

Edinburgh Research Explorer

Co-Induction in Relational Semantics

Citation for published version:
Milner, R & Tofte, M 1991, 'Co-Induction in Relational Semantics' Theoretical Computer Science, vol. 87,
no. 1, pp. 209-220. DOI: 10.1016/0304-3975(91)90033-X

Digital Object Identifier (DOI):
10.1016/0304-3975(91)90033-X

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/0304-3975(91)90033-X
https://www.research.ed.ac.uk/portal/en/publications/coinduction-in-relational-semantics(3f31a5b6-885a-4e1e-b648-20ba846a611b).html

Theoretical Computer Science 87 (1991) 209-220 209
Elsevier

Note

Co-induction in
semantics

relational

R o b i n M i l n e r a n d M a d s T o r t e

Laboratory .for Foundations of Computer Science, Department of Computer Science, University of
Edinburgh, Edinburgh EH9 3JZ, UK

Communicated by S. Abramsky
Received April 1989
Revised July 1990

Abstract

Milner, R. and M. Tofte, Co-induction in relational semantics, Theoretical Computer Science 87
(1991) 209-220.

An application of the mathematical theory of maximum fixed points of monotonic set operators
to relational semantics is presented. It is shown how an important proof method which we call
co-induction, a variant of Park's (1969) principle of fixpoint induction, can be used to prove the
consistency of the static and the dynamic relational semantics of a small functional programming
language with recursive functions.

1. Introduction

The purpose of this note is to present one ins tance among several we have

encoun te red where the use of non-we l l - founded sets, m a x i m u m fixed points of

mono ton i c operators and a proof method, which we call co-induction, are essential

tools in s tudying the semantics of p rogramming languages.

A set A is non-well-founded if there is an infinite sequence A~, A2, • • • such that

An+ 1 is a member of A , , for all n t> 1. Otherwise it is said to be well-founded. Although

it is often assumed in set theory that all sets are wel l - founded, Aczel 's an t i - founda t ion

axiom [2] leads to an al ternat ive set theory which is very useful in compute r science.

The significance of m a x i m u m fixed points and non-we l l - founded relat ions in connec-

t ion with concur rency has been demons t ra ted in work by (among others) Park [9,

10] and Mi lner [7].

0304-3975/91/$03.50 © 1991--Elsevier Science Publishers B.V.

210 R. Milner, M. Tofte

Non-well-founded objects occur naturally in programming language semantics.

The example we present in this paper is the soundness of a type inference system

with respect to the dynamic relational semantics of a little functional programming

language. The language is essentially the lambda calculus enriched with an explicit

construction for recursive functions. In the dynamic relational semantics all l;unctions
evaluate to c losures of the form (x , exp, E) , where x is the formal parameter of the

function, exp is the body of the function and E is an environment containing
bindings for the variables that occur free in exp. If the closure is the value of a

recursive function, then E should map the name of the function to the entire closure
itself. For example, the evaluation of the expression

fix factorial (n)=...factorial(predn) (1)

in the empty environment should yield a closure satisfying

clfact = (n , . . . factorial(pred n), {factorial ~ clract}). (2)

By encoding tuples and finite maps as sets, one can view a solution to (2) as a

non-well-founded set. Alternatively, one can consider non-well-foundedness of other

objects than sets with respect to other relations than membership. In our case, for

every n-tuple (x l , . . . , x,) let us say that each xi is a cons t i t uen t of the tuple and

for every finite map {Xl ~-~ y~, • • •, x, ~ y,} let us say that each yi is a c o n s t i t u e n t

of the map. Let us write x > y to mean that y is a constituent of x. A c o n s t i t u e n t

s e q u e n c e is a finite or denumerable sequence of objects such that if y is the successor

of x in the sequence then x > y . If we broaden the notion of membership to

constituentship in this way, then it is quite natural to call an object n o n - w e l l - f o u n d e d

when it occurs in some infinite constituent sequence. Note that any clfact satisfying
(2) is non-well-founded as it occurs in the infinite (periodic) constituent chain

clfact > { f a c t o r i a l ~ C/fact} > clract > { f a c t o r i a l ~-~ clfact} > • • • .

