

Edinburgh Research Explorer

A Compositional Protocol Verification Using Relativized
Bisimulation

Citation for published version:
Larsen, KG & Milner, R 1992, 'A Compositional Protocol Verification Using Relativized Bisimulation'
Information and Computation, vol. 99, no. 1, pp. 80-108. DOI: 10.1016/0890-5401(92)90025-B

Digital Object Identifier (DOI):
10.1016/0890-5401(92)90025-B

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Information and Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/0890-5401(92)90025-B
https://www.research.ed.ac.uk/portal/en/publications/a-compositional-protocol-verification-using-relativized-bisimulation(597d454b-5a2b-466e-8fb1-c928b04537e3).html

INFORMATION AND COMPUTATION 99, 80108 (1992)

A Compositional Protocol Verification
Using Relativized Bisimulation

KIM G. LARSEN

Aalborg Universily Centre, Denmark

AND

ROBIN MILNER

Edinburgh University, Scotland

The purpose of this paper is to illustrate a compositional proof method for com-
municating systems; that is, a method in which a property P of a complete system

is demonstrated by first decomposing the system, then demonstrating properties of
the subsystems which are strong enough to entail property P for the complete

system. In any compositional proof method, it is essential that one can abstract
away the behavioural aspects of the subsystem which are irrelevant in the context
of the complete system. Our method is an extension of the well established notion

of bisimulation; it is called relative bisimulafion, and was developed specifically to

allow for such abstractions. We illustrate the method in a proof of correctness for
a version of the Alternating Bit Protocol. ‘0 1992 Academic Press, Inc.

Contents

Introduction
1. Preliminaries

2. Description of the alternating bit prorocol
3. Proof of correctness

4. Factoring the problem
5. Environments and relativized bisimulation
6. Factoring the proof

7. Related and future work
Appendixes A. Review of theory. B. Full proof:

INTRODUCTION

The purpose of this paper is to illustrate a compositional proof method
for communicating systems; that is, a method in which a property P of a

80
0890-5401/92 $5.00
Copyright 0 1992 by Academic Press. Inc.
All rights of reproduction in any form reserved

A COMPOSITIONAL PROTOCOL VERIFICATION 81

complete system is demonstrated by first decomposing the system, then
demonstrating properties of the subsystems which are strong enough to
entail property P for the complete system. In any compositional proof
method, it is essential that one can express the behavioural constraint
which is imposed upon each subsystem by the others, since it may be
difficult to demonstrate a suitable property of the subsystem’s behaviour in
the absence of the constraint.

Our method is an extension of the well established notion of bisimula-
tion; it is called relative bisimulation, and was developed specifically to
express the behavioural constraints between subsystems. We illustrate the
method in a proof of correctness for a version of the Alternating Bit
Protocol (AB protocol) in which the communication-lines are assumed to
have unbounded buffering capacity, but may either duplicate or lose
messages. For comparison, we first give a non-compositional proof by
simulation and then outline the compositional proof by relative bisimula-
tion. The full proof appears in Appendix B, whereas Appendix A contains
a short review of some of the concepts and results on which our proof
methodology is based.

The AB Protocol (Tanenbaum, 1981) is a commonly used example, and
we here mention three other treatments of it. The proof of Schoone and
van Leeuwen (1985) is mathematically elegant, and indeed treats the
AB Protocol as a simple member of the family of sliding window protocols.
The present proof, unlike Schoone and van Leeuwen’s, is done in a formal
model of communicating systems. We hope to follow them to extend our
approach to the more complex protocols in this family.

Among proofs in formal models, we cite that of Bergstra and Klop
(1984) and the more recent Koymans and Mulder (1987). Both are done
in process algebra; the former is unrelativised and uses only algebraic laws,
while we use the mildly non-algebraic technique of bisimulation. The latter
is a compositional proof, more in the spirit of the present paper; it
introduces concepts for modularisation which are adequate to treat the
example but have yet to be studied in general terms.

1. PRELIMINARIES

Adopting the reactive view on processes (Pnueli, 1985) we model
processes and their operational behaviour as a labelled transition system
9 = (Pr, Act, +), where Pr is the set of processes (states of processes), Act
is the set of actions performed by processes, and -+ E Pr x Act x Pr is the
transition relation : (P, a, Q) E + may be interpreted as “the process P is
able to perform the action a and evolve to process Q.” Also, we use the
notation P -5 Q for (P, a, Q) E + .

82 LARSEN AND MILNER

We assume that Act holds a distinguished unobservable (internal) action
r. The set of actions Act\{ r} is referred to as the set of observable (exter-
nal) actions and it is assumed that for each observable action there exist an
inverse, observable action Z, such that d = a.

We assume that processes may be composed freely using the operators
of CCS (Milner, 1980, 1989) including the following:

- the constant prefixing operator a. for each a E Act,

- a binary operator + representing nondeterministic choice,

- a binary operator) representing parallel composition, where PI Q
interleaves the behaviours of P and Q with possible communication
(synchronization) on complementary (i.e., mutually inverse) actions,

- a unary restriction operator \L for L c Act\(r), where P\L
behaves like P but with all actions of L and L = { 5 1 a E L) disallowed.

Finally, we allow processes to be specified recursively either through
(simultaneous) recursive equations or using an explicit recursion construct
Fix. We urge the reader to consult Milner (1980, 1989) for more intuition
and a formal presentation of CCS and its operational semantics.

2. DESCRIPTION OF THE ALTERNATING BIT PROTOCOL

The protocol consists of two systems, which we temporarily call
SENDER and RECEIVER, connected by two communication-lines-one
for transmission of messages and one for acknowledgement of messages:

SENDER RECEIVER

TRANSMIT

The communication-lines are assumed here to hold an unbounded number
of messages (acknowledgements) each consisting of a quantum together
with a boolean value. The lines are assumed to be faulty to the extent that
they may either lose or duplicate any message or acknowledgement at any
time. To present our technique as clearly as possible, we ignore the content
of messages; i.e., we take a message or an acknowledgement to consist of
a single boolean value. However, it is straightforward to redo the analysis
in a scenario where the content of messages is included (using the “data-

A COMPOSITIONAL PROTOCOL VERIFICATION 83

independence” results of Wolper (1986) and Wolper and Lovinfasse (1989),
it should suffice to carry out the analysis in a setting with only three
different messages).

