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Visualisation of chicken macrophages using transgenic reporter
genes: insights into the development of the avian macrophage

lineage

Adam Balic*, Carla Garcia-Morales, Lonneke Vervelde, Hazel Gilhooley, Adrian Sherman, Valerie Garceau,
Maria W. Gutowska, David W. Burt, Pete Kaiser, David A. Hume* and Helen M. Sang**

ABSTRACT

We have generated the first transgenic chickens in which reporter
genes are expressed in a specific immune cell lineage, based upon
control elements of the colony stimulating factor 1 receptor (CSF1R)
locus. The Fms intronic regulatory element (FIRE) within CSF1R is
shown to be highly conserved in amniotes and absolutely required for
myeloid-restricted expression of fluorescent reporter genes. As in
mammals, CSF1R-reporter genes were specifically expressed at high
levels in cells of the macrophage lineage and at a much lower level in
granulocytes. The cell lineage specificity of reporter gene expression
was confirmed by demonstration of coincident expression with the
endogenous CSF1R protein. In transgenic birds, expression of
the reporter gene provided a defined marker for macrophage-lineage
cells, identifying the earliest stages in the yolk sac, throughout
embryonic development and in all adult tissues. The reporter genes
permit detailed and dynamic visualisation of embryonic chicken
macrophages. Chicken embryonic macrophages are not recruited to
incisional wounds, but are able to recognise and phagocytose microbial
antigens.

KEY WORDS: Chicken, Dendritic cells, Embryonic development,
Immunity, Macrophages, Transgenics

INTRODUCTION

Macrophages participate in a wide range of processes during embryonic
development and throughout life, including organogenesis and
homeostasis, clearance of apoptotic cells, pathogen recognition,
phagocytosis and destructions of pathogens, and antigen presentation
(Pollard, 2009; Jones and Ricardo, 2013; Wynn et al., 2013). Chicken
and quail embryos are widely used as models of amniote development
because of the ease with which embryos can be manipulated and
visualised (Stern, 2005; Sauka-Spengler and Barembaum, 2008; Le
Douarin et al., 1994). Avian embryonic macrophages have been shown
to have diverse roles, including phagocytosis of dead cells (Cuadros
et al., 1992), remodelling of the eye primordium (Martin-Partido and
Navascués, 1990; Martin-Partido et al., 1991), guidance of axonal
growth and vascular development in the central nervous system
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(Cuadros et al., 1993), and the development of lymphoid tissues
(Houssaint, 1987).

The mononuclear phagocyte system in mammals is a family of cells
derived from a shared progenitor, and includes blood monocytes,
tissue macrophages and classical dendritic cells. These cells are found
throughout the body and can be detected by immunocytochemical
localisation of lineage-restricted surface markers (Hume, 2006).
Delineation of the chicken mononuclear phagocyte system in
embryonic development and in adult birds has been hampered by
the lack of available reagents for specific molecular targets and
by significant differences in their biology. Chickens lack lymph nodes
(McCorkle et al.,, 1979) and lymphoid tissues with equivalent
function are difficult to visualise and isolate, which makes the
isolation of cells and analysis of local immune responses challenging.

The differentiation, proliferation and survival of macrophages in
mammals is controlled primarily by the cytokine macrophage colony
stimulating factor (MCSF or CSF1) through its interaction with
CSFIR, the product of the c-FMS proto-oncogene (Chitu and
Stanley, 2006; Hume and MacDonald, 2012). A second ligand of
CSFIR, interleukin 34 (IL34), has a more spatially restricted
expression profile in embryos and contributes to the maintenance
of specific macrophage subpopulations (Nakamichi et al., 2013).
CSF1, CSFIR and IL34 are functionally conserved in birds (Garceau
et al., 2010). Recently, we produced a monoclonal antibody to
chicken CSFIR that labels monocytes and tissue macrophages
(Garcia-Morales et al., 2013). CSFIR gene orthologues have been
identified in all vertebrates studied to date, although their function
may not be absolutely conserved. In fish there is a duplication of
CSF1 and CSFI1R loci and the receptor is expressed in both neural
crest-derived xanthophores and macrophages (Wang et al., 2013).

The murine CsfIr genomic sequence contains a conserved
regulatory element, the Fms-intronic regulatory element (FIRE),
that is essential for macrophage-specific expression of reporter
genes in vitro and in vivo (Himes et al., 2001; Sasmono et al., 2003).
A segment of genomic DNA containing both the Csflr promoter
and FIRE sequence is sufficient to drive expression of green
fluorescent protein (eGFP) specifically in all macrophage lineage
cells in transgenic mice (Sasmono et al., 2003; Ovchinnikov et al.,
2010). These ‘MacGreen’ mice have been used extensively in
functional genomics and fate-mapping in mice (Burke et al., 2008;
Ebert et al., 2009; MacDonald et al., 2010; Mooney et al., 2010;
Lilja et al., 2013).

In this study, we show that FIRE is present in all amniote lineages
examined to date and describe the generation of transgenic chicken
reporter gene lines in which the chicken CSF IR promoter and FIRE
enhancer sequences are linked to green or red fluorescent reporter
proteins. The lineage-restricted expression of these reporter genes
confirms the conserved function of FIRE from birds to mammals.
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We show that embryos from the macrophage reporter lines can be
used to visualise the dynamic behaviour of macrophages in the
developing embryo. Chicken embryonic macrophages accumulate
in regions of cell death but do not respond to wounding, are able to
recognise and phagocytose microbial antigens, and to undergo local
proliferation in tissues. In post-hatch birds we use the CSFIR-
reporter gene to define the phenotype of blood monocytes and
examine the diversity of the mononuclear phagocyte system in
lymphoid and other tissues. Finally, we show that the brightness and
specificity of the CSFIR-reporter gene expression gives a unique
macroscopic view of the organisation and extent of chicken
lymphoid tissues.

