

Edinburgh Research Explorer

Interpreting one Concurrent Calculus in Another

Citation for published version:
Milner, R 1990, 'Interpreting one Concurrent Calculus in Another' Theoretical Computer Science, vol. 75, no.
12, pp. 3-13. DOI: 10.1016/0304-3975(90)90059-Q

Digital Object Identifier (DOI):
10.1016/0304-3975(90)90059-Q

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28977443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/0304-3975(90)90059-Q
https://www.research.ed.ac.uk/portal/en/publications/interpreting-one-concurrent-calculus-in-another(b889a8d9-0ede-4a36-b30c-422e3ca6dac6).html

Theoretical Computer Science 75 (1990) 3-13

North-Holland

Robin ILNE
Department of Computer Science, Edinburgh IJnitiersity, King’s Buildings, Mayfield Road, Edinburgh,
UK EM93.V.Z’

It seems natural to use different languages for the different purposes of description

or programming on the one hand, and prescription or specification on the other

hand. Certainly there have been recent attempts to conflate these two types of

language, but in the author’s opinion they have not been convincing. It is, however,

the purpose of this paper not to argue this point, but rather to explore a consequence
of accepting the use of different languages for the two purposes.

I propose to use the word “description” as a generalisation of “program”; ii is

something which will describe both the spatial or modular structure of a performing
agent (hardware or program) and also the temporal details of its performance. A
prescription or specification, on the other hand, defines properties of the agent’s
performance- but only those properties which are expressi le in terms of that part
of the performance which is observable, e.g. the initial and fi 1 values of a program’s
memory, or the program’s intermediate interactions with the user, or the electrical
behaviour at the boundary of a chip. The connectives or operators for building
specifications are naturally logical; many of those for building descriptions are not
naturally logical but express operations: or structural ideas like sequencing, interac-
tion and juxtaposition.

If it is natural to use two languages, it is essential to define the relationship
between them. It is not just that the designer (programmer, or describer) and the
specifier shotrid be able to interact, but that the two languages and what they express
must form a single conceptual framework in w both designer and specifier
operate (indeed, they may be the same person). shall use the term calculus to

mean a pair of languages in a definite relationship.
aving defined calculu at what it means to in

in another. We have in
to apply in practice, while others are powerful and speci
applications, and easier to work in. W
an applied calculus o
avoid an anarchic ple

au-

0304-3975/90/$03.50 @ 199~Elsevier Science Publishers B.V. IcNorth-

4 R. Milner

programming language, may be interpreted in the author’s Calculus of Communicat-
irtg Systems [S, 71.

2. Ca

c~icuh.4~ is a triple

(1) & is term algebra: terms built by a given set of operators;
(2) 3 is a logic: formulae built by a given set of concectives;
(3) b c & x 2’ is the satisfactiopl relation between terms and formulae.

This is a very bare definition, and leaves many options open. For example the
interpretation of terms t E d may be given independently, or as an equivalence
induced by I= as follows:

t, = t2 iR for all formulae F E A?‘, t, I= F iff t2 I= E

Also, the satisfaction relation I= may be presented in different ways; either in terms
of the model theory of & and 3, or proof-theoretically as an inference system whose
sentences are of the form t I= E In the latter case we shall call % a proof calculus.

The notion of calculus is not so refined as the notion of institution in [11; in
particular, 7.v~ are uot concerned here with variation of signature in a calculus, nor
wirn tnetr condition which requires the satisfaction relation to be preserved under
signature-change. But the motivation for calculi is somewhat the same as for
institutions. Here, we are mainly concerned with a single example of the relationship
between two calculi; in studying calculi more generally we may well wish to enter
the framework of [I], and the possibility of doing so must be investigated.

Our motivation for calculi is as follows. For different design purposes (designing
rent languages, or designing hardware) different descriptive and

rescriptive languages, i.e. different calculi, will be appropriate; but one will often
wish to make use of the properties, e.g. satisfactions, of one calculus when
in another. To this end, we have to set up relationships among calculi w
admit this transfer of properties between them.

Among many ossible relationships, we wish to give an illustration of just two,
with respect to skecific calculi of interest in parallel computation.

