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Unique decomposition 
of processes* 

Robin Milner and Faron Moller 
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Edinburgh EH9 3JZ. UK 
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Abstract 

Mimer, R. and F. Moller, Unique decomposition of processes, Theoretical Computer Science 107 
(1993) 357-363. 

In this paper, we examine questions about the prime decomposability of processes, where we define 
a process to be prime whenever it cannot be decomposed into nontrivial components. 

We show that any finite process can be uniquely decomposed into prime processes with respect to 
bisimulation equivalence, and demonstrate counterexamples to such a result for both failures 
(testing) equivalence and trace equivalence. 

Although we show that prime decompositions cannot exist for arbitrary infinite processes, we 
motivate but leave as open a conjecture on the unique decomposability of a wide subclass of infinite 
behaviours. 

1. Introduction 

Let 11 be a binary operator for putting two processes together in parallel, which is 
commutative and associative and has a unit. Then there is an obvious definition of 
prime process, and an obvious question whether, for a given process P, there is 
a unique multiset {AI, . . . , A,} of primes for which 

P=A1 IIA2 II **- II 48. 
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But there seems to be very little known about such questions. 
There are several degrees of freedom: What class of processes are we considering? 

Precisely which operator 11 are we considering? What notion of equality or congruence 
does = stand for? 

In this note we answer the question for a class of finite processes, with a natural 
parallel operator; the answer is positive for one congruence, but negative for two 
others (thanks to Rob van Glabbeek and Joram Hirshfeld). We also conjecture 
a positive answer for a class of regular (i.e. finite-state) processes; as soon as we leave 
the domain of finite processes, the question seems to get much harder and highly 
intriguing. We hope others will find it so, and come up with some answers where we 
have failed so far. 

The question does not seem an idle one. Surely, with the appropriate parallel 
operator, the answer is relevant to the way in which many processors can be usefully 
deployed upon a problem - at least, under static allocation of processors to subproblems. 

2. Finite processes 

We consider here a language B of process terms, namely the set of terms over the 
signature C = { 0,. , +, II}; 0 represents the nil process, . represents prefixing of actions 
taken from some set Act, + represents nondeterministic choice, and 11 represents full 
merge. We adopt the usual operational semantics of this simple language, namely the 
least transition relation + c 9’ x Act x 9 (writing P 5 Q for (P, a, Q)E +) such that 

a. P-% P, and suchthatP5 P’implieseachof P+Q 5 P',Q+P$P',PII Q $P'II Q, 

and Q II P G Q I( P'. The semantic congruence which we consider is strong bisimilarity 
- [4]; this is the largest binary relation on terms such that P-Q if and only if, for all 
UEAct, 

l P f+ P' implies Q 5 Q’ for some Q’ such that P'-Q'; and 

l Q 5 Q’ implies P 5 P' for some P' such that P'-Q'. 
We rely on the well-developed theory for this language and congruence, which tells 

us that the congruence is completely characterized as isomorphism between deriv- 
ation trees, finite unordered trees whose arcs are labelled by elements of the action set 
Act, in which no two identically labelled arcs lead from the same node to two 
isomorphic subtrees. Another characterization is that Y’/ - is the initial C-algebra 
satisfying the laws of a commutative monoid with absorption - P+Q = Q +P, 
P+(Q+R)=(P+Q)+R,P+O=P and P+P=P- and an expansion law relating 
11 to the other operators. 

The proof that follows will proceed by induction on the size I . I of a term, given by 
the depth of its derivation tree: 

lOl=O, IP+Ql=max(IPI, IQIL 

Iu.PI=l+IPI, I~IIQI=If’I+IQI. 
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Equality throughout this note will represent semantic equality (strong bisimilarity). 
Thus, P = Q will mean P - Q; if we need to consider the syntactic identity of terms, we 
write P G Q. 

The important properties which we shall use are as follows, and are immediate 
consequences of the definitions: 
l P=Q implies IPj=\QI; 

l P # 0 implies 1 P II Q I > I Q I; 

l if P=Q and P 3 P’ then Q 3 Q’ for some Q’=P’; 

0 P 5,’ implies lPl>lP’l. 

Definition 2.1. A term P is irreducible if whenever P = Q II R, we have that either Q = 0 
or R=O. 

Definition 2.2. A term P is prime iff P is irreducible and P # 0. 

We shall now prove that unique decomposition into primes exists, up to -J. The 
original proof of this result, by Milner, proceeded directly by induction on size. The case 
analysis was rather detailed; so, we prefer to give here Moller’s shorter proof, which 
proceeds via a cancellation lemma. Both proofs were first reported in [S], where the 
result is also extended to allow synchronized communication between parallel processes. 

Lemma 2.3 (Cancellation). For P, Q and REP, 

P II R=Q II R implies P=Q. 

Proof. We actually prove the following two results by simultaneous induction on 

Ipl+lQI+IRI: 
(i) If P I/ R=Q II R then P=Q. 