RESULTS

The first intron of the avian CSF1R gene contains a
conserved enhancer element

Conservation of sequences within the first intron of avian CSFIR
genes was evident from an alignment of chicken and zebrafinch
CSF IR genomic sequences (Garceau etal., 2010). The availability of
many more genome sequences has enabled us to align sequences of
four additional bird species and a reptile with chicken, to identify
potential regulatory sequences in the chicken by their conservation
between distantly related species. The first intron of CSFIR contains
four conserved non-coding elements (CNEs) that are present in all
birds (Fig. 1A). Pustell DNA matrix alignment of CNE2 and CNE3
suggests that they were formed in the galliforme lineage by an
insertion into an original single CNE (Fig. 1B). CNE3 is also
conserved in turtles (Fig. 1A,B). Comparison of mammalian FIRE
with CNE3 in birds and reptiles identified several regions of
ultra-conserved sequence (Fig. 1C). These ultra-conserved regions
contain the precise binding sites of transcription factors AP1 and
PU.1 that are occupied in the macrophage nucleus (Tagoh et al.,
2002) and are required for macrophage lineage-specific transcription
of Csf1rin mice (Fig. 1C,D) (Sauter etal., 2013). To test the function
of'the candidate chicken FIRE sequence, we produced eGFP reporter
constructs containing the chicken CSF'/R promoter region (Garceau
et al., 2010) with or without the CNE3 region (supplementary
material Fig. SIA,B). eGFP expression was detected in stably
transfected HD11 macrophage cells only when CNE3 was included,
whereas no expression was detected in transfected DF-1 fibroblast
cells (supplementary material Fig. S1C). Based upon sequence
conservation and function, we refer to CNE-3 as chicken FIRE.

FIRE is required for macrophage-restricted expression in
transgenic birds

We developed HIV vectors carrying the chicken CSFIR regulatory
sequences directing expression of eGFP or the red fluorescent
protein mApple to the cytoplasm of macrophages and used these to
generate transgenic chickens (McGrew et al., 2004). The transgenes
contain splice donor and acceptor sites flanking FIRE, to reproduce
the structure of the native CSFIR gene (supplementary material
Fig. S1D). Fortuitously, this approach resulted in deletion of FIRE
in the majority of transgenic birds hatched, as a result of splicing
events during the production of lentiviral vector genomic RNA
(supplementary material Fig. S2A,B). There was no evidence of
reporter gene expression in any of the individual transgenic birds in
which FIRE was deleted (supplementary material Fig. S2C),
confirming the essential role of the FIRE sequence in expression.
We established transgenic lines from birds carrying the intact
transgenes, named MacRed (mAPPLE-expressing) and MacGreen
(eGFP-expressing), collectively MacReporter chickens, and used
these to examine lineage specificity of the transgene expression.

2

CSF1R-transgene expression identifies macrophages in
chicken embryos

The distribution and phenotype of CSFIR-transgene expressing
cells was examined in chicken embryos from the MacRed and
MacGreen transgenic lines. Yolk sac-derived macrophages and
erythrocytes are the earliest haematopoietic cell lineages to develop
in the chick. Recognisable blood islands containing Runx1*
haematopoietic progenitors have been detected in HHS stage
embryos (Bollerot et al., 2005), but the first CSF1R-transgene-
expressing cells appeared in the yolk sac at HH13. These cells were
confined to the lumen of primitive blood vessels (Fig. 2A). The
pattern of emergence is consistent with previous reports of the
earliest appearance of macrophages in the chicken embryo (Cuadros
et al., 1992). Neither CSF1R protein nor transgene expression was
detected in erythrocytes or definitive haematopoietic stem cell
clusters budding from the floor of the dorsal aorta in HH21 stage
embryos. CSFIR-transgene expression was confined to a ramified
CSF1R" cell population that co-expressed the haematopoietic cell
marker CD45 (Fig. 2B,C). Hence, the CSF'1R-transgene expression
was restricted to macrophages in the early chicken embryo prior to
the emergence of other myeloid cell lineages. Thrombocytes, which
are nucleated in birds, appear first in HH29 stage embryos.
Thrombocytes also lacked any detectable expression the reporter
transgene (Fig. 2D-F).

CSF'1R-transgene expressing cells were widely distributed in
developing embryos in a speckled pattern (Fig. 2G), consistent with
the distribution of CSF1R mRNA in chicken embryos (Garceau et al.,
2010) and earlier studies of phagocytic cells in the chicken embryo
(Cuadros et al., 1992). The cells were visible throughout the body and
concentrated as expected in areas of programmed cell death (Rotello
et al., 1994; Hopkinson-Woolley et al., 1994), such as the interdigit
regions of stage HH33 embryo leg buds (Fig. 2H-J). Embryos from
the MacRed and MacGreen lines showed identical distributions of
fluorescent cells (not shown). LysoTrackerRed (LyTRd), a dye that
accumulates in phagolysosomes, co-stained eGFP-expressing cells in
areas of programmed cell death in the leg buds, confirming the likely
phagocytic function of CSFIR-transgene-expressing cells (Fig. 2J).
Nevertheless, eGFP-expressing cells outside the regions of
programmed cell death did not stain with LyTRd, suggesting that
labelling of lysosomal compartments underestimates embryonic
macrophage numbers.