Let %= (~4~ I=, 9) and 99” = (d’, P, 3” j be two calculi. We say h
%? if h is a pair (h, , h,) of functions, h, : 2 ---* d an

10) I= y Ce’ i es QtZ if &?c_&‘, .5?C
is case we write $rZ c %?.

Interpreting one concurrent calculus irl another 5

The way we shall use these ideas is as follows. We take a
of processes,

simple basic calculus

We then take a simple but practical imperative programming language, presented
as an algebra IA, whose operators are the syntactic constructions of the language,
and define its semantics by a semantic function JR, : IA- PA. A natural Hoare logic
which goes with IA is then expressed as the calculus

IC = (IA, t--, IL)

where IL is essentially a set of pairs of formulae of predicate logic, and t- expresses
the inference rules of the Hoare logic. Thus IC is a oroof calculus.

So far, we have the incomplete diagram

PA I= PL

.tt, T
IA I- IL

We therefore seek a translation Ju2 : IL - PL, t9 complete the diarrr=im in Q on+:- cI_-“’ 1.‘ Lc Wbl La111

sense. Ignoring t- for a moment, we shall then have a calculus IC’ derived by
(JY, , A,) from PC, i.e.

IC’ = (IA, I=‘, IL)

where if C E IA and FE IL then C +’ F is defined to mean &,(C) I= AL(F). Since
F is a pair (P, Q), we think of JR as an interpretation of the Hoare sentences P{ClQ
in PC.

Finally, we find that IC E IC’, i.e. F c C=‘. ‘SL’e propose that this is the correct way

to formulate and to prove that a proof calculus is sound with respect to its
interpretation in an underlying calculus.

Our process calculus

has been described at
Tin : process algebra

and we shall only review i

start with a set N={a, b,c ,... } of names, ~?=(gi,6~E ,... 1.

tary labels, such as a and 2.

6 R. Milner

is a special action 7; it is the action performed by a composite agent when two of
its component agents, running concurrently, interact with each other by performing
a pair of comple entary actions. We let cu, p, . , . range over P,ct = 2? v {r), the set
of actions.

For agents, we first introduce a set PK of agent constants; we let A, B, . . . range
over PK. We let Is, Q, . . . range over PA, the set of agents, given by the following

syntactic rules:

p::= a.P action prefix;

1 -&El pi summation (I an indexing set);

I fw2 composition;

I P\L restriction (L 5 2);

I WI relabelling (where f is a partial fur&ion on 2? and $(5)

-f(4);
I constant.

for the empty summation &, E..
‘e further require for each constant A a defining equation of the form

Adef P_

For example, the definition

&4 ’ def a.b.A+ c.A

represents the agent which can repeatedly perform either the two actions a, b in
sequence or the single action c. The behaviour of agents is defined as a labelled
transition system with transition relations g (a! E Act), and the above agent is fully
described by the transitions

AZ b.A, ALA, b.ALA.

Space precludes a full definition of these relations, but we shall treat one further
example which we shall need later. We wish to model the behaviour of a storage
register which may hold an arbitrary natural number. Thus the constant PEG, (for

n 3 0) represents the register in the state in which n is stored. In this state it
may either be assigned a new content m, by performing the action a,, or it may
deliver up its content n by performing the action Zn. The defining equations of the
agents WEG, therefore take the form

WEG, dcf C a,.REG,, + E,.REG,.
f?l=O

ften we write such equations as a single parametric equation

Interpreting one c rcurrent culculus in another

has the following transitions:

REG, 2 REG,, for each m 2 0,

c
REC, “, REG,,.

An agent P interacting with the register, on the other hand, will perform an action
labelled ti, to assign a particular integer bw to the register, and must be capable of
performing ;iiiy action c,, n 2 0, to read the contents of the register. If two agents
P, and Pz can both perform such actions (at various times in their histories) then
the restricted composition

(P, 1 p2 1 REW\~a, cl

represents the system in which they, and (because of the restriction) only they, can
make use of the register, perhaps competing for its attention.

Despite its simplicity, PA is a convenient vehicle for the expression and analysis
of non-trivial parallel systems which are of practical importance. Many examples
can Le found in the author’s book [7].

Let us now turn to the component PL of the calculus PC; the process logic. The
only basic material from which the formulae of PL are constructed is the set Act

of actions. We let F, G, . . . range over PL, which is defined by the following syntactic
rules:

F::=(a)F progression (a E Act);

1 &, Fi conjunction (I an indexing set);

I 1F negation.