Whereas structural induction is a powerful technique for proving properties of

well-founded objects, co - induc t ion may be used for proving properties of non-well-

founded objects. Co-induction is not a new mathematical tool; it is essentially a

variant of the principle of fixpoint induction of Park [8]. But the breadth of its

application is perhaps not fully appreciated; we hope that the proofs we present in
this paper will induce more awareness of the use of the principle in practice.

The reader may suggest, at this point, that there is no need to take a closure to

be a non-well-founded object, since one can deal instead with perfectly well-founded

objec ts - -namely a finite expression, formed by a recursion operator, which rep-

resents the infinite unfolding of the closure. This can be done, but it does not remove

the need for co-inductive proof; indeed, we have pursued this approach and have

found that the proof presented here requires only minor modifications. We prefer

to deal with closures as non-well-founded objects because it appears most natural

to do so.

Co-induction in relational semantics 211

Relational semantics borrows the idea of inference rule from formal logic to

define the semantics of programming languages. It derives from Plotkin's work on

"structural operational semantics" [11]. Kahn and his group use the term "natural

semantics" [5] for what we call relational semantics. Whatever the name, it is of a

more syntactical and mechanical nature than denotational semantics, where pro-

grams are mapped to objects (so-called denotations) in a mathematical model. Using

denotational semantics it has been proved that the type inference system we define
below is sound, i.e. that if an expression exp has a type r according to the type
inference system and d is the denotation of exp then d is a member of the set

(actually an ideal) which models the type r (see e.g. [6]). In this paper we shall

prove the corresponding result for relational semantics. This gives us the opportunity

to review and apply the principle of co-induction, without which we have not been

able to prove the consistency of the type inference system and the dynamic semantics.

The rest of this paper is organized as follows: In Section 2 we define the syntax
and the dynamic semantics of the language; in Section 3 we define the static semantics

of the language; in Section 4 we introduce the idea of maximum fixed points and

co-induction and in Section 5 we use it to prove the consistency of the static and

the dynamic semantics. In Section 6 we finally discuss alternative notions of what

it is for a value to have a type, some of which take one beyond the realm of

co-induction, since this concept depends on the monotonicity of functions.

The reader is supposed to know elementary set theory; the basic ideas in relational
semantics are simple and will be introduced when they are used. In order to allow

the reader to concentrate on the basic proof method, we have chosen to state and

prove a relatively elementary theorem.

2. The language and its dynamic semantics

For the definition of the language we assume a set Const of constants, ranged
over by c, and a set Var of variables, ranged over by x and f The language Exp of
expressions is

e x p : : = ,

x Variable,

c Constant,

fn x ~ exp Abstraction,

fix f (x) = e x p Recursive function,

expj exp2 Application.

The abstraction fn x ~ e x p corresponds to lambda abstraction in the lambda

calculus. In fix f (x) = exp, the function f is defined recursively.
In what follows, we use ~ to mean disjoint union of sets and A 6n ~ B denotes

the partial functions from the set A to B that have a finite domain. I f f ~ A ~" , B

212 R. M i l n e q M . Tofte

the domain and range o f f are denoted by D o m (f) and R n g (f) , respectively. Every

finite map f ~ A a,) B can be written in the form {a, ~ h i , . . . , a , ~ , b , } ; in par-

t icular { } means the empty map. For every f, g c A a") B the map f + g e A an ~ B,

called f m o d i f i e d b y g is the finite map with domain D o r a (f) u D o m (g) and values

(f + g) (a) = g (a) , if a c D o m (g) , and (f + g) (a) = f (a) otherwise.

We now give a relational semantics for Exp in the form of a set o f inference rules

the conclusions o f which are o f the form E ~ e x p) v, read " e x p e v a l u a t e s to v

in E " . To handle recursion we allow our semantic objects to be non-wel l - founded.