Thus, we model each communication line as a process parameterised with
the sequence of messages (acknowledgements) that it is currently holding.
Using the internal action z to model loss and duplication of messages
(acknowledgments) the transitions of these processes are as follows:

ACK(bs) 3 ACK(s) ACK(s) reply(b) ACK(s6)

ACK(sbt) & ACK(st) ACK(sbr) d ACK(sbbt)

TRANS(s) send0 TRANS(6s) TRANS(sb) Iransmit(h! TRANS(s)

TRANS(tbs) A TRANS(ts) TRANS(tbs)--l--+TRANS(tbbs)

Turning to the SENDER and RECEIVER, we model them in a way which
exhibits the duality between them. The SENDER has two states
(parameterised on a boolean value): ACKED(b), in which an acknowl-
edgement “b” has just been received, and SENDING(b), in which a
message “6” is being repeatedly transmitted. The SENDER may be
diagrammed as

indicating the ports at which it accepts quanta from the communication
source, sends messages on the TRANS line, and receives acknowledgements

84 LARSEN AND MILNER

on the ACK line. Its definition in CCS [Milner, 19801 is as follows, where
we represent boolean complementation by (A):

ACKED(b) = ack(b).ACKED(b) + ack(J).ACKED(b)

+ accept. SENDING(L)

SENDING(b) = send(b). SENDING(b)

+ ack(b).SENDING(b)

+ ack(h).ACKED(h).

For distinct actions a,, a, and p a process expression we write
(aI + . . . +a,).~ for a,.~+ . . . +a,.~ and (a ,... a,).~ for a,. . . u,.p when-
ever n 2 1. Then, for s a non-empty sequence of actions we write s* .p for
the expression FIX x. (s.x +p), where the variable x is chosen so that no
free variable of p is captured. With the above abbreviations we may now
write the definitions of ACKED and SENDING more conveniently as
follows:

ACKED(6) = (ack(b) + ack(&)*.accept.SENDING(b^)

SENDING(b) = (send(b) + ack(g))*.ack(b).ACKED(b).

Note that ACKED(b) ignores any acknowledgement ack(u), whatever a.
Note also that SENDING(b) may repeat send(b) arbitrarily often; in a
more refined model we would try to reflect that repeated transmissions are
in response to a time-out signal, but we believe that this refinement only
adds a minor complexity to our analysis-which we prefer to avoid for the
sake of clarity.

Dually, the RECEIVER has two states: TRANSMITTED(b), in which a
message “b” has just been received, and REPLYING(b), in which an
acknowledgement “b” is repeatedly emitted. It may be diagrammed

indicating its ports-in particular where it delivers quanta to the
communication target. Its definition is as follows:

A COMPOSITIONAL PROTOCOL VERIFICATION 85

TRANSMITTED(b)

= (transmit(b) + transmit(g))*.deliver.REPLYING(b)

REPLYING(b)

= (reply(b) + transmit(b))*.transmit(6).TRANSMITTED(g).

Note the duality with the SENDER; similar remarks apply about the
ignoring of further transmissions and about repeated replies. Finally,
note that the quanta accepted from source and delivered to target are
completely omitted here; their incorporation present no problems, but their
absence yields greater clarity.

In the initial state of the complete system, we may take the SENDER
and RECEIVER to be in states ACKED(b) and REPLYING(b), which
actually reflects that a quantum, transmitted with associated bit “b,” has
been both delivered and acknowledged and the system is ready to accept
a new quantum. In a truly initial state, both lines would be empty, but we
are concerned more generally with the state in which both lines contain a
sequence b”, of arbitrary length n 3 0, of the same message “b,” corre-
sponding to residual copies of old messages and acknowledgements.

The corresponding expression in CCS, whose sort (i.e., set of external port
names) is {accept, deliver}, is

SYSTEM(b, n,p) = ACKED(b) /I TRANS(b”) 11 ACK(bP) 11 REPLYING(b).

Recall that in CCS a restricted composition of the form (PI Q)\A, where
A is the set of port names used for communication between P and Q, is
often abbriviated as P 11 Q.“ll” is not associative in general, but in our
restrained use it is so-which is a consequence of the property of our
system that no two ports in the system are identically named.

86 LARSEN AND MILNER

3. PR~~F OF CORRECTNESS

The content of messages being ignored, the specification of our system is
that it should behave exactly like a quantum buffer of capacity one. That
is,

SPEC = accept. deliver. SPEC

and we wish to prove that

SYSTEM(b, n, p) z SPEC,

where ” z ” is observation equivalence. This equivalence relation is studied
in Milner (1983) and Park (1981), where it is demonstrated that, to prove
Pz Q, it is sufficient to exhibit a bisimulation relation .G? between agents
such that (P, Q) E B. Techniques for establishing such relations are
described for example in (Prasad, 1989), and often the relations may be
constructed mechanically (Larsen, 1986). However, we shall not give here
the details which justify its existence in this case; we are mainly concerned
to present it and to support it with some intuition.