Visualisation of the response of embryonic chicken
macrophages to wounding

In embryonic zebrafish and Xenopus, macrophages are rapidly
recruited to wound sites (Mathias et al., 2009; Costa et al., 2008),
whereas this does not occur in mouse embryos until late in
development (Hopkinson-Woolley et al., 1994). We used the
transgenic lines to investigate the response to wounding using an
organ culture of limb buds and after limb bud wounding in ovo. In
organ-cultured limb buds, the wound gradually closed over a 4 h
period following an incision (Fig. 3A,B). Although macrophages in
the limb bud were highly motile and observed in the immediate
vicinity of the wound, no recruitment to the wound site was seen
(Fig. 3A,B). No accumulation of macrophages at the wound site was
observed 24 h after wounding in ovo (Fig. 3C-J) and in some
instances a reduction in interdigit macrophages was observed after
incisional wounding (Fig. 3C-F). Similarly, in an eye wound model
(supplementary material Movie 1), macrophages were observed in
the immediate area of the wound (supplementary material Movie 1,
red arrow), but there was no recruitment of macrophages to the
wound site during the period of imaging. No accumulation occurred
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Fig. 1. Identification of putative macrophage lineage-specific regulatory elements in the first intron of the chicken CSF1R gene. (A) mVista alignment
(http://gsd.Ibl.gov/vista/) of the CSF1R first intron comparing chicken (Gg) with turkey (Mg), Adélie penguin (Pa), zebrafinch (Tg), rifleman (Ac), ostrich (Sc)
and Chinese softshell turtle (Pc). Conserved regions (>70% homology over 100 bp window) are shaded. The positions of four major conserved non-coding
elements (CNEs) are boxed and numbered. (B) Pustell DNA matrix alignment of the avian/reptile CSF1R CNE2 and CNE3. The unbroken diagonal lines
represent regions of high sequence conservation, and the broken and offset lines indicate that an insertion has occurred in the chicken/turkey lineage in
comparison with the other species shown here. The avian-specific CNE2 is highlighted in red; the CNE-3, which is conserved in birds and turtle sequence, is
highlighted in blue. (C) Alignment of mammalian Fms-intronic regulatory element (FIRE) with the CSF1R CNES3 region in birds/reptiles. Species sequences from
top to bottom are human, mouse, platypus, turtle, alligator, Adélie penguin, budgerigar, ostrich, rifleman, zebrafinch, duck, turkey, chicken and consensus
sequence. Arrows indicate the location of the two murine FIRE transcription start sites (Sauter et al., 2013) and conserved transcription factor binding sites are
also shown. (D) Sequence of the chicken macrophage lineage-specific regulatory element used in this study: binding sites for PU.1, C/EBP, AP1, SP1 and AML1
are identified. The avian-specific CNE2 is highlighted in red and the avian-reptile-mammal conserved CNE3 is in blue.
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even after 24 h, despite evidence of phagocytosis of apoptotic cells
in foci of programmed cell death such as the centre of the lens
vesicle (Fig. 3K,L).

Visualisation of the response of macrophages to microbial
antigen in the embryonic vasculature

Vitelline vasculature macrophages imaged in HH17 MacGreen
embryos were highly motile and were observed both within blood
vessels and in a perivascular locations but not integrated into the
blood vessel walls, as described by Al-Roubaie et al. (2012). Within
blood vessels, macrophages were observed crawling on the blood
vessel walls, both as isolated cells and as cell clusters (supplementary
material Movie 2). This crawling behaviour is reminiscent of
‘patrolling’ behaviour reported for a subset of blood monocytes in
mice that respond to microbial infection (Auffray et al., 2007). A well-
established model for studying the interactions of microbes with
phagocytes is the recognition and phagocytosis of microbial-derived
zymosan particles (Underhill, 2003). We determined the capacity of
patrolling macrophages within the vitelline blood vessels to recognise
and phagocytose zymosan particles by injection of Texas Red-
labelled zymosan particles into the dorsal aorta of HH17 MacGreen
embryos. These particles were observed throughout the embryonic
and extra-embryonic vasculature where they stuck to the blood vessel
walls. Patrolling macrophages moved towards and engulfed zymosan
particles, and then either continued to crawl along the vessel walls or
entered the circulation (Fig. 4; supplementary material Movie 3). Cell
division of patrolling embryonic macrophages associated with the
vasculature was frequently observed and macrophages containing
zymosan particles were also divided. This process involved the
cessation of patrolling behaviour, retraction of cellular processes and
rounding of cells before cell division. After cell division, both

CAG-eGFP

CSF1R-mApple CD45 CSF1R-mApple |[[CSF1R CSF1R-mApple

CSF1R CSF1R-mApple|[ CD41 CSFIR-mApple

daughter cells resumed a ramified morphology and patrolling
behaviour (Fig. 4; supplementary material Movie 3), indicating that
mature yolk sac-derived macrophages are a self-renewing population.

CSF1R-transgene expression identifies macrophages and
other cells of the mononuclear phagocyte system in
post-hatch chickens
There is no unequivocal marker for the chicken mononuclear
phagocyte system, and the relationship between many key members
of this family of cells remains unclear (Igyarté et al., 2007; Del
Cacho et al.,, 2008). In mammals, monocytes, the circulating
members of the mononuclear phagocyte system, can be divided
into several subsets (Wong et al., 2012). In chickens, only a single
subset has been reported (Mast et al., 1998). In FACS analysis of
chicken blood, cells that expressed high levels of mApple
co-expressed the known monocyte-restricted marker KULO1 (Mast
et al., 1998) and CSFIR (supplementary material Fig. S3A).
No transgene expression was detected in T-cells (CD3") or B-cells
(Bu-1") (supplementary material Fig. S3A). The transgene-
expressing chicken monocytes exhibited relatively uniform surface
labelling with anti-CD45, MHCII and CD11, and somewhat greater
diversity of alIb B3 integrin, CD41/61. In MacGreen mice, the Csf1r-
eGFP reporter can be detected in inflammatory neutrophils, which
express Csflr mRNA, but not the protein product (Sasmono et al.,
2007). Birds do not have neutrophils, the equivalent cell population
being heterophils (Caxton-Martins and Daimon, 1976). Transgene
expression and cell-surface CSFIR were both detectable in this
cell subset (supplementary material Fig. S3B), but at a level
approximately one-tenth of that in the monocytes.

The expression of CSFIR-transgene expression in chicken tissue
mononuclear subsets in the lymphoid organs and non-lymphoid

Fig. 2. CSF1R-transgene expression is restricted to
macrophages in MacReporter embryos. (A) CSF1R-
mApple” cells (red) are restricted to the lumen of
primitive blood vessels in ubiquitous CAG-eGFP-
expressing HH13 stage embryos (green).

(B,C) Confocal analysis of transgene expression in
HH21 stage CSF1R-mApple embryos indicates that
transgene expression is restricted to CD45" (B, green),
CSF1R" (C, green) cells in the mesenchyme (red
arrowheads) and not CD45" cells budding from the
epithelial layer of the dorsal aorta (white arrowheads).
Dotted lines mark the blood vessel (BV) lumen. Scale
bars in A-C: 100 um. (D-F) Confocal analysis of
CSF1R staining (green) of CSF1R-mApple transgene-
expressing cells (red) in the mesenchyme tissue of a
HH29 embryo. The transgene is expressed in cells
(red) that are CD45" (D, green) and CSF1R"

(E, green), but are CD41/61™ (F, green). Scale bars in
D-F: 100 um. BV, blood vessel lumen. (G) Scattered
eGFP" cells are found in the embryonic (Emb.) and
extra-exbryonic (Ex-Emb) tissues of HH15 MacGreen
embryos. Scale bar: 200 um. (H-J) Colocalization of

CSF1R-eGFP Lysotracker CSF1R-eGFP

Lysotracker CSF1R-eGFP

eGFP" cells with LysoTracker Red-stained lysosomes
in HH33 embryo footplate and in the interdigit region.