More precisely, it is possible to define sets Val, Clos, and Env so that they satisfy

the set equat ions

v E Val = Const © Clos Values

fin
E e Env = Var) Val Environments

el or (x , exp , E> ~ Clos = Var x Exp x Env Closures

and so that for all f, x, exp, E there is a unique closure e l s e Clos solving the equat ion

clo~ = (x , exp , E + { f ~--~ cl~}) . (9)

Mathemat ical justification that it really is possible to find sets Val, Env and Clos

which meet these requirements (in part icular the requirement that (9) have one and

only one solution for e l~) can be found in Aczel 's book [2]. Intuitively, the solution

to (9) can be unders tood as the non-wel l - founded object which results f rom repeated

appl icat ion o f (9) as a rewriting rule. Note that, because Clos = Var x Exp x Env,

every closure cl in Clos is a triple and if (x , , e x p , , E~) = (x2 , e xp2 , E2) then x 1 = X2,

e x p , = e x p : and E, = E2.

E~c--- - .~c

x C Dora E

E ~ x - - + E (x)

E ~- fn x => exp ~ (x, exp, E)

cl~ = <x, exp, E + l f H cl~})
E ~- fix f (x) = exp ~ cloo

E F- expx ---+ o E F- exp2 ~ c2 c = APPLY(ChC2)
E~- expl exp2 - - -*c

E ~- expl ~ (x ' , e xp ' ,E ')

E ~ exp 2 - - ~ v 2

E' +{z' ~ v2} ~- exp' ---~ v

E ~- exp 1 exp~ ----* v

Fig. 1. D y n a m i c semant ics .

(3)

(4)

(5)

(0)

(7)

(s)

Co- induc t ion in relat ional s eman t i c s 213

A closure is the value o f an abstraction. As in the literature, a closure takes the
form (x, exp, E) where x is the formal parameter , exp the body of the funct ion and

E an envi ronment which maps each free variable o f exp to the value it assumes at

the time o f the declarat ion o f the function. In general, evaluat ion o f a fix expression

yields a non-wel l - founded closure as illustrated with the factorial example in the

introduction.

To handle the appl icat ion o f constants to values, we assume a partial funct ion
A P P L Y : C o n s t × C o n s t * Const. With these convent ions we define the dynamic

semantics o f Exp by the inference rules in Fig. 1; the rules allow us to infer statements

o f the form E ~- exp) v, read exp evaluates to v (in E). For instance, rule 7 can

be read: if exp~ evaluates to Cl and exp2 evaluates to c2 and c = APPLY(c~, c2) then
expl exp2 evaluates to c.

3. Static semantics

The static semantics o f Exp is defined by an inference system, more precisely a

simple m o n o m o r p h i c type inference system, as follows.

The set Type of type expressions (just called types in the following), ranged over

by ~', is defined by

T:"=TT] T I - -) T 2 ,

where 7r ranges over a set o f primitive types, e.g., int and bool. A type environment

is a finite map f rom variables to types:

fin
TE ~ TyEnv = Var) Type.

We assume a basic relation IsOf~_ Const x Type relating for instance 3 to int, true

to bool but not 3 to bool, and we require that whenever c = APPLY(c1, c2) and

c~ IsOf0-1 ~ ~'2) and c2 I sOf r~ then c I sOf r2. The inference rules appear in Fig. 2;

c IsOf ~-

T E F c==::::~ T
(lo)

x C D o m T E

T E F x ==~ T E (x)
(11)

T E + { x ~-* r l} F exp ==v ~'~

T E F f i a x = > exp ~ vl ~ "r:
(12)

T E + { f ~ r, ---* r2} + {z ~ Yl} [- exp ~ r~
(13)

T E F fix f (x) = exp ~ r, -~ ~r 2

T E F expl ~ rl ~ r~ T E ~- ezp2 ~ T 1 (14)

T E [- eXpl exp2 ~ "c 2

Fig. 2. Stat ic semant ics .

214 R. Milner, M. Tofte

they allow one to infer statements of the form TE ~- exp ;, r, read exp elaborates
to r (in TE).

4. Typing values using maximum fixed points and co-induction

By pointwise extension of the relation I sOf~ Cons txType we get a relation
I sOf~ Env x TyEnv. We expect it to be the case, then, that if exp elaborates to r in

TE and exp evaluates to c in E and E IsOf TE then c IsOfr . We refer to this

proposition as the basic consistency of the static and the dynamic semantics.