We write true for the empty conjunction AiEfl Fi. Intuitively, when we assert ((Y) F

of an agent P, we mean that P has a transition P g P’ such that F holds of the
agent P’. Formally, the satisfaction relation I== which completes our calculus PC is
defined as follows, by induction on the staucture of formulae:

(I) P I= (a)F if, for some P’, P Q_ P’ and P’ i=

(2) P!=&,,6;;,if,forall &I, Pl=F;:;

(3) P I= 1F if it is not the case that P I= F.

A, is a simple, but also powerful. With a few derive
properties of behaviour can be expressed very sticcinctly; for

example, the ability or inability of a process to reach a state is easy to

express. ere are a few derived forms:

(s) means (cY,)(QL~). . . (a,) (S = CY~ = l . a!, j

[s]F means l(s)-+

V F means i A iF
iel ii2.l

E R. Milner

its content. Then the following formula F expresses the property, where Nat is the
set of natural numbers,

Moreover, it is easy to establish that, for each n E

0 induce congruences u
dividing PA by any such congruence one obtain
tileory. The simplest congruence is known as st

it is defined according to t e general recipe m
of c&u!ns in Section 2, r,smeiy

P-Q ifforall FEPL, PI=F iff QC=E

The algebraic properties of this congruence, and others, can be found in [+I]. It is
worth noting that these congruences have other characterisations independent of

L, and this gives them ective status. We need not pursue this matter further
here; we have now treated PC enough for our present purpose, namely the interpreta-
tion in PC of the imperative calculus IC, to which we now turn.

As announced earlier, our imperative calculus

IC = (IA, 7, IL)

is, in essence, the Hoare logic of a simple imperative programming language. As
ssic sets we take E, the program variables, and 9, the function symbols (each
nction symbol having an arity 20). We let X and F range over S? and 9..

respecttvely. e also let E range over the expressions 8, and C and range over the
commands %, defined by the following syntactic rules:

E ::= X variable

I ws, l .Ju function application
C::=X:= E assignment

1 c; C’ sequential composition

I C’ conditional
iteration
local variable
parallel composition
no action

Interpreting one concurrent calculus in another 9

Thus the imperative algebra M is a term algebra with two sorts (expressions and
commands) and with the syntactic constructions as operators. These constructions
are well enough known to need little description. Suffice to say that the local variable
construction gives scope C to the variable and that in the parallel composition
construction C and C’ are supposed to run in parallel, communicating through
variables to which they both share access.

Now Hoare’s original logic [3] for partial correctness of sequential programs
employed sentences of the form

whose intended meaning is “‘if C is executed starting in a state satisfying P, then
its terminating state (if any) will satisfy 0”. P and Q are normaliy taken to be
formulae of first order logic, containing free occurrences of the program variables.
A natural rule of inference is then the following rule for sequential imposition:

In fact, as is well known, Hoare and others have given sets of inference rules for
various sequential languages. If we were only concerned with sequential programs,

ar, then we would define the imperative logic IL to have pairs (P, Q) as
its formulae (where P, Q are formulae of predicate logic), and we would take P{ Cl Q

to be a way of writing C I- (P, 0). Then we would complete the imperative proof
calculus IC by defining the relation I- as the set of pairs (C, (P, Q) j such that P#C]Q

is provable in the appropriate Hoare logic.
In the presence of r things are not so easy, becau ;e without some constraint

upohi t?,~ language the is no natural inference rule corresponding to
as Owicki an6 Gries showed [8], there is a natural rule if we impose the following
condition: In any command of the form C, r C,, C, may not assign to any

program variable which occurs free in C2, conversely. We shall proceed to
formulate IL and t- with this in mind.

First, we shall decorate each Hoare sentence with two disjoint sets 7? and ? of
progra variables, as follows:

P#CU?IZ

We shall require that k contains all the variables free in C to which C makes any
assignment, and 2 contains all other variables free in C; also,
all the program variables free in P and Q. If these conditions
we say the sentence is admissible. Now the rule for se
the following:

10 W. Milner

zl, z2, ?, and F2 which ensures the above stated condition on C, and C,, assuming
that the hypotheses are admissible:

provided that r?, n p2 = ?I n z2 = PI n & = 0. Note that under these conditions the

conclusion wi 1 also be admissible. It is rather easy to complete the Hoare logic by
supplying inference rules for the other constructions of IA, and we shall take them
for granted.

