations.

Thus the discrete normal form, dnf, has been crucial for the proof of completeness. It

also gives great insight into the bigraph model, by revealing the orthogonality between

placing and linking. In this section we briefly discuss another normal form for bigraphs.

One purpose is to underline the primacy of dnf due to its mathematical role in the theory;

but we also wish to point out that another normal form exists (which is not so common

in algebraic theories), and that it has certain practical advantages.

Despite its mathematical significance, dnf is not very convenient for programming, or

more generally for the practical description of systems. As a striking example of this, let

us consider the calculus of mobile ambients (Cardelli and Gordon 2000), which can be

formulated within bigraphs. Ambients are regions within which local activity may occur,

and their mobility is captured by certain reaction rules. We have already illustrated one

of them in Figure 6.
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In this paper we are not concerned with the dynamics, but only with the statics of

bigraphs. But we can use the redex R of this reaction rule just as an example of a realistic

bigraph. Let us write down a slightly simplified version of what R would look like in dnf:

R = (merge ⊗ idx ⊗ y/yz)((ambx ⊗ idy)merge(id1 ⊗ iny1) ⊗ ambz).

Compare this with the equivalent expression

R = ambx(id1 | iny1) | amby,

which, with a little sugaring, corresponds to the standard notation of the ambient calculus.

Instead of dnf it uses the connected normal form (cnf), which we shall shortly define in

terms of the prime parallel product ‘|’, which combines tensor product, merging and

substitution. cnf resembles parallel composition in other process calculi; for example, the

(only) reaction rule of a simplified π-calculus takes the form

xy.P | x(z) .Q "P | {y/z}Q.

Here, a sender and receiver are placed side-by-side (compare tensor product) in the same

region (compare merge) and sharing the channel name x (compare substitution).

Parallel product

We now formally define the operation of parallel product ‘ ‖ ’ on bigraphs of arbitrary

width. It resembles tensor product, but allows names to be shared. Thus, on interfaces it

is always defined:

〈m,X〉 ‖ 〈n, Y 〉 def
= 〈m+n,X ∪ Y 〉.

On bigraphs with disjoint inner names it is always defined. Suppose that X0 ∩ X1 = !,

and let Gi: 〈mi, Xi〉 → 〈ni, Yi〉 for i = 0, 1. Then we define the parallel product of G0 and

G1 in terms of tensor product. First we disjoin their outer names by applying renamings

αi:Yi →Y ′
i with Y ′

0 ∩ Y ′
1 = !. Then, setting σ = α−1

0 ∪ α−1
1 , we define

G0 ‖G1
def
= σ(α0G0 ⊗ α1G1) : 〈m0+m1, X0 % X1〉→〈n0+n1, Y0 ∪ Y1〉.

Just like ⊗, this product is associative, with unit idε. It is defined more often than ⊗,

and when both products are defined, they are equal. But, unlike ⊗, it is not bifunctorial;

instead it satisfies

(F0 ‖F1)(G0 ⊗ G1) = (F0G0) ‖ (F1G1),

which suggests that, algebraically, ‖ does not stand well by itself; it needs ⊗ to be present

as an auxiliary.

Before defining cnf, we need another operator, the prime parallel product ‘ | ’, which

always creates a prime, even on non-prime arguments. (In contrast, if G0 and G1 are

prime, G0 ‖G1 has width 2). It is defined simply by

G0 |G1
def
= mergen(G0 ‖G1).
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It is again associative; on primes it has the prime 1 as a unit. Again, it is not bifunctorial

but satisfies

(F0 |F1)(G0 ⊗ G1) = (F0G0) | (F1G1).

This operator agrees strongly with operators in process calculi; indeed, when we translate

either the π-calculus or the calculus of mobile ambients into bigraphs, ‘ | ’ in the calculus

is encoded by ‘ | ’ in bigraphs. The difference is that those calculi do not in general have

categorical composition; their processes correspond to those bigraphs whose inner face

is ε. However, the dynamic theory of bigraphs (Jensen and Milner 2004) allows us to

derive labelled transition systems where, in each transition G L
"G′, the label L is itself a

bigraph (normally a little one) such that L ◦G is defined. Treating labels as composable

entities is essential to the uniform behavioural theory that bigraphs provide.

Connected normal form

The key distinction of the parallel products is that they allow sharing of names. This

sharing is induced by the substitution σ used in their definition. Thus, by using them

instead of tensor product, we are pushing substitutions inwards as far as possible. The

key to connected normal form, then, is to push all linking inwards as far as possible,

including closures. This is a close parallel to the good advice often given to programmers

to declare their variables in as small a scope as possible. With this in mind, we are ready

for our final definition.