However, this proposition needs strengthening before it can be proved by induc-

tion, the reason being that evaluation resulting in constants may require evaluation

resulting in closures (about which the basic consistency says nothing). Below, we

first extend the relation c IsOf r to a relation v : r, read v has type r, which also says

what it is for a closure to have a type; then we define the relation E : TE, read E

matches TE, to be the pointwise extension of v : r and prove that if exp elaborates

to r in TE and exp evaluates to v in E and E matches TE then v has type r. There

are variants to the v : r relation which also are plausible definitions of what it is for

a value to have a type. We shall call these relations collectively correspondence

relations, because each of them defines a correspondence between the dynamic

semantics (values) and the static semantics (types).

The consistency proof is relatively simple if we can define the correspondence

relation so that it satisfies

/ (i) if v = c then v IsOf r;

v : r iff ~(ii) if v=(x , exp, E) then there exists a TE such

[that TE ~ - f n x ~ e x p >r and D o m (E) =

D o m (r E) and E(x)" r E (x) , for all x e Dora(E).

(15)

Because of the existential quantification in (15) (ii), these bi-implications do not

constitute a definition, merely a property of a correspondence relation. The reader

is probably surprised to see (15)(ii); given that we are trying to prove the soundness

of the type inference system, why refer to the type inference system itself in the

definition of what it is for a closure to have a type?

There are two reasons, a pragmatic one and a technical one. The pragmatic reason

is that the main interest of Theorem 5.1 is the case where E is an initial environment
binding pre-defined variables to constants, TE is an initial type environment binding

the same variables to their types, and v is a printable value, i.e. a constant rather

than a closure. In this case the theorem gives the desired result independently of

(15)(ii).

The technical reason is that (15)(ii) leads to a simple proof of the consistency

theorem since a relation satisfying (15) can be obtained as the (maximum) fixed

point of a monotonic operator as follows.

Co-induction in relational semantics 215

Let U be the set Va l×Type , let P (U) be the set of subsets of U and let
F : P (U) ~ P (U) be the function defined by

F (Q) = { (v , z) e U[i f v = c then v IsOf r;

if v = (x, exp, E) then there exists a TE such that

TE ~ - f n x ~ e x p ; , r and D o m (E) = D o m (T E)

and (E(x) , T E (x)) • Q, for all x • Dom(E)}. (16)

It is clear, then, that the relations satisfying (15) are precisely the fixed points of

F. Notice that F is monotonic with respect to set inclusion: Q _c Q' implies F(Q)c_

F(Q') . Since (P (U) , c_) is a complete lattice, it follows from Tarski 's fixed point

theorem that F has a largest fixed point and a smallest fixed point, namely

Qmin =(-~ { Q c U [F (Q) c_ Q}

and

Q = U { Q _ c UlQc_ F(Q)}. (17)

For our particular F, the minimum fixed point Qmin is strictly contained in the

maximum fixed point Qmax and the minimum fixed point is too small. To demonstrate

this, let us show that the closure elfact defined in the introduction has type i n t ~ i n t
if we take the correspondence relation to be omax, but not if we take it to be Qmin.

To show (C/fact , i n t --~ i n t) • omax, let us define Qfact = {(C/fact, i n t -~ in t)} . Looking
at the definition of F, we can now check that Qf~ctC_ F(Qfact). First, for the sought
TE, take { f a c t o r i a l ~-~ (i n t ~ i n t) } . Next, it is easy to show that

TE F- fn n ~ exp "., i n t - ~ i n t assuming that the IsOf relation associates the con-

stants in exp, the body of f a c t o r i a l , with the obvious types. Finally, letting

Efact = { f a c t o r i a l ~ C/fact}, Efact and TE are defined on f a c t o r i a l only, and the

pair (E fac t (f ac to r±a l) , T E (f a c t o r i a l)) is the element of Qfact. Thus Qfact ~
F(Qr~ct). But Q contains all the subsets Q of U that satisfy Q c F (Q) , so
Ofact c Qmax. Therefore clrac, : i n t - ~ i n t if we take : to be Qmax.

