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North-Holland 

Robin ILNE 
Department of Computer Science, Edinburgh IJnitiersity, King’s Buildings, Mayfield Road, Edinburgh, 
UK EM93.V.Z’ 

It seems natural to use different languages for the different purposes of description 

or programming on the one hand, and prescription or specification on the other 

hand. Certainly there have been recent attempts to conflate these two types of 

language, but in the author’s opinion they have not been convincing. It is, however, 

the purpose of this paper not to argue this point, but rather to explore a consequence 
of accepting the use of different languages for the two purposes. 

I propose to use the word “description” as a generalisation of “program”; ii is 

something which will describe both the spatial or modular structure of a performing 
agent (hardware or program) and also the temporal details of its performance. A 
prescription or specification, on the other hand, defines properties of the agent’s 
performance- but only those properties which are expressi le in terms of that part 
of the performance which is observable, e.g. the initial and fi 1 values of a program’s 
memory, or the program’s intermediate interactions with the user, or the electrical 
behaviour at the boundary of a chip. The connectives or operators for building 
specifications are naturally logical; many of those for building descriptions are not 
naturally logical but express operations: or structural ideas like sequencing, interac- 
tion and juxtaposition. 

If it is natural to use two languages, it is essential to define the relationship 
between them. It is not just that the designer (programmer, or describer) and the 
specifier shotrid be able to interact, but that the two languages and what they express 
must form a single conceptual framework in w both designer and specifier 
operate (indeed, they may be the same person). shall use the term calculus to 

mean a pair of languages in a definite relationship. 
aving defined calculu at what it means to in 

in another. We have in 
to apply in practice, while others are powerful and speci 
applications, and easier to work in. W 
an applied calculus o 
avoid an anarchic ple 

au- 
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4 R. Milner 

programming language, may be interpreted in the author’s Calculus of Communicat- 
irtg Systems [S, 71. 

2. Ca 

c~icuh.4~ is a triple 

(1) & is term algebra: terms built by a given set of operators; 
(2) 3 is a logic: formulae built by a given set of concectives; 
(3) b c & x 2’ is the satisfactiopl relation between terms and formulae. 

This is a very bare definition, and leaves many options open. For example the 
interpretation of terms t E d may be given independently, or as an equivalence 
induced by I= as follows: 

t, = t2 iR for all formulae F E A?‘, t, I= F iff t2 I= E 

Also, the satisfaction relation I= may be presented in different ways; either in terms 
of the model theory of & and 3, or proof-theoretically as an inference system whose 
sentences are of the form t I= E In the latter case we shall call % a proof calculus. 

The notion of calculus is not so refined as the notion of institution in [ 11; in 
particular, 7.v~ are uot concerned here with variation of signature in a calculus, nor 
wirn tnetr condition which requires the satisfaction relation to be preserved under 
signature-change. But the motivation for calculi is somewhat the same as for 
institutions. Here, we are mainly concerned with a single example of the relationship 
between two calculi; in studying calculi more generally we may well wish to enter 
the framework of [I], and the possibility of doing so must be investigated. 

Our motivation for calculi is as follows. For different design purposes (designing 
rent languages, or designing hardware) different descriptive and 

rescriptive languages, i.e. different calculi, will be appropriate; but one will often 
wish to make use of the properties, e.g. satisfactions, of one calculus when 
in another. To this end, we have to set up relationships among calculi w 
admit this transfer of properties between them. 

Among many ossible relationships, we wish to give an illustration of just two, 
with respect to skecific calculi of interest in parallel computation. 