Inset in J shows the boxed area in more detail. Scale

bars in G-J: 200 pym.
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Fig. 3. Embryonic macrophages are not recruited to wounds.
(A,B) Time-lapse imaging of embryonic macrophage response
to incisional wounding in the footpad of HH31 stage embryos in
vitro. The tip of the central digit of a footpad (A, red arrow) was
wounded with an ultrafine tungsten needle. Scale bar: 200 um.
Subsequent panels (B) focus on the behaviour of macrophages in
the region of the incisional wound (boxed area). (B) No recruitment
of macrophages to the wound (red arrows) is observed. Scale bar:
500 pm. (C-L) In ovo macrophage response to wounding.
LysoTrackerRed (LyTRd) staining of CSF1R-eGFP embryonic
limb buds 24 h after incisional (C-F) or crush (G-J) wounding of
HH31 embryonic limb buds. Wounded limb buds are on the right of
each panel and control contralateral limb buds are shown on the

CSF1R-eGFP Lysotracker

tissues was examined by confocal microscopy. In the spleen,
CSF'1R-transgene-expressing cells were abundant and found in
association with B-cells of the peri-ellipsoid lymphocyte sheath
(PELS) and within the ellipsoid (Fig. SA), consistent with previous
studies of splenic macrophage populations (Jeurissen et al., 1989;
Nagy et al., 2005; Igyarto et al., 2007). In the bursa of Fabricius, the
avian-specific primary lymphoid organ for B-cell production,
CSF'1R-transgene-expressing cells were found in the medulla of
B-cell follicles and in the interfollicular tissues (Fig. 5SB). The
location of CSFIR-transgene-expressing cells in the medulla is
consistent with their identity as bursal secretory dendritic cells
(BSDCs) (Olah et al., 1992). Dense networks of CSFIR-transgene-
expressing cells were present in the medulla region of germinal
centres in the caecal tonsil (Fig. 5C). The distribution of cells in the
medulla of germinal centres is consistent with cells previously
described as avian follicular dendritic cells (FDCs) (Eikelenboom
et al., 1983; Jeurissen, 1993). Both BSDCs and FDCs expressed
high levels of CSFIR protein (supplementary material Fig. S4).
We observed CSF'IR-transgene-expressing cells in the brain
(Fig. 5D). Their CD45" phenotype and highly ramified
appearance is consistent with their identity as microglial cells
(Cuadros et al., 2000), the resident macrophage population of
neuronal tissues. Similarly, macrophages of the liver (Kupffer
cells) were located in the sinusoids, as expected (Fig. 5E). In
contrast to mammalian lung, the avian lung does not contain
alveoli or cells equivalent to alveolar macrophages, but there is a
network of phagocytes surrounding the larger airways (de Geus

CSF1R-eGFP Lysotracker

left. Red arrowheads indicate site of wounding and boxed areas
(E,l) show details of the wound site in F,J. Compared with the
contralateral control limb bud, there is no accumulation of
macrophages at the wound site (red arrowheads), and
diminishment of macrophage accumulation in the interdigit region
adjacent to the wound is apparent (E,F,I,J). Scale bars: 500 pm.
(K,L) LyTRd staining of eye primordium of CSF1R-eGFP embryos
wounded in the eye primodium at HH16 in ovo. There is no
obvious recruitment of macrophages with lysosomes in the
wounded (L) compared with unwounded (K) eye primordium,
although LyTRd staining indicates a region of cell death (dashed
circle) in the centre of the lens vesicle (dotted line). Scale bars:
100 pym.

et al.,, 2012). Consistent with this pattern, CSFIR-transgene-
expressing cells were scattered throughout the interstitial tissue of
the parabronchial wall and clustered with B-cells to form small,
isolated lymphoid follicles in the lung (Fig. SF). Epidermal sheet
preparations contained large numbers of transgene-expressing
cells, both scattered cells and in small clusters (Fig. 5Q),
consistent with reported distribution of chicken Langerhans
cells (Igyarto et al., 2006). Unexpectedly, in the skeletal muscle
we observed many CSFR-transgene-expressing cells. These cells
co-expressed class I MHC (Fig. 6H) and were also positive for
CSFI1R (not shown), indicating they are resident skeletal muscle
macrophages. One other macrophage population that is unique to
birds is in the skin, where the transgene highlighted the major
haematopoietic cell subset in feather pulp (Fig. 51).

Identification of widely distributed lymphoid structures
highlighted by CSF1R-transgene expression

In post-hatch chicken, the bulk of lymphoid tissue consists of solitary
or aggregated lymphoid follicles, which are difficult to identify
(Vaughn et al., 2006). This severely limits the study of lymphoid
tissue development and local immune responses in avian compared
with mammalian models. The post-hatch development of these
lymphoid follicles varies with time and between individual chickens
(Befus etal., 1980). The lymphoid follicles were readily identified in
the gut tissues of MacReporter chicken, as aggregates of CSFIR-
transgene-expressing cells ranging from single isolated aggregates to
structures composed of hundreds of aggregates (Fig. 6A-I). The
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aggregates of CSFIR-transgene-expressing cells were found within
organised lymphoid structures, typically comprising a B-cell-
dominated germinal centre surrounded by a T-cell-rich area of
tissue. Transgene-expressing cells formed dense networks of cells
within the medulla region of the B-cell zone of the germinal centres
(Fig. 6J-L). The distribution of CSF1R-transgene-expressing cells in
the medulla of germinal centres is consistent with cells previously
described as avian FDCs (Eikelenboom et al., 1983; Jeurissen, 1993).
Scattered cells were also detected throughout T-cell zones (Fig. SK).
The reporter colocalised with the antigen bound by antibody
CVI-ChNL-74.2, which recognises both red pulp macrophages and
a ring of macrophages surrounding the peri-ellipsoid lymphocyte
sheath (Jeurissen et al., 1992). Cells co-expressing the reporter and
this marker were excluded from the B-cell follicles, but were
concentrated in T-cell-rich regions (Fig. 6L).