On the other hand we have (C/fact , i n t ~ i n t) Z Qmin. To see this, let us recall that
there is an alternative characterization of Qmin, namely

Rmin = ~ J F A, (18)
h

where F A = F(I._.J~,<A F") , where h ranges over all ordinals (see [1] for an introduc-
tion to inductive definitions). In other words, one obtains R m~" by starting from the
empty set and then applying F iteratively. However, intuitively speaking, there is
no first point in the chain

0 c_ F(O) c_ F(F(O))c_. • •

where the non-well-founded object (clf~ct, i n t ~ i n t) could enter because, according

to the definition of F, C/fact cannot be types unless Efact has already been typed, i.e.

unless Clract itself has already been typed. More generally, for any monotonic F
which has the property that if all members of Q are well-founded then so are all

216 R. Milner, M. Tofte

members of F (Q) , one can prove by transfinite induction that the minimum fixed

point of F contains only well-founded objects.

We say that a subset Q ~ U is F-consistent if Q c_ F(Q) . This use of language is

motivated as follows: Q can be seen as a set of claims, each claim being a pair

(v, ~-) claiming that value v has type ~'. If Q is F-consistent then there is a justification
for each such claim q e Q, either with or without reference to claims in Q. The

former is the case when q is a pair of a constant and a type, in which case the
definition of F ensures that the constant is of the claimed type. The latter is the

case in our examples above, where the element of Qfact serves as justification for

itself. (The fact that claims can serve as justifications for themselves makes the use

of the word consistency very appropriate.) Indeed Qract is the smallest F-consistent
set containing (c/f, ct, int ,-~ ±nt) . Note that Qmax is the largest F-consistent subset

of U.

Associated with the device of defining a relation as the maximum fixed point of
a monotonic operator is the important proof technique of co-induction:

Let U be any set, let F: P(U)-~ P (U) be a monotonic function and let

R be the maximum fixed point o f F. For any Q ~_ U, in order to prove

Q c_ R, it is sufficient to prove that Q is F-consistent, i.e., that Q c_ F(Q) .

The point is that R = I,_J { Q _c U] Q c_ F(Q)}, so R includes all F-consistent sets.

As an example of co-induction, assume we want to prove a theorem of the form

Vx e A . (P (x) ~ (e [x] e R)) ,

where A is a set, P is a predicate, e[x] is a formula which depends on x and R is

the maximum fixed point of a monotonic operator F : P(U)--> P (U) , where U is

any set. We can then define

Q = { q c U I 3 x e A . (P (x) ^ (q = e [x])) }

and attempt to prove Q c_ F(Q) . (For if Q c_ F (Q) then by co-induction Q c_ R, and
Q c_ R is equivalent to the desired Vx e A . (P (x) ~ (e [x] e R)) .) Sometimes the
inclusion Q c F(Q) does not hold, in which case one must look for a set Q 'D Q
which is F-consistent. It will even suffice to prove that Q w R is F-consistent.

5. The consistency theorem

We take v : 7 to mean (v, ~-) e Qmax, where Qmax is the maximum fixed point of

the operator F defined by (16). The relation E : TE is the pointwise extension of

v : ~-. We can now formulate and prove the consistency theorem.

Theorem 5.1 (Consistency of static and dynamic semantics). I f E : T E and

E F- exp ~ v and TE F- exp ;, .r then v : -r.

Proof. By induction on the depth of inference of E ~ exp ~ v. There is one case

for each rule. The cases for constants, variables and application of a constant are

Co-induction in relational semantics 217

trivial. Of the remaining cases, the one for fix is the most interesting, in that it uses

co-induction.

Recursion, rule 6: Here the evaluation is o f the form

cloo = (x, exp, E + { f ~ cloo})

E ~ - f i x f (x) = e x p ~ clio (19)

and the elaborat ion is o f the form

TE + { f ~-+ z, ~ %}+{x ~ 71} [-- exp-----> 72 (20)
r E ~- fix f (x) = exp > rl -~ 72

where r = 71 ~ r2. To prove c l~:r by co- induct ion we define Q = Qmax k_/{(clcx~, 7)},

and prove that Q is F-consistent . Take a q • Q. I f q c Qmax then q • F (Q) because

Qmax__ C Q and the monotonic i ty o f F implies

F(Qmax) c _ F (Q) i.e., QmaXc_F(Q).