Let %= (~4~ I=, 9) and 99” = (d’, P, 3” j be two calculi. We say h 
%? if h is a pair (h, , h,) of functions, h, : 2 ---* d an 

10) I= y Ce’ i es QtZ if &?c_&‘, .5?C 
is case we write $rZ c %?. 
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The way we shall use these ideas is as follows. We take a 
of processes, 

simple basic calculus 

We then take a simple but practical imperative programming language, presented 
as an algebra IA, whose operators are the syntactic constructions of the language, 
and define its semantics by a semantic function JR, : IA- PA. A natural Hoare logic 
which goes with IA is then expressed as the calculus 

IC = (IA, t--, IL) 

where IL is essentially a set of pairs of formulae of predicate logic, and t- expresses 
the inference rules of the Hoare logic. Thus IC is a oroof calculus. 

So far, we have the incomplete diagram 

PA I= PL 

.tt, T 
IA I- IL 

We therefore seek a translation Ju2 : IL - PL, t9 complete the diarrr=im in Q on+:- cI_-“’ 1.‘ Lc Wbl La111 

sense. Ignoring t- for a moment, we shall then have a calculus IC’ derived by 
(JY, , A,) from PC, i.e. 

IC’ = (IA, I=‘, IL) 

where if C E IA and FE IL then C +’ F is defined to mean &,(C) I= AL(F). Since 
F is a pair (P, Q), we think of JR as an interpretation of the Hoare sentences P{ClQ 
in PC. 

Finally, we find that IC E IC’, i.e. F c C=‘. ‘SL’e propose that this is the correct way 

to formulate and to prove that a proof calculus is sound with respect to its 
interpretation in an underlying calculus. 

Our process calculus 

has been described at 
Tin : process algebra 

and we shall only review i 

start with a set N={a, b,c ,... } of names, ~?=(gi,6~E ,... 1. 

tary labels, such as a and 2. 
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is a special action 7; it is the action performed by a composite agent when two of 
its component agents, running concurrently, interact with each other by performing 
a pair of comple entary actions. We let cu, p, . , . range over P,ct = 2? v {r), the set 
of actions. 

For agents, we first introduce a set PK of agent constants; we let A, B, . . . range 
over PK. We let Is, Q, . . . range over PA, the set of agents, given by the following 

syntactic rules: 

p::= a.P action prefix; 

1 -&El pi summation ( I an indexing set); 

I fw2 composition; 

I P\L restriction (L 5 2); 

I WI relabelling (where f is a partial fur&ion on 2? and $( 5) 

-f(4); 
I constant. 

for the empty summation &, E.. 
‘e further require for each constant A a defining equation of the form 

Adef P_ 

For example, the definition 

&4 ’ def a.b.A+ c.A 

represents the agent which can repeatedly perform either the two actions a, b in 
sequence or the single action c. The behaviour of agents is defined as a labelled 
transition system with transition relations g (a! E Act), and the above agent is fully 
described by the transitions 

AZ b.A, ALA, b.ALA. 

Space precludes a full definition of these relations, but we shall treat one further 
example which we shall need later. We wish to model the behaviour of a storage 
register which may hold an arbitrary natural number. Thus the constant PEG, (for 

n 3 0) represents the register in the state in which n is stored. In this state it 
may either be assigned a new content m, by performing the action a,, or it may 
deliver up its content n by performing the action Zn. The defining equations of the 
agents WEG, therefore take the form 

WEG, dcf C a,.REG,, + E,.REG,. 
f?l=O 

ften we write such equations as a single parametric equation 
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has the following transitions: 

REG, 2 REG,, for each m 2 0, 

c 
REC, “, REG,,. 

An agent P interacting with the register, on the other hand, will perform an action 
labelled ti, to assign a particular integer bw to the register, and must be capable of 
performing ;iiiy action c,, n 2 0, to read the contents of the register. If two agents 
P, and Pz can both perform such actions (at various times in their histories) then 
the restricted composition 

(P, 1 p2 1 REW\~a, cl 

represents the system in which they, and (because of the restriction) only they, can 
make use of the register, perhaps competing for its attention. 

Despite its simplicity, PA is a convenient vehicle for the expression and analysis 
of non-trivial parallel systems which are of practical importance. Many examples 
can Le found in the author’s book [7]. 