DISCUSSION

In mice, restriction of Csflr expression to macrophages is
dependent on the intronic enhancer element FIRE (Sasmono
etal., 2003). The present study demonstrates that FIRE is conserved
across species at both the sequence level and in its function in
macrophage expression. CSFIR FIRE probably appeared in an
early amniote, before the separation of the synapsids (mammals)
and sauropsids (birds and reptiles), between 320 and 340 million
years ago. We have shown elsewhere that mouse FIRE is active as
a macrophage-specific enhancer in a wide range of mammals and
birds (Pridans et al., 2014).

We have demonstrated the specificity of CSFIR-transgene
expression in the MacReporter lines, and their utility in studies of
macrophage function in development. To date, there have been only
limited reports of live imaging of macrophages in vertebrate
embryos (Herbomel et al., 1999; Colucci-Guyon et al., 2011; Li
et al., 2012; Al-Roubaie et al, 2012). We used time-lapse
microscopy to visualise the behaviour of embryonic macrophages
in response to wounding and stimulation with a microbial-derived
particulate antigen. Despite the rapid accumulation of macrophages
in regions of programmed cell death and high concentrations of

6

Fig. 4. Macrophages associated with the embryonic vasculature are
highly motile and phagocytic, and undergo local division. Time-lapse
imaging of region above the vitelline artery near the embryo proper. The
aorta of CSF1R-eGFP embryos was injected with Texas Red-labelled
zymosan 1 h prior to the beginning of imaging. Most zymosan particles
adhered to the blood vessel walls (yellow arrows). eGFP* macrophages
are highly motile. Between 100 and 125 min from the start of filming, a
zymosan particle (yellow arrow) becomes associated with a macrophage;
this macrophage re-enters the circulation, removing the zymosan particle
by 150 min. At 0 min, a zymosan particle is contained within a
macrophage (white arrow); from 0-75 min this macrophage is both motile
and exhibits changes in morphology. At 100 min, this macrophage (white
arrow) no longer exhibits movement and does not extend any cellular
processes. A similar macrophage without a phagocytised zymosan
particle (blue arrow) exhibits identical behaviour. At 100-150 min, both
undergo division (white and blue arrows), and daughter cells resume
active patrolling of the vasculature. Scale bar: 50 ym.

macrophages in the local vicinity of the incisional wound, we did
not see any evidence of macrophage recruitment to the wound site.
In this respect, the chicken appears to resemble the mouse
(Hopkinson-Woolley et al., 1994). One explanation may be the
relative lack of cell death at excisional wound sites (Hopkinson-
Woolley et al., 1994; Spurlin and Lwigale, 2013), whereas dead
cells and macrophages containing dead cells are observed in
zebrafish models of wounding (Li et al, 2012). Although
embryonic macrophages did not respond to wounding, they were
clearly able to recognise and engulf microbes attached to the blood
vessel walls (Fig. 4; supplementary material Movie 3). Immediately
after engulfment and removal of zymosan particles from the blood
vessel wall, several other macrophages were observed patrolling
where the zymosan particle had been attached, suggesting some
form of chemotactic signalling.

In contrast to imaging of phagocytic cells in quail embryos
(Al-Roubaie et al., 2012), we did not observe macrophages integrated
into the blood vessel walls in MacReporter chicken embryos. The
simplest explanation is that the phagocytic cells integrated into the
blood vessel walls in quail are circulating endothelial cells, as
suggested previously (Al-Roubaie et al., 2012). In the mouse,
yolk sac-derived macrophages do not apparently transit through a
monocyte stage, and proliferate extensively as they migrate through
the embryo and engulf dying cells (Lichanska and Hume, 2000).
Similarly, in the chick, the MacReporter embryo allowed direct
observation of dividing macrophages that contain phagocytosed
material (supplementary material Movie 3).

Like the Csf1r-eGFP (MacGreen) reporter in the mouse (Sasmono
etal., 2003), the MacReporter lines in birds allow the visualisation of
macrophages in situ and, in the adult, they are of special relevance to
the delineation of immune-related cells populations. Both the reporter
gene and CSFIR were expressed in chicken cells that have been
referred to as dendritic cells. Some of these dendritic cells have
specific roles in antigen capture and presentation, such as BSDCs and
FDCs. The CSF IR transgene was also expressed in cells surrounding
the splenic ellipsoid, ellipsoid-associated cells (EAC), a phagocytic
cell population of haematopoietic origin that functions to remove
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Fig. 5. Confocal analysis of MacRed chicken post-hatch mononuclear
phagocyte populations. (A) Splenic mononuclear phagocytes (red) and
Bu-1" B-cells (green) from a 16-week-old MacRed chicken. Rings of
transgene-expressing cells can clearly be seen surrounding the ellipsoid
(asterisk). (B) Bursa of Fabricius from an 8-day-old MacRed chicken: Bu-1* B
cells (green) show arrangement of the B-cell follicles; mononuclear
phagocytes (red) are present in the medulla (M) and interfollicular region (red
arrow), but not in the cortex (C) of B-cell follicles in the bursa of Fabricius.
(C) Caecal tonsil B-cell follicle from a 10-week-old MacRed chicken, showing
location of mononuclear phagocytes (red) and Bu-1" B-cells (green).
Transgene-expressing cells concentrated in the medulla region (M) of the
B-cell follicle are a dense network of FDC. (D) Microglial cells (red) in the
cerebellum of an 8-day-old MacRed chicken showing colocalisation with CD45
staining (green). (E) Kupffer cells (red) showing colocalisation with CSF1R
(green) from a 13-week-old MacRed chicken liver. (F) Lung mononuclear
phagocytes (red) and Bu-1" B-cells (green) in the interstitial tissue of the
parabronchial wall from a 16-week-old MacRed chicken. The parabronchial
lumen (pb) is indicated. (G) Epidermal mononuclear phagocyte cells (red) in
epidermal sheet preparation from a 10-week-old MacRed chicken. (H) Breast
muscle mononuclear phagocytes (red) from a 16-week-old MacRed chicken
co-expressing MHCII (green). (l) Feather pulp mononuclear phagocytes
from an 8-day-old MacRed chicken (red) co-stained with CD45 (green). Scale
bars: 50 ym.

particulate, immune-complexed and soluble antigen from the blood
(Olah et al., 1984; Igyartd et al., 2007). A significant difference
between birds and mammals is the very large number of macrophages
in chicken skeletal muscle, detected with the reporter gene. The large
resident population of adult skeletal muscle macrophages in

MacReporter chickens suggests specific roles for macrophages in
muscle development and function.