Otherwise q=(cL~, r). Let T E ' = TE + { f ~+ r} and E ' = E + { f ~--~ cl~,}. We have

TE' + {x ~-+ rl} ~- exp "72

by (20) so T E ' ~ - f n x ~ exp ", r by inference rule 12. Since E : T E we have

D o m (E) = D o m (T E) and for all x • D o m (E) , E (x) : r E (x) . So for all x • D o m (E)

we have (E (x) , T E (x)) • Q. Moreover (E ' (f) , rE'(f))=(cl~, r) • Q. Thus

D o m (E ') = D o m (T E ') and for all x • D o m (E ') we have (E ' (x) , T E ' (x)) • Q. So in

this case as well, we have q c F (Q) . This proves that Q is F-consistent .

Abstraction, rule 5: Here the evaluation is o f the form

E t- fn x ~ exp , (x, exp, E)

and the conclusion of the elaborat ion is TE ~- fn x ~ exp > r. Since in addit ion

E : T E , the type envi ronment TE satisfies the requirement (15)(ii). Hence

(x, exp, E) : r.

Application o f Closure, rule 8: Here the evaluat ion is o f the form

E F- e x p l , (x' , exp', E ')

E F- exp2 ~ v2

E ' + {x' ~ v2} [-- exp' ~ v
(21)

E t- expl exp2 ~ v

and the elaborat ion is o f the form

TE~- exp~ > r'-+ r TE ~- exp2 > r'
(22)

TE ~- exp~ exp2 ;, r

for some r' .

By induct ion on the first premises of (21) and (22) together with E : TE we get

(x' , exp', E ') : r ' -~ r. (23)

218 R. Milner, M. Tofte

Similarly we get v2 : r ' by induct ion on the second premises. From (23) and the fact
tha t : i s a fixed point o f F, there exists a TE ' with E ' : T E ' and

TE F- fn x ' ~ exp' ~ .c' ~ r. (24)

Take such a TE'; this type environment allows us to use induct ion a third time.

(Indeed this is why the " E : TE'" is impor tant in (15)(ii).) More precisely, since

E ' : TE ' and v2: r' we have

E ' + {x ' ~-> re} : T E ' + {x' ~ r'}- (25)

Moreover , (24) must be obta ined from the premise

r E ' + {x ' ~ r'} ~- exp' > r. (26)

Not ic ing that the third premise o f (21) was deduced in fewer steps than the

conclusion, we can use induct ion on it together with (25) and (26) to deduce the

desired v : r . []

6. Discussion

Since the v: r relation is an extension of the c I sOf r relation, Theorem 5.1 implies

the basic consistency result (namely that if E ~ exp > c and TE ~- exp----~, r and

E IsOf TE then c I sOf ~-). However , there are other natural extensions o f the I sOf

relation for which one can at tempt to prove the consistency result. One is

(i) if v = c then v IsOf~' ;

v : ' r iff (ii) if v = (x, exp, E) then there exist r l , r2, such that (27)

~" = rl ~ ~'2 and for all v, , v2, if c, :' rl and

E + {x ~ vl} ~- exp ~ v2 then v2 :' r2.

Interestingly, the opera tor F ' associated with this revised proper ty is no longer

mono ton i c with respect to set inclusion because o f the occurrence o f "Vl :' ~'," on
the lef thand side o f the implication. Nevertheless, there is precisely one relation

:' ___ Val × Type satisfying (27); this can be seen by induct ion on the structure of type

expressions.

There are closures that have a type using :' but have no type using :. One example

is the closure (n, i f t r u e t h e n 7+n e l s e f a l s e , { }). However, we do not know

whether : is conta ined in :'. The consistency result can be proved using :' instead

o f : ; the p r o o f we have again uses co-induction, but it is rather involved and therefore

not inc luded here.