What makes our example tractable is that the state-space, consisting of
all possible combinations of states of our four agents, is for the most part
inaccessible from the initial state SYSTEM(b, n,~). In particular, the
TRANS and ACK lines can at most contain sequences of messages of the
form bm6n. In fact, the following bisimulation .&? is sufficient, and covers all
accessible states of our system:

B, = { (ACKED(b) 11 TRANS(b") /I ACK(b”) 11 REPLYING(b). SPEC); n, p > 0)

B2 = {(SENDING(6) 11 TRANS(6"'b") /I ACK(bP) I/ REPLYING(b), SPEC’); M, n, p 201

g3 = ((SENDING(6) 11 TRANS(6”‘) // ACK(bP) II TRANSMITTED(6), SPEC’); m, p 2 0)

.49., = {(SENDING(@ I/ TRANS(6”‘) 11 ACK(bP6”))I REPLYING(6), SPEC); WI, p. y 2 0)

Here SPEC’ = deliver. SPEC. To confirm that g is indeed a bisimulation it
is, as required by the definition of bisimulation, enough to show that
whenever (P, Q) E B then

(i) Whenever P & P', then Q & Q’ for some Q’, and (P', Q') E ST

(ii) Whenever Q & Q’, then P & P' for some P', and (P', Q') E it@

Here u stands for any sequence (possibly empty) of external actions and
&- allows the admixture of arbitrarily many internal communications.
Formally, =%- is the reflexive and transitive closure of A, and for

A COMPOSITIONAL PROTOCOL VERIFICATION 87

u = a,) . ..) a,~ W\W+ 2 is the relation &= -% & 3 . ..&.A+&.

where juxtaposition denotes composition of relations. The verification of
this property of &I is amenable to mechanical assistance, but in the present
case it is not too tedious to be carried out with pencil and paper. However,
the process is error-prone, and it is natural to demand that any such
demonstration be done with machine assistance if a practical engineering
design depends upon it.

4. FACTORING THE PROBLEM

A defect of the foregoing proof is that it involves an analysis of the com-
plete system directly in terms of its basic components, without mediating
analysis of any subsystem. This defect is not serious in the present example,
since the accessible states of the complete system are easily divided into
four classes, those described in the four subrelations of the bisimulation
relation 9, and thus the bisimulation is not tedious to exhibit. However,
larger systems would often suffer a combinatorial explosion under similar
treatment; we shall only be able to “scale up” our method of proof if we
can tackle large systems by stages, grouping basic components into sub-
systems whose behaviour can be described with reasonable simplicity, then
combining these subsystems-perhaps in larger subsystems-eventually
into the complete system. We proceed to investigate this approach using
the present example. The total effort in proving correctness will not be
decreased- perhaps it will even be increased. However, we shall be able to
illustrate a technique developed in Larsen (1986) which holds promise for
larger systems, where we may indeed hope to reduce the effort of proof and
also gain greater understanding of the systems.

Consider the following decomposition of SYSTEM(h, n, p) into two
subsystems SYSl(b, p) and SYSZ(6, n):

88 LARSEN AND MILNER

From the analysis in Section 3, it seems that the precise number of
messages on the transmission lines is not important. Thus, we may hope to
find simply defined agents SPECl(b) and SPEC2(b) such that

(a) SYSl(b,p) z SPECl(b)

(b) SYSZ(b, n) z SPEC2(b).

Then, using the congruence property of z w.r.t. 11, we may complete our
proof of correctness (i.e., SYSTEM(b, n, p) w SPEC) by proving

SPECl(b) /I SPEC2(b) z SPEC.

Although this approach nicely factors our proof, it is thwarted by the
fact that the subsystems SYSl(b,p) and SYS2(b, n) have very complicated
behaviours. Thus the subspecifications SPECl(b) and SPEC2(b) cannot be
simple.

However, only a very minor part of the total behaviour of SYSl(b, p)
(for example) will be permitted in the context’ [] 11 SYS2(b, n). We there-
fore try to relax the condition of (a) by looking for an agent SPECl(b)
which need not be exactly equivalent to SYSl(b, p), but is indistinguishable
from it under the limitations of the context [] I/ SYS2(b, n) in which this
agent finds itself. For this purpose we shortly introduce the notions of
relative bisimulation and relative observation equivalence.

The context [] 11 SYS2(b, n) imposes certain constraints on its inhabi-
tant, with respect to send and reply actions (see above figure). Intuitively,
the behaviour allowed by an inhabitant must satisfy the following:

-^
Phase 1. All reply actions must be reply(b) until send(b) occurs

Phase 2. Trivially, all reply actions are reply(b) until reply(h) occurs

Phase 3. Thereafter, provided send(b) has not occurred during
PHASE 2, the whole constraint applies again with b and 6 interchanged.

We now proceed to formalize these constraints.

’ A context, C. is a CCS term with a “hole,” [1, in it. For P a CCS term, we use C[P]
to denote the term obtained by substituting P for [] in C.

A COMPOSITIONAL PROTOCOL VERIFICATION 89

5. ENVIRONMENTS AND RELATIVIZED BISIMULATION

Formally we express the limitations imposed by contexts on their
inhabitants in terms of enoironments. Operationally environments are
objects which consume actions produced by their inhabitants. However, an
environment’s ability to consume actions might be limited, thereby limiting
the behaviour of any inhabitant. We describe the consuming behaviour of
environments in terms of a labelled transition system < = (Env, Act, +),
where -+ c Env x Act x Env is the consumption relation. For (I?, a, 8’) E +
we write E -;;’ F which is to be read: “the environment E is able to
consume the action a, and change into the environment F." Note, that in
order to avoid too much confusion with processes we have placed the
action below the arrow for environments. This is mainly for clarity rather
than for necessity; in the present application the environments used will
actually be processes.

The limitations imposed by the context [] II SYS2(b, n) can now be
described by the following environment, using U as the universal environ-
ment (i.e., U a’ U for all a in Act) and Ext = Act - (send, send, reply,
reply) :

-,.
m(b) = (Ext + send(b) + reply(b))*.send(b). E2'(b)

__ ^
E2’(b) = (Ext + send(b) + reply(b))*. (send(b). U+ reply(&).Q&).

The following is a graphical representation of E2(b):

send (bl ,
reply(b)

J-t,

-A
send (b) ,
reply(b)

-A
send(b)

reply (:I

To read the above diagram some additional explanation is needed. For
each possible value of b a box in the diagram represents a set of agents
(environments). An arrow between two boxes is labelled

El s,(b)
{c}a(b){btf(b)}

43
db)

90 LARSEN AND MILNER

by a triple, {c} a(b) {b +f(b)}, where c is a precondition on agents, a(b)
is a parameterized action (where actions in the above diagram are pairs),
and b +f(b) is a postassignment, with f being a function on parameter
values. For c = true we omit the precondition (c}, and similarly for f the
identity function we omit the postassignment {b +f(b)}. Formally, the
arrow between the boxes is to be interpreted as follows: for all b and all
agents P in S,(b), whenever P satisfies condition c, there exists an agent Q
in S,cf(b)) such that P U(b) +Q.