We therefore modify our definition of IL, the imperative Zogic; it consists of
quadruples (P, Q, r?, ?) and we take P{ClQl$ to be a way of writing
C it- (P, Q, 2, 13) Then we complete IC by defining I-- as the set of pairs
(C, (P, QV r?, t)) such that p{C]Ql* . y IS admissible, and provable in the Hoare logic.

Much has been written about the soundness and (relative) completeness of various
oare logics. We do not address the problem of completeness in this paper; however,

the soundness of the imperative calculus is the subject of the following section.

e imperative calculus

in
Let us review what we mean by the soundness of IC with respect to its interpretation
PC. First we have to express the interpretation as a pair of translations

&IA--, PA, &IL-, PL.

Then we have to show that, for any C E IA and any (P, Q, 2, ?) E PA,

C t- (P, Q, 2, t> implies ,/u,(C) t=.&(P, Q, 2, E).

In this section, we outline the translations J& and Jw2, and also outline the proof
of soundness.

The translation .M1 from imperative programs to CCS agents rests upon the simple
idea that each program variable X corresponds to a relabelled version of the register
agent defined in Section 3 above, i.e.

PEG&) def ax(y). REGx(Y)+&(~).REG&)-

oreover, the translation J&(C) of any command C, in which the program variable
occurs free, will be an agent capable of performing actions ax (to assign to X)

anL UWCSHII” -x B -*;nnc ,- (ts sl?tain the contents of X). It is particularly important to realise
ion is made, in defining A,, that a program C will ha

bles which it uses. Thus, for example, the translation A1
tion sequences; it can perform the se

W at it t

Interpreting one concurrent calculus in another 11

the execution of ; but alternatively it can perform the sequence

which is what it will do if some other agent increments the value of between the
two readings of that variable.

The full translation is given in [S, 71; here we need only give its flavour by
indicating how it treats local variables. The local variable construction

C’ = Icrcd X i

has two important effects. First, it dedicates the variable X to C, ensuring that no
other agent can access X; second, it ensures that any & or c, actions which occur
in the behaviour of C (representing the writing and reading of X by C) are replaced
by r actions in the behaviour of C’. These are both achieved by the simple definition

A,(local X in C en) = (REG~~O)~A,(C))\{a,, cx)

(where we assume X is initially given the value 0).
The remainder of the definition of M, is not hard, but need not concern us here.

It has the pleasant property that in the theory of PA, divided by one of the
congruences mentioned at the end of Section 3, one can easily prove many familiar
equational laws for the transformation of programs. Indeed, a principle motive for
investigating A, was to obtain those laws as a justification for the algebraic
.e.
iiieag PA.

We now turn to defining A&: IL --, PL. That is, we look for a uniform construction
of a modal formula F from a quadruple P, Q, 2, ? such that C I= F asserts, of C,
the following: Let m, and m' be two valuations of the variables X u ?, and let s be
a terminating action sequence of C which can lead from initial valuation m to final
valuation m’ assuming no external interference with the variables X u ?. Then if
m satisfies P, m’ satisfies Q.

Now let us write 2 = r? u F9 and let us write Dom(m) for the set of varables for
which the valuation m is defined. Furthermore, let us denote by m{s)m' the property
that the s is a terminating action sequence, and could consistently lead from initial
valuation m to final valuation m’ without external interference (this property is
quite easy to define inductively on s). Let us write (m(2)lZ) for the formula
obtained by replacing in P the variables 2 by their values in
A&(p, Q, r?, 9) mrcy be written as a mixture of redicate and m

Vm,m’,s. (Dom(m)=Dom(m’)=Znm~s~m’

12 R. Milner

&(C) t= Ju,(P, Q, 2, ?) then the rule for parallel composition in Section 4, and
indeed all the other rules of the Hoare logic described there, are sound. (In this
proof, the side condition on the rule for ar is indeed crucial.) Therefore everything

by these rules is true in the interpretation in C, and we have

e soundness of the imperative calculus with respect to the underlying

process calculus, as we intended.