Let us now turn to the component PL of the calculus PC; the process logic. The 
only basic material from which the formulae of PL are constructed is the set Act 

of actions. We let F, G, . . . range over PL, which is defined by the following syntactic 
rules: 

F::=(a)F progression (a E Act); 

1 &, Fi conjunction (I an indexing set); 

I 1F negation. 

We write true for the empty conjunction AiEfl Fi. Intuitively, when we assert ((Y) F 

of an agent P, we mean that P has a transition P g P’ such that F holds of the 
agent P’. Formally, the satisfaction relation I== which completes our calculus PC is 
defined as follows, by induction on the staucture of formulae: 

(I) P I= (a)F if, for some P’, P Q_ P’ and P’ i= 

(2) P!=&,,6;;,if,forall &I, Pl=F;:; 

(3) P I= 1F if it is not the case that P I= F. 

A, is a simple, but also powerful. With a few derive 
properties of behaviour can be expressed very sticcinctly; for 

example, the ability or inability of a process to reach a state is easy to 

express. ere are a few derived forms: 

(s) means (cY,)(QL~). . . (a,) (S = CY~ = l . a!, j 

[s]F means l(s)-+ 

V F means i A iF 
iel ii2.l 
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its content. Then the following formula F expresses the property, where Nat is the 
set of natural numbers, 

Moreover, it is easy to establish that, for each n E 

0 induce congruences u 
dividing PA by any such congruence one obtain 
tileory. The simplest congruence is known as st 

it is defined according to t e general recipe m 
of c&u!ns in Section 2, r,smeiy 

P-Q ifforall FEPL, PI=F iff QC=E 

The algebraic properties of this congruence, and others, can be found in [+I]. It is 
worth noting that these congruences have other characterisations independent of 

L, and this gives them ective status. We need not pursue this matter further 
here; we have now treated PC enough for our present purpose, namely the interpreta- 
tion in PC of the imperative calculus IC, to which we now turn. 

As announced earlier, our imperative calculus 

IC = (IA, 7, IL) 

is, in essence, the Hoare logic of a simple imperative programming language. As 
ssic sets we take E, the program variables, and 9, the function symbols (each 
nction symbol having an arity 20). We let X and F range over S? and 9.. 

respecttvely. e also let E range over the expressions 8, and C and range over the 
commands %, defined by the following syntactic rules: 

E ::= X variable 

I ws, l .Ju function application 
C::=X:= E assignment 

1 c; C’ sequential composition 

I C’ conditional 
iteration 
local variable 
parallel composition 
no action 
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Thus the imperative algebra M is a term algebra with two sorts (expressions and 
commands) and with the syntactic constructions as operators. These constructions 
are well enough known to need little description. Suffice to say that the local variable 
construction gives scope C to the variable and that in the parallel composition 
construction C and C’ are supposed to run in parallel, communicating through 
variables to which they both share access. 

Now Hoare’s original logic [3] for partial correctness of sequential programs 
employed sentences of the form 

whose intended meaning is “‘if C is executed starting in a state satisfying P, then 
its terminating state (if any) will satisfy 0”. P and Q are normaliy taken to be 
formulae of first order logic, containing free occurrences of the program variables. 
A natural rule of inference is then the following rule for sequential imposition: 

In fact, as is well known, Hoare and others have given sets of inference rules for 
various sequential languages. If we were only concerned with sequential programs, 

ar, then we would define the imperative logic IL to have pairs (P, Q) as 
its formulae (where P, Q are formulae of predicate logic), and we would take P{ Cl Q 

to be a way of writing C I- (P, 0). Then we would complete the imperative proof 
calculus IC by defining the relation I- as the set of pairs (C, (P, Q) j such that P#C]Q 

is provable in the appropriate Hoare logic. 
In the presence of r things are not so easy, becau ;e without some constraint 

upohi t?,~ language the is no natural inference rule corresponding to 
as Owicki an6 Gries showed [8], there is a natural rule if we impose the following 
condition: In any command of the form C, r C,, C, may not assign to any 

program variable which occurs free in C2, conversely. We shall proceed to 
formulate IL and t- with this in mind. 