Note that in the environment E2’(b) a send(b) action is allowed after
which there will be no restriction on the inhabitant’s behaviour (expressed
by the environment U). However, it turns out that the agent SYSl(b,p),
whenever it finds itself in the environment E2’(b), will be unable to perform
send(b).

To express the equivalence of two processes under environmental
constraint, we introduce the notion of relative bisimulation developed in
(Larsen, 1985, 1986). Given an environment system 5 = (Env, Act, +) a
relative bisimulation &%? consists of a family BB,(E E Env) of relations
such that whenever (P, Q) EWES and EYE’ then

(i) Whenever P&P’, then Q %Q’ for some Q’, and
(P’, Q’) E %?Z’,,

(ii) Whenever Q &Q’, then P %P’ for some P’, and
(P’, Q’) E MI’,..

Again, u stands for some sequence (possibly empty) of external actions,
and 2% as well as 7 allow arbitrarily many intermediate internal actions.

Intuitively, this is just like bisimulation except that only those ‘Lmoves”
(sequences of external actions) permitted by the environment E are
considered; we do not care how the agents may perform for “moves” not
permitted. Clearly, the simpler notion of bisimulation is just a relative
bisimulation in which the environment system 5 consists of a single
environment-the universal environment which allows any action at any
time.

We say that P and Q are observationally equivalent relative to E, and
write P = E Q, if there is a relative bisimulation &B such that
(P, Q,ca,@,E.

6. FACTORING THE FR~~F

We can now see that our proof can be factored into parts which are
described informally as follows:

(1) Find an agent SPECl(b) which is observationally equivalent to
SYSl(b, p) relative to the environment E2(b).

A COMPOSITIONAL PROTOCOL VERIFICATION 91

(2) Show that the behaviour permitted by the context
[])I SYS2(b, n) is “contained” in the environment ,52(b).

(3) Find an environment El(b) which “contains” the behaviour
permitted by the context SPEC 1 (b) 11 [1.

(4) Find an agent SPEC2(b) which is observationally equivalent to
SYS2(6, n) relative to the environment El(b).

From (1) arid.(2) it follows that SYSTEM(h, n, p) = SYSl(b, p))I SYS2(6, n)
%SPEC1(6)I/SYS2(b, n) and from (3) and (4) it follows that
SPECl(b) II SYS2(b, n) z SPECl(b) /I SPEC2(6). Thus to complete the
proof of SYSTEM(b, n, p) z SPEC it suffices to show that

(5) SPECl(h) /I SPEC2(b) z SPEC.

We focus on making (1) and (2) precise, since (3) and (4) are duals and
(5) is already familiar. For (1) we search for an agent SPECl(b) such that

SYSl(b, p) = ACKED(b) 11 ACK(bP) z EZ,h, SPECl(6)

Environment

An intuition which guides the search is that, in the environment E2(b), the
index p in ACK(bP) is immaterial-it has no effect on the behaviour of the
subsystem. Furthermore, the environment E2(b) ensures that no reply(J) - 1
can occur until ACKED(6) has done accept followed by send(b). There-
after, SYSl(b,p) ensures that no send(b) can occur until the environment
allows reply(b). Together, they ensure that the ACK line can only hold
sequences with at most a single bit-change. We can prove

where

(*) SYSl(h P) = E2(b) SPECl(b),

SPECl(bj=reply(b)*.accept.SPEC1’(6)
- I

SPECl’(b) = (send(b) + reply(b))*.reply(&.SPEC1”(6)
-I

SPECl”(b) = (send(b) + reply(&))*.(s.SPECl’(b) + t.SPECl(6)).

92 LARSEN AND MILNER

We do not pretend that every detail of this definition is immediately
obvious; however, a careful consideration of the subsystem leads one to
propose a specification more or less of this form. In fact, because of the
environment E2(b), there seem to be several alternative definitions of
SPECl(b). Note in particular the z-moves at the end of the last equation.
The first r-move represents a transition where the ACK line loses the first
copy of a new acknowledgement; therefore a new copy of it has to be sent
to the ACK line before it can reach the SENDER. The second r-move
represents the eventual acknowledgement ack(h), which occurs as a com-
munication within the subsystem. Note also that SPECl(b) is finite-state;
the infinite state-space resulting from the unbounded indices p, q in
ACK(bP), ACK(bP@) h as been collapsed to a finite state-space. The
relative bisimulation which now establishes the required equivalence (*) is
not hard to exhibit and can be found in Appendix B.

Part (2) of our proof obligation, which is to show that the behaviour
permitted by the context [] II SYS2(b, n) is “contained” in the environment
,52(h), must now be tackled.

We prove that the behaviour permitted by a context C is contained in
that permitted by an environment E as follows:

We first produce an environment E' (called w.F&(C, U)) by manipu-
lating the transition rules for the context C. In many situations E' will
actually be the weakest environment that will serve as E. We then show
that the behaviours of E' are permitted by E by exhibiting a simulation
relation from E' to E. The theory that justifies this method is developed at
length in (Larsen, 1986) and summarized in Appendix A.

In the present example, we are interested in the context
%‘= [] 11 SYS2(b, n), and thus obliged to establish a simulation relation
between Fd(%‘, U) and E2(b). It turns out that we can prove the above
simulation ordering without explicit calculation of $V3&‘(??, U). The
details of the proof may be found in Appendix B.

7. RELATED AND FUTURE WORK

In the sequential case, Hoare Logic (Hoare, 1969) provides a well-
established theory for compositional reasoning about programs as relations
(between initial and final state).