Definition 6.1 (Connected normal forms). There are three kinds of cnf: mcnfs (M for

molecules), pcnfs (P for primes) and bcnfs (B for bigraphs):

mcnf: M ::= (/Z | id1)(K#x | idY )P

pcnf: P ::= (/Z | id1)(idn |M0 | · · · |Mk−1)π

bcnf: B ::= (/Z ‖ idn)(σ ‖ (P0 ‖ · · · ‖Pn−1)π) .

The names #x need not be distinct in the mcnf. Moreover, in each case, any closed name

z ∈ Z must occur in at least two members of the ensuing product ( ‖ or | ).

Many of the technical properties of dnf are shared by cnf. First, every molecule (prime,

bigraph, respectively) can be expressed by a mcnf (pcnf, bcnf, respectively). Second, these

expressions are unique up to certain isomorphisms, which are close to those described in

Theorem 4.5.

However, we leave open the question of a complete axiomatisation expressed in terms

of the parallel products instead of the tensor product. Even if it exists, it is unlikely to be

as simple, because the bifunctorial property of the tensor product is absent. This does not

alter the fact that the cnfs appear to be easier to use in applications. I conjecture that

a programming language for bigraphs may well be based firmly on cnfs but with added

notational convenience, just as existing languages are based on process calculi. Moreover,

the conversion to cnf is not hard, and can be done whenever necessary for theoretical

analysis.
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7. Related and further work

The algebraic formulation of bigraphs arises from a category in which the objects

are interfaces and the arrows are graphs, following Lawvere’s paradigm for algebraic

theories (Lawvere 1963). It is interesting and non-trivial to explore the relationship

between this treatment, particularly as it affects dynamic theory, with that of graph-

rewriting using the double pushout construction (Ehrig 1979), where the objects are

graphs and the arrows are graph embeddings. The Lawvere approach is closer to the

algebraic tradition in process calculi; we are keen to adopt it both for comparison

with these calculi and because the algebraic approach to concurrent processes has been

fruitful. But a link between the two approaches has been identified (Ehrig 2002), and

indeed the techniques for deriving behavioural congruences has been transferred (Ehrig

and König 2004) from the algebraic framework to the embedding framework. More

remains to be done to discover the relative benefits of the approaches, both in allowing

different kinds of graph and in analysing real systems in practice.

Process calculi, extended with stochastics, are becoming successful in modelling bio-

logical processes, for example signal transduction in cells (Priami et al. 2001). Recently,

as one might expect, explicitly topographic models such as mobile ambients are being

employed in this way (Regev et al. 2004). This link with biology is encouraging, and also

valuable as a test for the wider applicability of process models arising from computer

science. Also, as our opening example suggests, there is a strong incentive to build

topographical calculi that can model the phenomena of ubiquitous computing, where

mobile communicating automata (both macro- and microscopic) will abound.

Let us now turn to possible variations and developments in bigraph theory. The present

definition is not canonical. For example, for some purposes we may wish to consider

bigraphs whose regions (nodes) may overlap one another. For example, one node may

represent a physical location, say Los Angeles, and an overlapping node may represent

the University of California, which has separate campuses in many Californian cities. Can

bigraphs respond to this challenge? At one level, it is easy; we simply generalise place

graphs from forests of trees to directed (acyclic) graphs. However, the impact of this

change on our algebra is not obvious.

Another variation is to consider polygraphs, where there may be more than two

orthogonal structures. Indeed, this may be the way to cope with overlapping nodes; for

we may consider nodes to be structured both by nesting of physical regions (such as

Los Angeles) and by nesting of virtual regions (such as the University of California),

without either form of locality constraining the other. Indeed, the dynamic theory of

bigraphs (Jensen and Milner 2004) does not exclude this, since it relies on categorical

concepts developed separately for each of the orthogonal structures. But again, the impact

on algebraic theory is not yet clear.

Within our present theory, much refinement is possible and is being examined. The

first is to do with local names, or localised links. Once the theory is developed, one can

constrain the independence of linking and placing by introducing bound names, those that

confine a link to within a certain place. This is needed for modelling established process

calculi, and it has turned out (Jensen and Milner 2003; Jensen and Milner 2004) that
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the refined theory can readily be embedded in the pure theory. We conjecture that the

present algebraic theory can be simply adapted to the refined theory. From the algebraic

viewpoint, an even more obvious refinement is to introduce sorting, allowing both the

regions and the names to be many-sorted. This has already been employed in modelling

Petri nets (Milner 2004; Leifer and Milner 2004) and the full π-calculus (Jensen 2004).

To conclude, the algebraic treatment of mobile processes with explicit regions has

considerably potential, and the purpose of the present paper has been to apply traditional

algebraic methodology to the static structure of such processes, and thus to provide a firm

basis for the supervening dynamical theory.
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