In this paper we have shown how one calculus can e interpreted in another,

more basic, calculus. The particular example we chose was to interpret an imperative
programming calculus (iikely to be more familiar to applications specialists) in the
basic process calculus CCS. This interpretation was rather easy and natural, and
lends weight to CCS as a foundation for calculi which are more oriented to particular
applications; one hopes that CCS can similarly support many applied calculi.

Indeed there is a calculus, based upon the same imperative programming language
IA, which presents an immediate challenge of the above kind. For our proof calculus
IC is quite restrictive; the domain of its satisfaction relation + is confined to programs
in lvhich the parallel construction C, par Cz is only admitted when C1 assigns to
no variable occurring free in C, in vice versa. This condition ensures that programs
are deterministic, but it is an unnecessarily strong condition to impose for this
purpose. There are interesting deterministic programs in IA which do not satisfy
the condition; indeed, there are useful non-deterministic programs which are intui-
tively natural and which one would like to analyse in a richer calculus than IC.

Such richer calculi exist, for the same imperative programming language IA. One
good example stems from the work of Jones [4]; in effect, he replaces Hoare sentences
P{C]Q by richer sentences (P, R)QCl (Q, S), where P and Q are pre- and post-
conditions as before, while R is a condition upon whose truth C will re/’ before
every step of its execution, and S is a condition whose truth C will, in turn, g~~~~.~arri?*~
after every step of its execution. Now Jones places no restriction upon the par;;?el
comstruction C, C,, but will only allow a Hoare sentence about C, par C, to
be inferred from oare sentences about C1 and Cz whose reZy and guarantee
conditions complement one another suitably. Stirling [9] has formulated the
appropriate Hoare logic explicitly, as a gcneralisation of the Owicki-Gries system,
and has proved it sound with respect to an independently given operational seman-

C as a goud foundation, it is therefore important to formulate
ogic as a calculus in our sense, and interpret it in PC just as we

ave interpreted IC in PC.

oare logics of partial correctness: logics

Interpreting one concurrent calculus in another 13

eventucality properties strongly enough for PC to support an interpretation of a logic
of total correctness. However, there are stronger process logics than PL which do
express eventuality, Hennessy and Stirling [2] proposed one, and we would like to
interpret a total correctness calculus for IA in a correspondingly stronger process

calculus.
We hope to have shown that the notims of calculus, and of interpreting one

calculus in another, are fruitful and unifying.

ate a in proof

Since this paper was written, Tofts has succeeded ii: interpreting Stirling’s richer
calculus in PC in his PhD thesis [lo].

eferences

[l] J.A. Goguen and R.M. Burstall, Introducing institutions, in: E. Clarke and D. Kozen, eds., Proc.
Logics of Programming Workshop, Lecture Notes in Computer Science 164 (Springer, Berlin, 1984)
221-256.

[2] M.C. Hennessy and C.P. Stirling, The power of the future perfect in program logics, Inform. and
Control 61 (1985) 23-52.

[3] C.A.I.,;. Hoare, An axiomatic basis for computer programming, Comm. ACM 21(8) (1969) 576-580.
[4] C.B. Jones, Specification and design of (parallel) programs, in: Proc. IFIP 9th World Computer

Congress (North-Holland, Amsterdam, 1983) 321-332.
[S] A.J.R.G. Milner, r3 C&t~lus of Communicating Systems, Lecture Notes in Computer Science 92

(Springer, Berlin, 1980); also available as Report ECS-LFCS-86-7, Computer Science Department,
UnGversity of Edinburgh, 1986.

[6] A.J.R.G. Milner, Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25 (1983) 267-310.
[7] A.J.R.G. Milner, Communication and Concurrency (Prentice Hall, Englewood Cliffs, NJ1 1989).
[8] S. Owicki and D. Gries, An axiomatic proof technique for parallel programs I, Acta Inform. 6(1)

(1976) 3 19-340.
[9] C.P. Stirling, A generalisation of Owicki-Gries’ Hoare logic for a concurrent while language, Theoret.

Comput. Sci., to appear.
[lo] C. Tofts, Proof methods and pragmatics for parallel programming, PhD thesis, Computer Science

Department, University of Edinburgh, 1990.