The early work by Owicki and Gries (1976) extends Hoare Logic to
parallel programs by observing that the Hoare triple should not be viewed
just as an independent object but as the conclusion of a proof which carries
the extra information required to obtain a compositional rule for parallel
composition. The rule for parallel composition suggested by Owicki and
Gries is essentially a conjunction (of both the pre- and the postcondition)

A COMPOSITIONAL PROTOCOL VERIFICATION 93

of the parallel component specifications together with a test for interference
freedom of their proof trees: i.e., any precondition and final postcondition
appearing in one should be “invariant” under the atomic actions of the
other. As the test for interference freedom requires access to the implemen-
tation of the components (and not just their specifications), the parallel
rule of Owicki and Gries is non-compositional.

The work by Stirling (1986) gives a compositional reformulation of
Owicki and Gries’s proof system using a relativized (with information
about the pre- and postconditions and the “invariant?) consequence rela-
tion. The information used by Stirling in the relativization is similar to the
rely and guarantee conditions of Jones’ rigorous development methods for
parallel programs in (Jones, 1983). Here, in addition to pre- and postcondi-
tions, the speczjication of the components of a parallel composition
contains a rely and guarantee pair. The proof rule for parallel composition
then involves a test for compatibility: essentially it must be verified that the
guarantee conditions of one component imply the rely condition of the
other. The work by Stark (1985) provides alternative compositional proof
rules for specifications containing rely and guarantee conditions.
De Roever (1985) gives a useful survey of a number of compositional proof
methods, including many of the above mentioned.

The work by Barringer, Kuiper, and Pnueli (1984), Zhou and Liu
(1987), and more recent work by Lamport (1989) considers compositional
proof rules using Temporal Logic as the basic specification formalism.
In all three cases the specification of a component contains explicit
information as to environments commitment: one only need specify how
the component should behave in its intended environment.

Also the development methods by Lynch and Merrit (1986), Lynch and
Tuttle (1987), and Chandy and Misra (1988) involve relativized specifica-
tions (in Lynch’s school this is expressed in properties of “well-formed”
schedules, in Chandy and Misra’s book by “conditional properties”).

Thus, it seems to be commonly agreed that the interference or inter-
action between the components of a parallel program should be explicitly
reflected in their specifications. The proof methodology presented in this
paper can be seen as carrying out this “paradigm” in the framework of
Process Algebra (Milner, 1980, 1989; Hoare, 1978; Bergstra and Klop,
1985; Boudal, 1985) and in particular in the framework of CCS (Milner,
1980, 1989).

With the purpose of identifying the state-of-the-art in the area of
compositional proof methods for parallel systems a REX workshop was
recently held in Holland sponsored by the Dutch NFI Programme. We
strongly urge the reader to consult the proceedings of this workshop (de
Bakker, de Roever, and Rozenberg, 1989).

Obvious extensions of our method includes relativization of other

94 LARSEN AND MILNER

process equivalences (such as failure equivalence, testing equivalence, and
acceptance equivalence) and, perhaps more interesting, preorders. Clearly,
the simulation preorder can be relativized in a way similar to the relativiza-
tion of bisimulation. However, as the simulation ordering is deadlock
insensitive in the framework of CCS, we have not pursued this idea. A
more promising (preorder) candidate for relativization is the divergence
sensitive version of bisimulation (Mimer, 1981; Walker, 1988). Another
topic for future work is the extension of our method to contexts with
several “holes.” Work in that direction may be found in Larsen and Xinxin
(1989).

APPENDIX A: REVIEW OF THEORY

In the present appendix we give a short review of some of the concepts
and results from (Larsen, 1986) on which our proof methodology is based.

Recall that an environment F is a sufficient inner environment (9’98) for
a context $5’ in an environment E provided %?[P] z E U[Q] whenever
P z:F Q, However, in order for this concept to be of any practical use in
a compositional proof methodology, we need to provide an effective test for
the Y$aE property. A guide to such a test is given by the following main
theorem.

First, a simulation Y is a relation between agents such that whenever
(P, Q) E Y then condition (i) of bisimulation holds. Whenever (P, Q) is
contained in some simulation Y we write Ps Q and say that P is
simulated by Q. It can easily be shown that 5 is a preorder with NIL (the
completely inactive agent) as minimal element and U as maximal element.
Now, 5 is related to relative observational equivalence through the
following important theorem:

THEOREM 1. E 5 F implies

ForallPandQ,ifP%:.QthenPz.Q.

Moreover, if 5 is image-finite in the sense that the set (FI E 7 I;) is finite
for all E and u, then the reverse implication holds as well.

From the theorem it follows that if F5 G, where F is already known to
be a YY& for %? in E, then G is also a Y9d for %? in E. In the following
we present a construction from (Larsen, 1986) of a 5 -weakest environ-
ment, -WY&(%, E), with a slightly stronger property than that of 996.
This clearly makes the simulation -Wfd(%?, E) 5 F a valid, though not
complete, test for the Y.Y&-property of F w.r.t. % in E. Moreover, this test
is amenable to a proof technique similar to that of bisimulation.

A COMPOSITIONAL PROTOCOL VERIFICATION 95

The construction of YVY&(V, E) is facilitated by a new operational
semantics of contexts in terms of action transducers; i.e., a context is viewed
as an object which consumes actions from its inhabitants and produces
actions for a surrounding environment. Formally, we describe the opera-
tional semantics of contexts in terms of a labelled transition system of the
form %%? = (Con, (Act u (0)) x Act, +), where 0 # Act is a special no-action
symbol allowing a context to produce (outer) actions without consulting
the inhabitant. We write V +$+ ?Z’ for (%‘, (a, b), %‘) E + and read V + V’
and G?? -$+ w’ (a # 0) in the obvious ways.

EXAMPLE 2. The operational semantics of contexts of the form
([] 1 P)\A, where P is a process expression and A c Act - {T }, is given by
the following rules:

(i) (C llP)\AG+ (C IIP)\A; a$AuA

(ii)

(iii)

PY P’

([: llf’\A+ (C lW\A’
a$AuA

P-% P’

(C l)IP)\A++ (C IIP’)\A

(i) allows the inhabitant to perform any action not in Au2 alone;
(ii) makes it possible for the context to perform without consulting the
inhabitant; and finally in (iii) the context may produce a r-action as a
result of an internal communication between the inhabitant (contributing a)
and P (contributing a). Actually, the three rules above are derived rules of
a complete system in (Larsen, 1986) describing the operational semantics
of all standard CCS-contexts.