Birds, like lower vertebrates and monotreme mammals, do not
possess lymph nodes and instead have solitary and aggregated
lymphoid follicles (Casteleyn et al., 2010). The brightness and
specificity of transgene gene expression in the MacReporter
chickens enables visualisation of these lymphoid structures in
both embryonic and post-hatch chickens. The lymphoid follicles in
post-hatch MacReporter chickens are heterogeneous, forming a
continuous range of structures ranging from single isolated follicles
to aggregates of hundreds of follicles. The MacReporter chicken
will provide a model system for the convenient identification and
isolation of cells from these lymphoid tissues.

In summary, CSFIR-transgene expression in MacReporter
chickens allows the chicken mononuclear phagocyte system to be
studied with a well-defined marker for the first time. It is a powerful
tool for the dynamic visualisation of macrophages in the developing
chicken embryo and in post-hatch birds can be used to visualise
individual cells of the mononuclear phagocyte system and also
the solitary and aggregated lymphoid follicles that represent the
majority of secondary lymphoid tissues in the chicken.

MATERIALS AND METHODS

Ethics statement

All experiments, animal breeding and care procedures were carried out
under license from the UK Home Office and subject to local ethical review.

Chicken CSF1R genomic sequence isolation and plasmid
constructs

To define regulatory elements that are sufficient and necessary for gene
expression restricted to the mononuclear phagocyte lineage in chickens, a
plasmid construct containing 3 kb of the chicken CSFIR gene sequence,
comprising 2 kb 5’ and 1 kb 3’ of the ATG start codon in the first exon
(supplementary material Fig. S1A), was generated by PCR of genomic DNA
prepared from whole blood. A modification of the ATG start codon to
ATA was also made at this time. The primers 5'-AGTGCAGGCCTGT-
GGGGGA-3’ and 5'-GACCAACATCCCCGGGGCCTATGGTG-3’" were
designed to amplify the 2 kb 5" fragment and 5-ACCCTGCGTGGG-
GGCACCATAGGCCC-3' and 5'-CGCACAGAGGGAAACGCTGC-3’
to generate the 1kb 3’ fragment using Phusion High-Fidelity DNA
Polymerase (Thermo Scientific). Reaction products of the appropriate size
were gel purified (PureLink Gel Extraction, Invitrogen) and used in a second
round of PCR as template DNA with the primers 5'-AGTGCAGGCCT-
GTGGGGGA-3’ and 5'-CGCACAGAGGGAAACGCTGC-3" to generate a
3 kb product. This 3 kb product was cloned into a pGEM-T Easy vector
(Promega) and then subcloned into peGFP-1 (Clontech). This produced two
constructs, pMAC.eGFP and pCAM.eGFP, in which the CSFIR sequence is
in forward or reverse orientation with respect to eGFP (supplementary
material Fig. S1B). A further set of constructs were made in which eGFP
was replaced with mAPPLE, a modified red fluorescent protein gene
(Shaneret al., 2008), to generate pMAC.mAPPLE and pPCAM.mAPPLE. As
preliminary analysis indicated that pMAC.eGFP did not drive macrophage
lineage restricted expression of eGFP (supplementary material Fig. S1C), a
further construct was generated in which the FIRE-containing conserved
intronic element was subcloned into pMAC.eGFP, downstream of the
promoter element (supplementary material Fig. S1B). This FIRE-containing
conserved intronic element was generated by PCR of genomic DNA using
the primers 5'-AGAAAGATAAAAGCATTGCACA-3'and 5'-CCCCATT-
TTGCCACATCAGCGAG-3' to produce an 820 bp product, using Thermo
Scientific Phusion High-Fidelity DNA Polymerase. This was cloned into
pGEM-T Easy vector (Promega) and subcloned into pMAC.eGFP,
positioned 3’ to the 3 kb insert and 5’ to eGFP to produce the construct
pPMAC.FIRE.eGFP (supplementary material Fig. S1B). This produced two
pMAC.FIRE constructs, pMAC.FIRE.eGFP and pMAC.FIRE.mAPPLE.
A further modification was made at this point with a splice acceptor
sequence (5-GGGCCCGATTTTTTTTCATCCTCATTTTTCTCTTTCCT-
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Fig. 6. F distribution of lymphoid aggregates in the
MacRed chicken gut. (A-l) External views of different
regions of a 1-year-old MacRed chicken showing several
scattered lymphoid aggregates in the jejunum (A-C),
numerous scattered lymphoid aggregates in the ileum
(D-F) and a high concentration of lymphoid aggregates
in the ileum Peyer’s Patch. Scale bars in A-l: 500 ym.
(J-L) Immunofluorescence staining of Peyer’s patches
showing organisation of CSF1R-mApple-expressing cells
(red) in relation to: (J) Bu-1" B-cells (green), (K) TCR of
(VB1)" T-cells (green) and (L) CVI-ChNL-74.2"
macrophages (green). Scale bars in J-L: 100 ym.
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TTGCAGGCTCCACCGGT-3’) being sub-cloned into the Apal-Agel site
immediately 5" of the eGFP/mAPPLE ATG start codon to produce pMAC.
FIRE.SA.eGFP and pMAC.FIRE.SA.mAPPLE.

Cell lines and transfection experiments

HDI1 is a chicken macrophage cell line derived from bone marrow cells
transformed with an avian myelocytomatosis virus (Beug et al., 1979). DF-1
is a spontaneously immortalised chicken embryo fibroblast cell line (Himly
etal., 1998). Both cell lines were cultured in RPMI 1640 medium containing
20 mM L-glutamine (Life Technologies), 10% newborn calf serum, 2.5%
chicken serum supplemented with penicillin-streptomycin at 41°C in 5%
CO,. Cells (5 x10°) were transfected with 10 pug of each reporter construct
(supplementary material Fig. S1B) by electroporation at 280 V and a
capacitance of 960 uF, using a Bio-Rad Gene Pulser. For stable transfections,
cells were pelleted and washed with medium to remove DNA. After
re-suspension, the cells were split into three independent pools and cultured
for 48 h without selection, washed and cultured with for selection using
200 pug/ml of G418 (geneticin; Gibco BRL) for 17-32 days.