First, we shall decorate each Hoare sentence with two disjoint sets 7? and ? of 
progra variables, as follows: 

P#CU?IZ 

We shall require that k contains all the variables free in C to which C makes any 
assignment, and 2 contains all other variables free in C; also, 
all the program variables free in P and Q. If these conditions 
we say the sentence is admissible. Now the rule for se 
the following: 
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zl, z2, ?, and F2 which ensures the above stated condition on C, and C,, assuming 
that the hypotheses are admissible: 

provided that r?, n p2 = ?I n z2 = PI n & = 0. Note that under these conditions the 

conclusion wi 1 also be admissible. It is rather easy to complete the Hoare logic by 
supplying inference rules for the other constructions of IA, and we shall take them 
for granted. 

We therefore modify our definition of IL, the imperative Zogic; it consists of 
quadruples (P, Q, r?, ?) and we take P{ClQl$ to be a way of writing 
C it- (P, Q, 2, 13) Then we complete IC by defining I-- as the set of pairs 
(C, (P, QV r?, t)) such that p{C]Ql* . y IS admissible, and provable in the Hoare logic. 

Much has been written about the soundness and (relative) completeness of various 
oare logics. We do not address the problem of completeness in this paper; however, 

the soundness of the imperative calculus is the subject of the following section. 

e imperative calculus 

in 
Let us review what we mean by the soundness of IC with respect to its interpretation 
PC. First we have to express the interpretation as a pair of translations 

&IA--, PA, &IL-, PL. 

Then we have to show that, for any C E IA and any (P, Q, 2, ?) E PA, 

C t- (P, Q, 2, t> implies ,/u,( C) t=.&(P, Q, 2, E). 

In this section, we outline the translations J& and Jw2, and also outline the proof 
of soundness. 

The translation .M1 from imperative programs to CCS agents rests upon the simple 
idea that each program variable X corresponds to a relabelled version of the register 
agent defined in Section 3 above, i.e. 

PEG&) def ax(y). REGx(Y)+&(~).REG&)- 

oreover, the translation J&(C) of any command C, in which the program variable 
occurs free, will be an agent capable of performing actions ax (to assign to X) 

anL UWCSHII” -x B -*;nnc ,- (ts sl?tain the contents of X). It is particularly important to realise 
ion is made, in defining A,, that a program C will ha 

bles which it uses. Thus, for example, the translation A1 
tion sequences; it can perform the se 

W at it t 
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the execution of ; but alternatively it can perform the sequence 

which is what it will do if some other agent increments the value of between the 
two readings of that variable. 

The full translation is given in [S, 71; here we need only give its flavour by 
indicating how it treats local variables. The local variable construction 

C’ = Icrcd X i 

has two important effects. First, it dedicates the variable X to C, ensuring that no 
other agent can access X; second, it ensures that any & or c, actions which occur 
in the behaviour of C (representing the writing and reading of X by C) are replaced 
by r actions in the behaviour of C’. These are both achieved by the simple definition 

A,(local X in C en ) = (REG~~O)~A,(C))\{a,, cx) 

(where we assume X is initially given the value 0). 
The remainder of the definition of M, is not hard, but need not concern us here. 

It has the pleasant property that in the theory of PA, divided by one of the 
congruences mentioned at the end of Section 3, one can easily prove many familiar 
equational laws for the transformation of programs. Indeed, a principle motive for 
investigating A, was to obtain those laws as a justification for the algebraic 
.e. 
iiieag PA. 