(ii) IfR-f;R’andPIIR=QIIR’thenQ~Q’forsomeQ’=P. 

(i): Let P II R=Q II R. Suppose P 5 P’. Then P II R 5 P’ 11 R; so, there exists 

S=P’ )I R such that Q II R 5 S. Hence, either 

(a) 3Q’ such that Q 5 Q’ and Q’ II R=P’II R, or 

(b) 3R’ such that R 5 R’ and Q /I R’=P’ II R. 

For (a), by induction hypothesis (i), Q’= P’. For (b), by induction hypothesis (ii), there 

exists Q’=P’ such that Q 5 Q’. Hence, in any case, there exists Q’=P’ such that 

Q 5 Q’. Similarly, if Q s Q’ then there exists P’=Q’ such that P f+ P’. Therefore, 

P=Q. 

(ii): Let R f+ R’ and P II R = Q II R’. Then P II R 5 P II R’; so, there exists S=P II R’ 

such that Q II R’ 5s. Hence, either 

(a) 3Q’ such that Q 5 Q’ and Q’ II R’= P 11 R’, or 

(b) 3R” such that R’ : R” and Q II R”=P II R’. 
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For (a), by induction hypothesis (i), Q’= P. For (b), by induction hypothesis (ii), there 

exists Q’= P such that Q 5 Q’. 
Hence, in any case, there exists Q’= P such that Q G Q’. 0 

The main result now follows quite simply. To state it in the simplest form, we 
understand that 0 is the empty parallel composition of no processes. 

Theorem 2.4 (Unique decomposition of processes). Any term PEP can be expressed 
uniquely, up to -, as a parallel composition of primes. 

Proof. First, it is easy to see that a prime decomposition exists, not necessarily 
uniquely, since factorization into non-0 factors decreases the depth; hence, repeated 
factorization must terminate. For uniqueness, we argue by induction on 1 PI. 

Suppose first that P = Q, and that P and Q have prime factorizations given by 

That is, the two factorizations have a common prime factor. Then by the cancella- 
tion lemma (Lemma 2.3) we have 

By the inductive hypothesis, AI I/ ... /I Ak and B1 II ... II B l must be identical prime factor 
decompositions. Thus, the prime factor decompositions for P and Q above are 
identical. 

Now suppose that P= AI II ... 11 Ak and Q = B1 II ... II B1 are prime factor decomposi- 
tions such that for all i and j, Ai # Bj. If k = 1 or l= 1 then P = Q is prime; SO, k = I= 1 
and AI =B1, contradicting the distinctness of the Ai and RI. Hence, assume that 

k, 12 2, and (w.1.o.g.) that, for all i and j, I AI I < I Ai 1, ) Bj I. Let a, R be such that AI 5 R 

and, since I R I < I A, I d I P 1, let R’s unique decomposition be 

R= RI II R2 II ... II R,. 

Then P 1; P’, with unique decomposition (since I P’ I < I P I) 

P’=RI II R2 II ... II Rr II A2 II 1.. 11 Aic. 

Now Q G Q’= P’; so, for some Bj, w.1.o.g. B1, we have B1 5 T and 

Q’= T/I & II ... II 4. 

Now the decomposition of P’ = Q’ is unique, and 122; so, B2 must be equal to one 
ofR, ,..., R,,A2 ,..., A,.ButB2#Rp, l<p<r,sincelR,I< IAll <IB21;so,B2mustbe 
equal to some Ai, which contradicts our assumption. 17 
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We now turn to other congruences. A well-known congruence is the testing 

equivalence of de Nicola and Hennessy [2] or, equivalently, thefailures equioalence of 
Brookes et al. [l]. We use the failures terminology, as follows: 

(1) A set R S Act is a refusal set of P if P $ for all UE R. 

(2) If seAct*, any pair (s, R)EAct* x 2Acf is afuilure of P if, for some P’, P : P’ and 
R is a refusal set of P’. 

(3) Two processes are failures-equivalent, written =f, if they possess the same 
failures. (This is easily shown to be a congruence.) 

As an example, consider PI z ah.0 + u.c.0 and Pz E a.@.0 + c.0); the pair (a, { 6)) is 
a failure of PI but not of Pz. This shows that failures equivalence is stronger than 
traces equivalence (which we consider below). Further, consider Q1 = u.b.c.0 + u.b.d.O 

and Q2 =u.(b.c.O+b.d.O); it can be seen that Qr and Q2 have exactly the same fail- 
ures even though they are not bisimilar; so, bisimilarity is stronger than failures 
equivalence. 

Oddly enough, unique decomposition fails for finite processes under =f. Rob van 
Glabbeek showed that there are PI, Pz, Q1, Qz, all prime for =f, with Pi#f Qj 

(i,je(l, 2)), such that 

Pr II P,=,Q, II Q2 

Writing u.u.u.0 as a’, etc., he took 

PI =u+d, P2=u+uZ, 

QI =a, Q2~u+u2+u3. 