The operational semantics of a context 55’ must be related to the opera-
tional semantics of combined processes W[P] in the following way:

@‘[PI A R 8 Either there exists $3 s.t. %? + $3
and R = LS[P] or there exist 9,
Q7 and a#0 s.t. g+9,
Pa Q, and R=g[Q].

Fortunately, it is easily cheeked that the operational semantics for contexts
of the form ([] 1 P)\A given in Example 2 indeed has this property.

It is a well-known fact that z is nor preserved by all CCS-contexts,
especially not sum-contexts (see Milner, 1980). From this fact it can be
deduced that w$&‘(U, E) cannot possibly exist for all contexts %‘.
However, based on the new operational semantics of contexts, a condition

643199/l-,

96 LARSEN AND MILNER

may be formulated which ensures not only the preservation of =, but also
the existence of #‘-Y&(+7, E) for all environments E. The condition is that
of being idle-preserving, which is a property a context V enjoys provided
for all actions a and contexts ~3:

(i) %?+ 9 iff a=z and V=G3

(ii) All V’s derivatives are idle-preserving.

Thus, an idle-preserving context can neither prevent nor detect a T-action
produced by its inhabitant, and is therefore unable to destinguish between
observational equivalent processes. From Example 2 it is clear that all
contexts of the form ([] 1 P)\A are idle-preserving.

Though WY&(%‘, E) always exists when %? is idle-preserving, its con-
struction may be somewhat simplified by assuming the environment E to
be idle (an environment may always be transformed into an s-equivalent,
idle environment), which means

(i) Ey Fiff E=F
(ii) All derivatives of E are idle.

Note that the universal environment U is trivially idle. We can now define
the operational semantics of w4&‘(%, E) from
of % and E by the following two rules:

the operational behaviours

With the above definitions, we can now state the following main theorem:

THEOREM 3. If %? is idle-preserving and E is idle, then WY&(%?, E) is a
Y46 for V in E.

It can be shown that, under the above conditions, -/lr$&(%, E)
is a s-weakest environment such that @‘[PI ~~ C[Q] whenever
PX w-xeqv,m Q, h w ere V[P] !s~%[Q] informally means that %[P] %E
‘S[Q] holds with %? interacting identically with P and Q. Thus, WY&(%?, E)
is nearly a S-weakest YY& for V? in E, and nearly enough so in practice
as we shall demonstrate in the following Appendix B.

For idle environments the property of relative bisimulation may also be
verified more easily as can be seen from the following easy result, where
attention is only paid to sequences of length 6 1.

A COMPOSITIONAL PROTOCOL VERIFICATION 97

PROPOSITION 4. Let 5 = (Env, Act, +) be an environment system, where
all environments are idle. Then an Env-indexed family Wg is a relative
bisimulation if whenever (P, Q) E B?BE and E y E’ then

(i) Whenever PA P’, then Q &- Q’ for some Q’, and
(P’, Q’) E cCj?BE

(ii) Whenever Q -5 Q’, then P 2 P’ for some P’, and
(P’, Q’) E BBe,,

where ?=E and ii=a for afz.

APPENDIX B: FULL PROOF

In this appendix we complete the correctness proof of the Alternating Bit
Protocol outlined in Section 5.

Recall that the proof is based on the following decomposition of
SYSTEM(b, n, p):

Using the terminology introduced in Section 5 and Appendix A our
proof obligations can now he reformulated as follows:

1. Find an environment E2(b) which is Y9d for %?2(b, n) =
[] // SYS 2(b, n) in il.

2. Find a specification SPECl(b) such that SPECl(b) = E2(bj
SYSl(b, p).

3. Find an environment El(b) which is 9.98 for % l(b) =
SPECl(b) 11 [] in U.

4. Find a specification SPEC2(b) such that SPEC2(b) z:El(bj
SYS2(b, p).

5. Finally, show SPECl(b) I(SPEC2(b) x SPEC.

98 LARSEN AND MILNER

Proof Obligation 1. Since V2(b, n) is idle-preserving and U is idle it
suffices to find an environment E2(b) such that

WJ&(%72(b, n), U) 5 E2(b).

In order to establish this simulation we first (partly) determine the
behaviour of the context %‘2(b, n) = [] 11 SYS2(b, n), using the rules of
Example 2 in Appendix A. The resulting behaviour is illustrated by the
compressed state-transition diagram

where p E Ext = Act - (send, send, reply, reply >.
The diagram for %‘2(b, n) can be determined more or less automatically

from the rules of Example 2 in Appendix A and the operational semantics
of SYS2(b, n). Even so, let us motivate some of the arrows in the diagram.
The arrow marked @ in fact represents three different transductions, all
with no participation of the inhabitant, and all requiring the index II to be
stricty greater than 0. One transduction occurs when the TRANS line

A COMPOSITIONAL PROTOCOL VERIFICATION 99

passes an already passed messages to the RECEIVER; the two other trans-
ductions correspond to the TRANS line duplicating and losing messages.
The arrows marked @ both represent three similar transductions. Finally,
the arrows marked @ represent transductions, where the inhabitant sends
new messages to the TRANS line, thus leaving the line in a state where it
holds sequences with possibly two bitchanges. However, with SYSl(b, p) as
inhabitant these transductions will never be utilized, since SYSl(b, p) never
sends a new message before having recieved acknowledgement for the pre-
vious one. Thus, the transductions @ are in this application uninteresting
and therefore left open.

Using the rules from Appendix A, we can now determine the behaviour
of the environment W4&‘(‘+72(b, n), U). Since %‘2(b, n) is idle-preserving
and U is idle, this environment will indeed be a Y38 for %‘2(b, n) in ZJ.
Let %?2’(b, n, m) and %2”(b, m) be the two (parameterized sets of)
derivatives of %‘2(6, n) shown in the previous diagram.