Construction of lentiviral vectors

The pLenti6/R4R2/V5-DEST vector (Invitrogen) was modified by
removal of the blasticidin-containing Kpnl-Pmll-containing fragment
and the addition of a woodchuck hepatitis virus post-transcriptional
regulatory element optimized for safety (oPRE). The CSFIR reporter
gene was isolated from pMAC.FIRE.mAPPLE using Xbal and Xhol,
blunt-ended using Klenow DNA polymerase and subcloned into the
modified pLenti6/R4R2/V5-DEST to produce pLenti MAC.FIRE.
mAPPLE. In order to add a splice acceptor site, pMAC.FIRE.SA.
mAPPLE was cut with Mfel, blunt-ended using Klenow DNA polymerase
and then digested with EcoRV. The fragment containing partial CSFIR-
splice acceptor-mAPPLE sequence was gel purified. pLenti. MAC.FIRE.
mAPPLE was digested with EcoRV to release a fragment containing the
CSFIR/mAPPLE sequence. The gel-purified pMAC.FIRE.SA.mAPPLE
splice acceptor sequence fragment was then subcloned into EcoRV-
digested pLenti. MAC.FIRE.mAPPLE to produce pLenti. MAC.FIRE.SA.
mAPPLE. An identical strategy was used to produce pLenti. MAC.FIRE.
SA.eGFP (supplementary material Fig. S1D).

8

Preparation of viral stocks

Vector stocks were generated by FUGENEG6 (Roche) transfection of HEK
293T cells plated on 10 cm dishes with 3 pug pLenti MAC.FIRE.SA.
mAPPLE/pLenti. MAC.FIRE.SA.eGFP, 6ug HIV gag/pol plasmid
(psPAX2, Addgene) and 1.6 ug of VSV-G (pLP/VSV-G, Invitrogen)
plasmid per plate. At 36-48 h after transfection supernatants were filtered
(0.22 um). Concentrated vector preparations were made by initial low-speed
centrifugation at 6000 g for 16 h at 4°C followed by ultracentrifugation at
50,500 g for 90 min at 4°C. The viral particle pellet was resuspended in
60-80 pl of medium (McGrew et al., 2004).

Production and analysis of transgenic birds

Approximately 1-2 ul of viral suspension was microinjected into the
subgerminal cavity beneath the blastodermal embryo of newly laid eggs.
Embryos were incubated to hatch using phases II and III of the surrogate
shell ex vivo culture system (Perry, 1988). DNA was extracted from the
chorioallantoic membrane (CAM) of embryos that died in culture at 12 days
of development or more, using the Puregene genomic DNA purification kit
(Flowgen). Genomic DNA samples were obtained from CAM of G, chicks
at hatch, blood samples from older birds and semen from mature cockerels
(supplementary material Fig. S1E,F). PCR analysis was carried out on 50 ng
DNA samples for the presence of proviral sequence. To estimate copy
number, control PCR reactions were carried out in parallel on 50 ng aliquots
of chicken genomic DNA with vector plasmid DNA added in quantities
equivalent to that of a single-copy gene (1x), a tenfold dilution (0.1x) and a
100-fold dilution (0.01x) as described previously (Sherman et al., 1998).
Primers used were as follows: HIV1 5-GAGAGAGATGGGTGCGAGAG-
3’ and HIV2 5-GCTGTGCGGTGGTCTTACTT-3'. Deletion of FIRE in
transgenic birds was assessed by PCR using primers P1 5'-ACAACCAG-
AAGGGGAAGGTGG-3" and P2 5'-GTCGGGGATGTCGGCTGGGT-3’
(supplementary material Fig. S1D) using conditions outlined above. The
number of proviral insertions and size of inserts in individual G, birds was
analysed by Southern blot transfer. Genomic DNA extracted from whole
blood was digested with X%ol and Clal (supplementary material Fig. S1D).
The digested DNA was resolved on a 0.6% (w/v) agarose gel and then
transferred to a nylon membrane (HybondN). Membranes were hybridized
with 32P-labelled probes for the reporter gene mAPPLE or eGFP at 65°C.
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Hybridization was detected by autoradiography (supplementary material
Fig. S2A). All experiments, animal breeding and care procedures were
carried out under license from the UK Home Office and subject to local
ethical review.

Embryonic staging
Embryos were assigned a Hamburger—Hamilton (HH) stage based on
previously defined criteria (Hamburger and Hamilton, 1951).

CSF1R-transgene expression analysis

Confocal analysis

Embryonic and adult tissues were isolated, fixed for 1 h to overnight in 4%
paraformaldehyde in phosphate-buffered saline (PBS), washed in PBS and
perfused overnight in 15% sucrose in PBS. Selected samples were then were
cryo-embedded in Tissue-Tek OCT compound (Sakura Finetechnical) and
sectioned at 10 um onto Superfrost Plus (Menzel-Gléser) slides. Sections
were blocked for 1 h in 10% skim milk powder, 10% normal horse serum,
0.1% Triton X-100 in PBS (MST-PBS). Primary antibodies were added: anti-
CSF1R (Garcia-Morales et al., 2013); anti-MHC II [clone 2G11 (Kaufman
et al., 1990)]; anti-chicken CD41/61 (clone 11C3, AbD Serotec); CD45
(clone LT40, SouthernBiotech); anti-Bu-1 (clone L22, AbD Serotec);
anti-chicken macrophage subset marker (clone CVI-ChNL-74.2, Prionics);
anti-chicken macrophage/monoctyes (clone KULO1, AbD Serotec); and
anti-chicken TCR alpha/beta (clone TCR2, AbD Serotec) all diluted by 1/50-
1/500 in MST-PBS and sections incubated at 4°C overnight. Sections were
then washed for 30 min in PBS and re-incubated with secondary antibodies
diluted 1/300 in MST-PBS for 1 h (goat anti-rabbit IgG Alexa Fluor 488,
donkey anti-mouse IgG Alexa Fluor 543; Life Technologies), then washed for
30 min in PBS and mounted in Hydromount (National Diagnostics). In some
cases the sections were counterstained with the addition 1 pg/ml
4’,6'-diamidino-2-phenylindole (Sigma) in the final incubation step. For
visualising epidermal mononuclear phagocyte populations, areas of
featherless skin from the neck region were cut (1.0x1.0 cm?) and incubated
in RPMI medium (Sigma) containing 2 mg/ml dispase (grade II, Roche) for
1 hat 37°C. After incubation, the epidermis was lifted from the dermis, using
sterile forceps and washed in RMPI media. The epidermal sheet was mounted
on a plastic Petri dish and overlaid with sterile PBS. Cells were imaged using
an inverted confocal microscope (Nikon eC1, Nikon Instruments). Images
were captured using Nikon EZ-C1 Software v3.40.