We now turn to defining A&: IL --, PL. That is, we look for a uniform construction 
of a modal formula F from a quadruple P, Q, 2, ? such that C I= F asserts, of C, 
the following: Let m, and m' be two valuations of the variables X u ?, and let s be 
a terminating action sequence of C which can lead from initial valuation m to final 
valuation m’ assuming no external interference with the variables X u ?. Then if 
m satisfies P, m’ satisfies Q. 

Now let us write 2 = r? u F9 and let us write Dom( m) for the set of varables for 
which the valuation m is defined. Furthermore, let us denote by m{s)m' the property 
that the s is a terminating action sequence, and could consistently lead from initial 
valuation m to final valuation m’ without external interference (this property is 
quite easy to define inductively on s). Let us write (m(2)lZ) for the formula 
obtained by replacing in P the variables 2 by their values in 
A&( p, Q, r?, 9) mrcy be written as a mixture of redicate and m 

Vm,m’,s. (Dom(m)=Dom(m’)=Znm~s~m’ 
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&(C) t= Ju,( P, Q, 2, ?) then the rule for parallel composition in Section 4, and 
indeed all the other rules of the Hoare logic described there, are sound. (In this 
proof, the side condition on the rule for ar is indeed crucial.) Therefore everything 

by these rules is true in the interpretation in C, and we have 

e soundness of the imperative calculus with respect to the underlying 

process calculus, as we intended. 

In this paper we have shown how one calculus can e interpreted in another, 

more basic, calculus. The particular example we chose was to interpret an imperative 
programming calculus (iikely to be more familiar to applications specialists) in the 
basic process calculus CCS. This interpretation was rather easy and natural, and 
lends weight to CCS as a foundation for calculi which are more oriented to particular 
applications; one hopes that CCS can similarly support many applied calculi. 

Indeed there is a calculus, based upon the same imperative programming language 
IA, which presents an immediate challenge of the above kind. For our proof calculus 
IC is quite restrictive; the domain of its satisfaction relation + is confined to programs 
in lvhich the parallel construction C, par Cz is only admitted when C1 assigns to 
no variable occurring free in C, in vice versa. This condition ensures that programs 
are deterministic, but it is an unnecessarily strong condition to impose for this 
purpose. There are interesting deterministic programs in IA which do not satisfy 
the condition; indeed, there are useful non-deterministic programs which are intui- 
tively natural and which one would like to analyse in a richer calculus than IC. 

Such richer calculi exist, for the same imperative programming language IA. One 
good example stems from the work of Jones [4]; in effect, he replaces Hoare sentences 
P{C]Q by richer sentences (P, R)QCl (Q, S), where P and Q are pre- and post- 
conditions as before, while R is a condition upon whose truth C will re/’ before 
every step of its execution, and S is a condition whose truth C will, in turn, g~~~~.~arri?*~ 
after every step of its execution. Now Jones places no restriction upon the par;;?el 
comstruction C, C,, but will only allow a Hoare sentence about C, par C, to 
be inferred from oare sentences about C1 and Cz whose reZy and guarantee 
conditions complement one another suitably. Stirling [9] has formulated the 
appropriate Hoare logic explicitly, as a gcneralisation of the Owicki-Gries system, 
and has proved it sound with respect to an independently given operational seman- 

C as a goud foundation, it is therefore important to formulate 
ogic as a calculus in our sense, and interpret it in PC just as we 

ave interpreted IC in PC. 

oare logics of partial correctness: logics 
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eventucality properties strongly enough for PC to support an interpretation of a logic 
of total correctness. However, there are stronger process logics than PL which do 
express eventuality, Hennessy and Stirling [2] proposed one, and we would like to 
interpret a total correctness calculus for IA in a correspondingly stronger process 

calculus. 
We hope to have shown that the notims of calculus, and of interpreting one 

calculus in another, are fruitful and unifying. 

ate a in proof 

Since this paper was written, Tofts has succeeded ii: interpreting Stirling’s richer 
calculus in PC in his PhD thesis [lo]. 
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