Using the rules for the W$6-construction from Appendix A, the
diagram for the environment dL’$ab(C2(b, n), U) is easily derived (essen-
tially the diagram is derived from that of C2(b, n), simply replacing labels
(i), where a # 0, with a, and labels ({) with r).

reply(b)

/Ah- sene i(b)
P k’1E(C2(b,n) ,u)

WIE(C2”(b,m) ,u)

100 LARSEN AND MILNER

However, we want to use the following finite-state environment, ,52(b), as
996 for %‘2(b, n) in U:

send(b)

/ ==PlY

To justify this we must prove W$86(%?2(b, n), U) 5 E2(b). However, it is
easily shown that the following is a simulation, from which this desired
inequality directly follows:

where

3 = {(-WyJ?g:2(b, n), U), Wb))ln>O)

Y; = { (W98(‘%‘2(b, n), U), E2’(6)) 1 n > 0)

% = { (wYaQ(V2’(6, n, m), U), E2’(b)) 1 n, m 2 0}

%= { (WYab(%2”(b, m), U), E2’(b)) 1 m k 0}

% = {(W~G?(%, U), U) I +Z any context }.

Proof Obligation 2. As subspecification for SYSl(b, p) we want the
finite-state agent SPECl(b) from Section 3, which may be graphically
represented as

A COMPOSITIONAL PROTOCOL VERIFICATION

reply(b)

101

Let us show the part of SYSl(b, p) = ACKED(B) II ACK(F) relevant in the
environment E2(b):

send(b)

A
{P=O}T ibcb)

The z-move marked @ in the above diagram actually represents three dif-
ferent types of transitions: one transition occurs when the ACK line passes
an already passed acknowledgment on to the SENDER; the remaining two
transitions are caused by acknowledgments being lost or duplicated. Thus,
for any agent of the form SENDING(l) 11 ACK(bP6*) with q > 0 we have

SENDING(h) 11 ACK(bP@) &- SENDING(&) 11 ACK(b’@)

102 LARSEN AND MILNER

and

SENDING (6) (1 ACK(&‘@) =% SENDING(h) 11 ACK(b’%‘).

We want to prove that SPEC(b) z E2cbj SYSl(b,p). However, it can now
easily be verified that the following family 9.49 is a relative bisimulation,
from which the above relative equivalence follows directly:

w89’,,o, = ((ACKED(~) 11 Act, SPECS),

(SENDING(&) II ACK(bP), SPECl’(b)),

(SENDING(b) II ACK(&V), SPECl”(&),

(SENDING(b)lIACK@), SPECl@))lp>O, q>O}

~~E2’(h, = {(SENDING(h) 11 ACK(bP), SPECl’(b)) Ip > 0)

SEif” = 0.

Proof Obligation 3. Let us first determine the behaviour of the context
SPECl(b) 11 [] using the rules of Example 2 in Appendix A:

A COMPOSITIONAL PROTOCOL VERIFICATION 103

Using the rules for the W98 construction from Appendix A, the diagram
for the environment WSb(SPECl(6) I[[1, U) is then found to be the
following:

P W~E(SPEC~’ (b) 11 [I ,u)

T Id1
-A
reply(b)

P WlE (SPECl” (b) 11 [I ,W

Since SPEC(6) 11 [] is idle-preserving and U is idle it follows from the
results stated in Appendix A that W9&(SPECl(b) 11 [1, U) is a Y9B for
SPECl(b) 11 [] in U. However, we can do with the following simpler
environment El(b) dual to the environment E2(b):

send(b) {b&j

104 LARSEN AND MILNER

To justify using El(b) as Yy& for SPECl(b)II [] in U it remains to prove
that W96(SPECl(b) 11 [1, U) 5 El(b). However, this follows directly from
the easily established fact that the relation below is a simulation:

9 = ((-Iy-(b), El(b)), (W’(b), El(b)),

(W”(b), El’(b)), W(6), El’(b)),

W’(h El’(b)), (W’(b), El’(b)),

(W#8(59, U), U) 1% any context },

where W(b)= Wy&(SPECl(b) 1) [1, U), W’(b)= Wfab(SPECl’(b) II [1, U)
and similarly W”(b) = W3&(SPECl”(b) 11 [1, U).

Proof Obligation 4. Let us first show the part of SYS2(b, n) = TRANS-
(b”) II REPLYING(b) relevant in the environment El(b):

send(b)

deliver (b-k]

The r-move marked @ in the above diagram represents a transition, where
the TRANS line loses a new message that has not yet reached the
RECEIVER. Moreover, the TRANS line only holds a single copy of the

A COMPOSITIONAL PROTOCOL VERIFICATION 105

new message, hence a new copy of it must be send to the TRANS line
before it can be passed on to the RECEIVER. The r-move marked @
represents the situation where a new message eventually is passed from the
TRANS line to the RECEIVER.

As subspecification for SYS2(b, n) we want to use the following agent
SPEC2(b), which is a dual of SPECl(b):

\ /

deliver {&I

We want to prove SPEC2(b) z El(bj SYS2(b, n). This follows directly from
the fact that the following is a relative bisimulation:

~~EluJ) = { (TRANS(b”) Ij REPLYING(b), SPEC2(b)),

(TRANS(&“b”) I(REPLYING(b), SPEC2’(6)),

(TRANS(6”) /(TRANSMITTED(&), SPEC2”(b)),

(TRANS(6”))I REPLYING(J), SPEC2(6)) 1 n > 0, m > 0}

W~E,Yb, = { (TRANS(6”) II REPLYING@), SPEC2(6) 1 n 2 0}

L&8” = 12/.

Proof Obligation 5. We must prove SPECl(b) 11 SPEC2(b) w SPEC,
where SPEC = accept .deliver. SPEC. However, the behaviour of
SPECl(b) I(SPEC2(b) is easily seen to be given by the diagram

106 LARSEN AND MlLNER

T
SPECl (b) SPECZ(M \

T
SPECl'(b) /ISPEC2(b-)

I---- deliver

T

from which the equivalence to SPEC follows directly.