It is easy to see that Pi#tQj (i,jE{ 1,2}); in fact, they are not even trace-equivalent. 
By an exhaustive argument they can be proved to be prime. But if we take Act = (u} 
then PI 11 P2 and Q1 11 Q2 have exactly the same failures as the process u2+u3 +u4, 
namely 

(E, 01, (4 0), (a29 0), (a29 (4 ), (u3, 01, (a39 (4 1, (a49 019 (a43 (4 1. 

Now let us consider trace equivalence. 

(1) A string sEAct* is a truce of P if P 5 . 

(2) Two processes are truce-equivalent, written = ,, if they possess the same traces. 
(This is also a congruence.) 
Each congruence class of processes may be thought of as a finite nonempty prefix- 
closed set of strings, and under this interpretation II is just the familiar shuffle 
operator. Note that van Glabbeek’s example tells us nothing in this case, because none 
of PI, P2, Q2 is prime for =l; for example u+u2 =, u2 =, a 11 a. 

However, we recently received Joram Hirshfeld’s interesting paper [3], in which he 
studies a rather different notion of decomposition, We cannot see how to relate his 
results to ours, but a remark in his letter needed only a minor adjustment to show that 
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unique decomposition fails for finite prefixed-closed languages under shuffle. We 
thank him for the following counter example: A = {E, a, b} and B = {E, a, au, b, bb} are 
both prime, and A 11 A 11 A = A I( B. 

3. Infinite processes 

Infinite processes can be represented as solutions of equation sets {Xi=&; iEl>, 
where each Et is a Z-term over the variables {Xi; iEZ}. When I is finite, we have the 
jinite-state processes. 

Let us write u* for the process defined by X = u.X. Now it is easy to show that 
decomposition into a Jinite set of prime factors does not exist, in general, for 
finite-state processes. In fact, if a* = P1 /I ... II P, then one can show that Pj = a* for 
some j; yet a* is not prime since, for example, u* = a /I a*. The question arises: Is u* in 
a sense the only obstacle to unique decomposition? 

From now on we call Q a derivative of P if P 5 Q for some seAct. Also we write 

P 5 P’ when, for some P”, P f+ P” w P’. 

Definition 3.1. A process P is u-impure if Q 5 Q for every derivative Q of P. P is impure 

if it is u-impure for some ueAct; otherwise it is pure. 

Intuitively, P is u-impure if its transition graph - reduced w.r.t. N - has a tight 
loop labelled a at every node. Clearly, if P’ is the result of removing all these tight 
loops then P = P’ II a* and P’ is no longer u-impure. So, impurities can be factored out. 
We conjectured for a while that impurities were indeed the only obstacle to unique 
decomposition, having failed to find any counterexample; in other words, we thought 
that pure finite-state processes could be uniquely decomposed, but could find no 
proof. But Jan Friso Groote has recently shown that this is false; we thank him 
for the following counterexample. Let Q = u* 11 b* and P-u.Q; then P is pure, 
but P=P II P. 

Groote’s example is “nearly’Y.impure; after one action P degenerates into an impure 
process. It is amusing to note that, for infinite-state processes, the conjecture fails even 
for processes which never degenerate into impurity. To see this, define CO, Cl,... as 
follows: 

(CO is a simple counter.) Then every Ci is pure. But Ci = up. down I[ Ci for each i! SO, at 
least for infinite-state processes, there is a wider class of “impurities” to be factored out 
before we can hope for unique decomposition. 

Let us now look at a subclass of pure processes. 
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Definition 3.2. A process P is u-live if no derivative Q of P has an infinite transition 
sequence Q( $))“. P is live if it is u-live for all a~Act. The a-life of P is the largest k for 
which Q( $)k for some derivative of P. The life of P is the sum of its a-lives for a~Act. 

Note that, if P is finite-state and a-live, then its a-life is finite. We are concerned with 
liveness only for finite-state processes. 

Liveness is more tractable than purity, because when P is live then so are its factors, 
and nontrivial factorization decreases life. We have been able to adapt the proof of our 
previous cancellation lemma to prove Lemma 3.3 

Lemma 3.3 (Cancellation). For live finite-state P, Q and REB, 

PII R=Q 11 R implies P=Q. 

Proof (Outline). Corresponding to (i) in the previous cancellation lemma, the main 
result is achieved by showing that the binary relation 

{(P,Q);PIIR=QIIR,for some R} 

is a bisimulation [6,4] over live finite-state processes. Subsidiary to this proof, and 
corresponding to (ii) in the previous lemma, we prove that 

if R 3 R’ and P’ 11 R=Q II R’ then Q 5 Q’ for some Q’ and R” such that 

P’ II R” = Q’ II R”. 

The proof is by induction on the largest k for which R( 5))“. 0 

Unfortunately, a similar adaptation does not seem to work for our proof of the 
unique decomposition theorem; thus, we leave the unique decomposition of live 
finite-state processes as a conjecture. 
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