Flow cytometry

Flow cytometry was performed to characterise the CSFIR-transgene-
expressing cells using mouse monoclonal antibodies to chicken CD3 (clone
CT3, AbD Serotec), Bu-1 (clone AV20, AbD Serotec), CD45 (clone AVS53,
Institute for Animal Health, UK), KULO1 (SBA, SouthernBiotech), CSFIR
(Garcia-Morales et al., 2013) and MHC 1I [clone 2G11 (Kaufman et al.,
1990)]. Cells were stained for 30 min at 4°C, washed with PBA (PBS, 0.5%
BSA and 0.05% sodium azide) followed by incubation with a goat-anti-
mouse-IgGl-alexa 647 (Invitrogen) for 30 min at 4°C. Cells were washed
with PBA and analysed using a FACS Calibur flowcytometer (BD
Biosciences). At least 100,000 events were acquired in the lymphocyte
gate and data were analysed using the software program FlowJo (Threestar).

Whole-mount fluorescence imaging

For images of embryonic tissues, embryos were either imaged in ovo or
removed from the egg and placed in PBS and imaged. In the former case,
10% Indian ink (Winsor & Newton) solution in PBS was injected
underneath the embryo into the yolk sac to block autofluorescence.
Lymphoid tissues in embryonic and post-hatch birds were imaged by
dissecting the relevant organ, which was placed in a Petri dish for imaging.

Chicken embryo and organ culture and time-lapse imaging

Embryos were cultured using a modified EC culture (Chapman et al., 2001).
HH16/17 stage embryos were removed from eggs using sterilised Whatman
3MM CHR filter paper rings, cut into rings to fit the internal diameter of six-
well plates (Costar, Corning), washed in HBSS and placed on an albumen/
agar plate ventral side upwards. For limb bud culture, hind limb buds were

dissected from HH31 stage embryos and placed in a six-well albumen/agar
plate. After wounding (see below) limb buds were embedded in a thin layer
of amniotic fluid/agar. Amniotic fluid was removed from embryos prior to
dissection of limb buds using a sterile needle and syringe. Plates were left in
a fully humidified 38°C incubator for 1 h to allow for settling of the embryo.
Embryos were scanned every 5 min for the period of culture using a Nikon
TiE (Perfect Focus System) microscope with NIS-Elements 4.0 equipped
with an incubation chamber at 38°C, 100% humidity. Images were compiled
and merged using public domain software ImageJ v.1.410 (NIH).

Embryo wounding

Cuts were made in the eye primordium and of limb buds of embryos
using an ultrafine tungsten dissecting needle (Harvard Apparatus UK)
with a 1 pm tip diameter (Brock et al.,, 1996). Crush wounds were
produced by pinching the distal limb bud of HH31 stage embryos using
jewellers forceps. For eye primordium wounding, the tip of the needle
was inserted into the lens vesicle and used to produce a cut extending
through to the outer edge of the optic cup of HH16 stage embryos in ovo.
Embryos were either incubated in ovo for 24 h or removed from eggs for
live imaging (see above). For organ culture limb bud wounding, after
dissected limb buds had been placed on albumin/agar plates the needle
was used to produce a cut in the tip of the middle digit. Limb buds were
then cultured as described above. For in ovo limb bud wounding, the tip
of HH31 stage embryos was either cut with a tungsten needle or crushed
using jewellers forceps. Embryos were then incubated for a further 24 h
before imaging.

Bioinformatics analysis

The CSFIR sequence was analysed using the software mVista alignment
(http:/gsd.Ibl.gov/vista/) and MacVector (http:/macvector.com/). Nucleotide
sequences were identified using the databases at the National Center for
Biotechnology Information (Bethesda, MD, USA), the genome resources
from the University of Santa Cruz (Santa Cruz, CA, USA) and Ensembl (www.
ncbi.nlm.nih.gov/index.html, http:/genome.ucsc.edu and www.ensembl.org/
index.html), and the Beijing Genome Institute (BGI) Bird Phylogenomic
Project (http:/phybirds.genomics.org.cn/).

CSF1R orthologues

CSFIR orthologues were as follows: human (Homo sapiens), GRCh37:5:
149432254:149493535:1; mouse (Mus musculus), GRCm38:18:61104972:
61132749:1; platypus (Ornithorhynchus anatinus), OANAS5:X1:29260121:
29291367:1; Chinese softshell turtle (Pelodiscus sinensis), PelSin_1.0:
JH224652.1:1894358:1933352:-1; alligator (Alligator mississippiensis),
GenBank AKHWO01092331.1, scaffold-11218_4; chicken (Gallus gallus)
Galgal4:13:12593807:12612065:1; turkey (Meleagris gallopavo), NW_
003436014.1, chromosome 15 genomic scaffold, Turkey_2.01; zebra finch
(Taeniopygia guttata), Chrl3: 6,954,381-6,972,446; July 2008 assembly;
GQ249407;, Adélie penguin (Pygoscelis adeliae): Scaffold34:2101303:
2117750; budgerigar (Melopsittacus undulatus), Adam_Phillippy_v6_sli_
scf900160277035:2037315:2055959; ostrich (Struthio camelus), scaffold80:
1343069:1358427; rifleman (Acanthisitta chloris): scaffold10495:21554:
35197; duck (dnas platyrhynchos), scaffold111:241:9980 (sequences
available from BGI Bird Phylogenomic Project).
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