The justification for the existence of fixed points were completely different in the

two cases. Sometimes it is not at all obvious whether a given F has any fixed points

at all. For example, let us extend our set v o f values by constructed values,

v • Val = Const © ConVal © Clos Values,

c(v) • ConVal = Const × Val Const ructed Values

Co-induction in relational semantics 219

and consider the property

I (i) if v = c then v I sOf r ;

(ii) if v = c(v~) then there exists a r~ such that

c I s O f (r l + r) and v l : r l ;

v : r iff (iii) if v = (x, exp, E) then there exist r~, r2, such that (28)

r = r ~ r 2 and for all v~, v2, if vl :r~ and

E + {x ~ v~} ~- exp ~ v2 then v2 : r2.

The operator associated with this property is not monotonic with respect to set
inclusion. Neither is this property a definition on the structure of types because of
(ii). We do not see how to justify the existence of such a relation without making
assumptions about the IsOf relation.

This should not leave the impression, however, that the technique of using
maximum fixed points can rarely be applied. In fact, we have encountered several
situations in operational semantics where the technique turns out to be very strong.
In general, the technique is useful when considering consistency properties. Con-

sistency is often of interest when one wants to relate non-well-founded objects, or
more generally objects whose behaviour is in some sense infinite. Indeed, in the
introduction we indicated that closures can be treated in either of these ways; in
each case, typing of closures is a consistency property. Another example is the
notion of observation equivalence in CCS [7] which is defined as the maximum
fixed point of a certain monotonic operator. The idea is that two agents are bisimilar
if the hypothesis that they are susceptible to the same observations is consistently
maintained during computation. Finally the technique has been used to prove the
soundness of a type discipline for polymorphic references [12, 13]. Here the need
for taking the maximum fixed point in the definition of what is is for a value to
have a type arises because, when locations are values, one can create cycles in the
store; since the type of a location depends on the type of the value it contains, a
cycle in the store may have a consistent typing although the justification of the
typing is a cyclic argument (i.e. a consistent claim rather than something that in
finitely many steps can be reduced to a question of constants being typed according
to the IsOf relation).

References

[1] P. Aczel, An introduction to inductive definitions, in: J. Barwise ed., Handbook of Mathematical
Logic (North-Holland, Amsterdam, 1977).

[2] P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, Vol 14 (LSCI, Stanford, 1988).
[3] L. Damas, Type assignment in programming languages, Ph.D. Thesis, University of Edinburgh,

Department of Computer Science, CST-33-85, 1985.
[4] L. Damas and R. Milner, Principal type schemes for functional programs, in: Proc. 9th ACM Syrup.

on the Principles of Programming Languages (1982) 207-212.
[5] G. Kahn, Natural semantics, in: Proc. Symp. on Theoretical Aspects q]' Computer Science, Passau,

Germany, (1987).

220 R. Milner, M. Tofte

[6] R. Milner, A theory of type polymorphism in programming languages, J. Comput. System Sci. 17
(1978) 348-375.

[7] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92
(Springer, Berlin, 1980).

[8] D. Park, Fixpoint, induction and proofs of program properties, in: B. Meltzer and D. Michie, eds.,
Machine Intelligence 5, (Edinburgh University Press, Edinburgh, 1969) 59-78.

[9] D. Park, On the semantics of fair parallelism, in: Bj0rner, ed., Abstract Software Specifications,
Lecture Notes in Computer Science, Vol. 86 (Springer, Berlin, 1980).

[10] D. Park, Concurrency and Automata on Infinite Sequences, in: Proc. 5th GI Conf. on Theoretical
Computer Science, Lecture Notes in Computer Sciences Vol. 104 (Springer, Berlin, 1981).

[11] G. Plotkin, A structural approach to operational semantics, Technical Report DAIMI-FN-19,
Computer Science Department, Aarhus University, Denmark, 1981.

[12] M. Tofte, Operational semantics and polymorphic type inference, Ph.D. thesis, Edinburgh Univer-
sity, CST-52-88, 1987.

[13] M. Tofte, Type inference for polymorphic references, to appear in Inform. and Comput.