RECEIVED August 17, 1987; FINAL MANUSCRIPT RICEWED September19, 1990

REFERENCES

BARRINGER, KULF-ER, AND FNJELI (1984), Now you may compose temporal logic specifica-
tions, in “ACM Symposium on Theory of Computing,” pp. 51-63.

BERGSTRA, J. A., AND KLOP, J. W. (1984), “Verification of an Alternating Bit Protocol by
Means of Process Algebra, Technical Report CS-R8404, Centrum voor Wiskunde en
Informatica, Amsterdam.

A COMPOSITIONAL PROTOCOL VERIFICATION 107

BERGSTRA, J. A. , AND KLOP, J. W. (1985). Algebra of communicating processes with abstrac-
tion, Theoret. Comput. Sri. 31, II.

BOUDOL, Cl. (1985), “Calcul de processus et verification,” Technical Report 424, INRIA.
CHANDY, K. M., AND MISRA, J. (1988), “Parallel Program Design: A Foundation,”

Addison-Wesley, Reading, MA.
DE BAKKER, J. W.. DE ROEVER, W. P., AND ROZENBERG, G. (Eds.) (1989). “REX Workshop

on Stepwise Refinement of Distributed Systems: Models, Formalism, Correctness.” Lecture
Notes in Computer Science. Vol. 443, Springer-Verlag. Berlin/New York.

DE ROEVER. W. P. (1985). “The quest for compositionality,” Technical Report RUU-CS-85-2,
University of Utrecht.

HOARE, C. A. R. (1969), An axiomatic basis for computer programming, Comm. ACM 12,
No. 10, 576.

HOARE, C. A. R. (1978). Communicating sequential processes, Comm. ACM, 21, No. 8, 666.
JONES, C. (1983). Tentative steps toward a development method for interfering programs,

ACM Trans. Programming Languages Systems 5, No. 4. 596.

KOYMANS, C. P. J.. AND MULDER, J. C. (1987), “A Modular Approach to Protocol Verilica-
tion Using Process Algebra,” Technical Report, University of Utrecht.

LAMPORT, L. (1989), Refinement and composition of specifications, in “Proceedings of REX
Workshop on Stepwise Refinement of Distributed Systems,” Lecture Notes in Computer
Science, Vol. 430, Springer-Verlag, Berlin/New York.

LARSEN, K. G. (1987), A context dependent equivalence between processes, in “Lecture Notes
in Computer Science,” Vol. 194, Springer-Verlag, Berlin/New York; full version (1987) in
Theoret. Camp&. Sri. 49, 185.

LARSEN, K. G. (1986), “Context-Dependent Bisimulation Between Processes,” Ph.D. thesis,
University of Edinburgh, Scotland.

LARSEN, K. G., AND XINXIN. L. (1990), Compositionality through an operational semantics of
contexts, in “17th International Colloquium on Automata, Languages and Programming,”
Lecture Notes in Computer Science, Vol. 443, Springer-Verlag, Berlin/New York.

LYNCH, N., AND MERRIT, M. “Introduction to the Theory of Nested Transactions,” Technical
Report MIT/LCS/TR-367, MIT Laboratory for Computer Science, Cambridge, MA.

LYNCH, N., AND TUTTLE, M. (1987). Hierarchical correctness proofs for distributed
algorithms, in “Proceedings of the 6th ACM Symposium on Principles of Distributed
Computation,” pp. 137-151.

MILNER, R. (1980), “Calculus of Communicating Systems,” Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag, Berlin/New York.

MILNER, R. (1981). A modal characterization of observable machine-behaviour, in “Lecture
Notes in Computer Science,” Vol. 112, Springer-Verlag, Berlin/New York.

MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267.

MILNER, R. (1989), “Communication and Concurrency,” Prentice-Hall, Englewood Cliffs, NJ.
OWICKI, S., AND GRIES, D. (1976) An axiomatic proof technique for parallel programs, I.

Acta Icformat. 6, No. 4, 319.
PARK, D. (1981), Concurrency and automata on infinite sequences, in “Proceedings of 5th GI

Conference,” Lecture Notes in Computer Science, Vol. 104, Springer-Verlag, Berlin/
New York.

PNUELI, A. (1985), Linear and branching structures in the semantics and logics of reactive
systems, in “Proceedings of 12th International Colloquium on Automata, Languages and
Programming,” Lecture Notes in Computer Science, Vol. 194, Springer-Verlag, Berlin/
New York.

PRASAD. K. V. S. (1984) “Specification and Proof of a Simple Fault Tolerant System in
CC&” Technical Report. Edinburgh University.

108 LARSEN AND MILNER

SCHOONE, A. A.. AND VAN LEELJWEN, J. (1985). “Verification of Balanced Link-Level
Protocol.” Technical Report RUU-CS-85-12, University of Utrecht.

STARK, E. D. (1985), A proof technique for rely/guarantee properties, in “Lecture Notes in
Computer Science,” Vol. 206, p. 369, Springer-Verlag, Berlin/New York.

STIRLING, C. (1986), A compositional reformulation of Owicki-Gries’s partial correctness logic

for a concurrent while language, in “Lecture Notes in Computer Science,” Vol. 226.
Springer-Verlag, Berlin/New York.

TANENBAUM, A. S. (1981) “Computer Networks,” Prentice-Hall, Englewood Cliffs, NJ.

WALKER, D. (1988), Bisimulation and divergence, “Proceedings of Logic in Computer

Science.”
WOLPER, P. (1986), Expressing interesting properties of programs in propositional temporal

logic, in “Proceedings of 13th Symposium on Principles of Programming,” pp. 184-192.
WOLPER, P.. AND LOVINFOSSE, V. (1989) Verifying properties of large sets of processes with

network invariants, in “Proceedings of Workshop on Automatic Verification Methods for
Finite State Systems,” Lecture Notes in Computer Science, Vol. 407. Springer-Verlag.

Berlin/New York.

Zyou, CHAOCHEN, AND Lru, JUNBO (1987). “System and Its Environment,” Technical Report,
Software Institute, Academia Sinica, Beijing, China.

